| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 175 |  |  | 
| 176 |  | pot_row.resize(nAtomsInRow_); | 
| 177 |  | pot_col.resize(nAtomsInCol_); | 
| 178 | + |  | 
| 179 | + | expot_row.resize(nAtomsInRow_); | 
| 180 | + | expot_col.resize(nAtomsInCol_); | 
| 181 |  |  | 
| 182 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 310 |  |  | 
| 311 |  | RealType tol = 1e-6; | 
| 312 |  | largestRcut_ = 0.0; | 
| 299 | – | RealType rc; | 
| 313 |  | int atid; | 
| 314 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 |  |  | 
| 394 |  | } | 
| 395 |  |  | 
| 396 |  | bool gTypeFound = false; | 
| 397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  | groupToGtype[cg1] = gt; | 
| 400 |  | gTypeFound = true; | 
| 419 |  |  | 
| 420 |  | RealType tradRcut = groupMax; | 
| 421 |  |  | 
| 422 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 |  | RealType thisRcut; | 
| 425 |  | switch(cutoffPolicy_) { | 
| 426 |  | case TRADITIONAL: | 
| 463 |  | } | 
| 464 |  | } | 
| 465 |  |  | 
| 453 | – |  | 
| 466 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 |  | int i, j; | 
| 468 |  | #ifdef IS_MPI | 
| 476 |  | } | 
| 477 |  |  | 
| 478 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 |  | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  | return topoDist[atom1][j]; | 
| 482 |  | } | 
| 486 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 487 |  | pairwisePot = 0.0; | 
| 488 |  | embeddingPot = 0.0; | 
| 489 | + | excludedPot = 0.0; | 
| 490 | + | excludedSelfPot = 0.0; | 
| 491 |  |  | 
| 492 |  | #ifdef IS_MPI | 
| 493 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 506 |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 |  |  | 
| 509 | + | fill(expot_row.begin(), expot_row.end(), | 
| 510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 511 | + |  | 
| 512 | + | fill(expot_col.begin(), expot_col.end(), | 
| 513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 | + |  | 
| 515 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 516 |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 517 |  | 0.0); | 
| 545 |  | atomColData.skippedCharge.end(), 0.0); | 
| 546 |  | } | 
| 547 |  |  | 
| 548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 | + | fill(atomRowData.flucQFrc.begin(), | 
| 550 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 551 | + | fill(atomColData.flucQFrc.begin(), | 
| 552 | + | atomColData.flucQFrc.end(), 0.0); | 
| 553 | + | } | 
| 554 | + |  | 
| 555 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 |  | fill(atomRowData.electricField.begin(), | 
| 557 |  | atomRowData.electricField.end(), V3Zero); | 
| 558 |  | fill(atomColData.electricField.begin(), | 
| 559 |  | atomColData.electricField.end(), V3Zero); | 
| 560 |  | } | 
| 534 | – | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 535 | – | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 536 | – | 0.0); | 
| 537 | – | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 538 | – | 0.0); | 
| 539 | – | } | 
| 561 |  |  | 
| 562 |  | #endif | 
| 563 |  | // even in parallel, we need to zero out the local arrays: | 
| 612 |  |  | 
| 613 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 614 |  | cgColData.position); | 
| 615 | + |  | 
| 616 | + |  | 
| 617 | + |  | 
| 618 | + | if (needVelocities_) { | 
| 619 | + | // gather up the atomic velocities | 
| 620 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 621 | + | atomColData.velocity); | 
| 622 | + |  | 
| 623 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 624 | + | cgColData.velocity); | 
| 625 | + | } | 
| 626 |  |  | 
| 627 |  |  | 
| 628 |  | // if needed, gather the atomic rotation matrices | 
| 632 |  | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 633 |  | atomColData.aMat); | 
| 634 |  | } | 
| 635 | < |  | 
| 636 | < | // if needed, gather the atomic eletrostatic frames | 
| 637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 638 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 639 | < | atomRowData.electroFrame); | 
| 640 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 641 | < | atomColData.electroFrame); | 
| 635 | > |  | 
| 636 | > | // if needed, gather the atomic eletrostatic information | 
| 637 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 639 | > | atomRowData.dipole); | 
| 640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 641 | > | atomColData.dipole); | 
| 642 |  | } | 
| 643 |  |  | 
| 644 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 645 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 646 | + | atomRowData.quadrupole); | 
| 647 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 648 | + | atomColData.quadrupole); | 
| 649 | + | } | 
| 650 | + |  | 
| 651 |  | // if needed, gather the atomic fluctuating charge values | 
| 652 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 |  | } | 
| 681 |  |  | 
| 682 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 683 | + | // we'll leave it here for now. | 
| 684 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 685 |  |  | 
| 686 |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 688 |  |  | 
| 689 |  | int n = snap_->atomData.electricField.size(); | 
| 690 |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 691 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 691 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 692 | > | field_tmp); | 
| 693 |  | for (int i = 0; i < n; i++) | 
| 694 |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 695 |  | } | 
| 789 |  |  | 
| 790 |  | } | 
| 791 |  |  | 
| 792 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 793 | + |  | 
| 794 | + | int nef = snap_->atomData.electricField.size(); | 
| 795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 796 | + |  | 
| 797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 798 | + | for (int i = 0; i < nef; i++) { | 
| 799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 800 | + | efield_tmp[i] = 0.0; | 
| 801 | + | } | 
| 802 | + |  | 
| 803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 804 | + | for (int i = 0; i < nef; i++) | 
| 805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 806 | + | } | 
| 807 | + |  | 
| 808 | + |  | 
| 809 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 810 |  |  | 
| 811 |  | vector<potVec> pot_temp(nLocal_, | 
| 812 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 813 | + | vector<potVec> expot_temp(nLocal_, | 
| 814 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 815 |  |  | 
| 816 |  | // scatter/gather pot_row into the members of my column | 
| 817 |  |  | 
| 818 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 819 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 820 |  |  | 
| 821 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 821 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 822 |  | pairwisePot += pot_temp[ii]; | 
| 823 | < |  | 
| 823 | > |  | 
| 824 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 825 | > | excludedPot += expot_temp[ii]; | 
| 826 | > |  | 
| 827 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 828 | > | // This is the pairwise contribution to the particle pot.  The | 
| 829 | > | // embedding contribution is added in each of the low level | 
| 830 | > | // non-bonded routines.  In single processor, this is done in | 
| 831 | > | // unpackInteractionData, not in collectData. | 
| 832 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 833 | > | for (int i = 0; i < nLocal_; i++) { | 
| 834 | > | // factor of two is because the total potential terms are divided | 
| 835 | > | // by 2 in parallel due to row/ column scatter | 
| 836 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 837 | > | } | 
| 838 | > | } | 
| 839 | > | } | 
| 840 | > |  | 
| 841 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 842 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 843 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 844 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 845 |  |  | 
| 846 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 847 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 848 |  |  | 
| 849 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 850 |  | pairwisePot += pot_temp[ii]; | 
| 851 | + |  | 
| 852 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 853 | + | excludedPot += expot_temp[ii]; | 
| 854 | + |  | 
| 855 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 856 | + | // This is the pairwise contribution to the particle pot.  The | 
| 857 | + | // embedding contribution is added in each of the low level | 
| 858 | + | // non-bonded routines.  In single processor, this is done in | 
| 859 | + | // unpackInteractionData, not in collectData. | 
| 860 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 861 | + | for (int i = 0; i < nLocal_; i++) { | 
| 862 | + | // factor of two is because the total potential terms are divided | 
| 863 | + | // by 2 in parallel due to row/ column scatter | 
| 864 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 865 | + | } | 
| 866 | + | } | 
| 867 | + | } | 
| 868 |  |  | 
| 869 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 870 | + | int npp = snap_->atomData.particlePot.size(); | 
| 871 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 872 | + |  | 
| 873 | + | // This is the direct or embedding contribution to the particle | 
| 874 | + | // pot. | 
| 875 | + |  | 
| 876 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 877 | + | for (int i = 0; i < npp; i++) { | 
| 878 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 879 | + | } | 
| 880 | + |  | 
| 881 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 882 | + |  | 
| 883 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 884 | + | for (int i = 0; i < npp; i++) { | 
| 885 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 886 | + | } | 
| 887 | + | } | 
| 888 | + |  | 
| 889 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 890 |  | RealType ploc1 = pairwisePot[ii]; | 
| 891 |  | RealType ploc2 = 0.0; | 
| 894 |  | } | 
| 895 |  |  | 
| 896 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 897 | < | RealType ploc1 = embeddingPot[ii]; | 
| 897 | > | RealType ploc1 = excludedPot[ii]; | 
| 898 |  | RealType ploc2 = 0.0; | 
| 899 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 900 | < | embeddingPot[ii] = ploc2; | 
| 900 | > | excludedPot[ii] = ploc2; | 
| 901 |  | } | 
| 902 |  |  | 
| 903 | + | // Here be dragons. | 
| 904 | + | MPI::Intracomm col = colComm.getComm(); | 
| 905 | + |  | 
| 906 | + | col.Allreduce(MPI::IN_PLACE, | 
| 907 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 908 | + | MPI::REALTYPE, MPI::SUM); | 
| 909 | + |  | 
| 910 | + |  | 
| 911 |  | #endif | 
| 912 |  |  | 
| 913 |  | } | 
| 914 |  |  | 
| 915 | + | /** | 
| 916 | + | * Collects information obtained during the post-pair (and embedding | 
| 917 | + | * functional) loops onto local data structures. | 
| 918 | + | */ | 
| 919 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 920 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 921 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 922 | + |  | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 925 | + | RealType ploc1 = embeddingPot[ii]; | 
| 926 | + | RealType ploc2 = 0.0; | 
| 927 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 928 | + | embeddingPot[ii] = ploc2; | 
| 929 | + | } | 
| 930 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 931 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 932 | + | RealType ploc2 = 0.0; | 
| 933 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 934 | + | excludedSelfPot[ii] = ploc2; | 
| 935 | + | } | 
| 936 | + | #endif | 
| 937 | + |  | 
| 938 | + | } | 
| 939 | + |  | 
| 940 | + |  | 
| 941 | + |  | 
| 942 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 943 |  | #ifdef IS_MPI | 
| 944 |  | return nAtomsInRow_; | 
| 975 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 976 |  | #endif | 
| 977 |  |  | 
| 978 | < | snap_->wrapVector(d); | 
| 978 | > | if (usePeriodicBoundaryConditions_) { | 
| 979 | > | snap_->wrapVector(d); | 
| 980 | > | } | 
| 981 |  | return d; | 
| 982 | + | } | 
| 983 | + |  | 
| 984 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 985 | + | #ifdef IS_MPI | 
| 986 | + | return cgColData.velocity[cg2]; | 
| 987 | + | #else | 
| 988 | + | return snap_->cgData.velocity[cg2]; | 
| 989 | + | #endif | 
| 990 |  | } | 
| 991 |  |  | 
| 992 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 993 | + | #ifdef IS_MPI | 
| 994 | + | return atomColData.velocity[atom2]; | 
| 995 | + | #else | 
| 996 | + | return snap_->atomData.velocity[atom2]; | 
| 997 | + | #endif | 
| 998 | + | } | 
| 999 |  |  | 
| 1000 | + |  | 
| 1001 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1002 |  |  | 
| 1003 |  | Vector3d d; | 
| 1007 |  | #else | 
| 1008 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1009 |  | #endif | 
| 1010 | < |  | 
| 1011 | < | snap_->wrapVector(d); | 
| 1010 | > | if (usePeriodicBoundaryConditions_) { | 
| 1011 | > | snap_->wrapVector(d); | 
| 1012 | > | } | 
| 1013 |  | return d; | 
| 1014 |  | } | 
| 1015 |  |  | 
| 1021 |  | #else | 
| 1022 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1023 |  | #endif | 
| 1024 | < |  | 
| 1025 | < | snap_->wrapVector(d); | 
| 1024 | > | if (usePeriodicBoundaryConditions_) { | 
| 1025 | > | snap_->wrapVector(d); | 
| 1026 | > | } | 
| 1027 |  | return d; | 
| 1028 |  | } | 
| 1029 |  |  | 
| 1052 |  | #else | 
| 1053 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1054 |  | #endif | 
| 1055 | < |  | 
| 1056 | < | snap_->wrapVector(d); | 
| 1055 | > | if (usePeriodicBoundaryConditions_) { | 
| 1056 | > | snap_->wrapVector(d); | 
| 1057 | > | } | 
| 1058 |  | return d; | 
| 1059 |  | } | 
| 1060 |  |  | 
| 1066 |  | * We need to exclude some overcounted interactions that result from | 
| 1067 |  | * the parallel decomposition. | 
| 1068 |  | */ | 
| 1069 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1069 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1070 |  | int unique_id_1, unique_id_2; | 
| 1071 |  |  | 
| 1072 |  | #ifdef IS_MPI | 
| 1073 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1074 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1075 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1076 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1077 | + | // group2 = cgColToGlobal[cg2]; | 
| 1078 |  | #else | 
| 1079 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1080 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1081 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1082 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1083 |  | #endif | 
| 1084 |  |  | 
| 1085 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1091 |  | } else { | 
| 1092 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1093 |  | } | 
| 1094 | + | #endif | 
| 1095 | + |  | 
| 1096 | + | #ifndef IS_MPI | 
| 1097 | + | if (group1 == group2) { | 
| 1098 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1099 | + | } | 
| 1100 |  | #endif | 
| 1101 |  |  | 
| 1102 |  | return false; | 
| 1157 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1158 |  | } | 
| 1159 |  |  | 
| 975 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 976 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 977 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 978 | – | } | 
| 979 | – |  | 
| 1160 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1161 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1162 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 |  | } | 
| 1164 |  |  | 
| 1165 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1166 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1167 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1168 | + | } | 
| 1169 | + |  | 
| 1170 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1171 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1172 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1173 | + | } | 
| 1174 | + |  | 
| 1175 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1176 |  | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1177 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1197 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1198 |  | } | 
| 1199 |  |  | 
| 1200 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1201 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1202 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1203 | + | } | 
| 1204 | + |  | 
| 1205 |  | #else | 
| 1206 |  |  | 
| 1012 | – |  | 
| 1013 | – | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1014 | – | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1015 | – | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1016 | – |  | 
| 1207 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1018 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1019 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1208 |  |  | 
| 1209 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1210 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1211 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1212 |  | } | 
| 1213 |  |  | 
| 1026 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1027 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1028 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1029 | – | } | 
| 1030 | – |  | 
| 1214 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1215 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1216 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1217 |  | } | 
| 1218 |  |  | 
| 1219 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1220 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1221 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1222 | + | } | 
| 1223 | + |  | 
| 1224 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1225 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1226 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1227 | + | } | 
| 1228 | + |  | 
| 1229 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1230 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1231 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1250 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1251 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1252 |  | } | 
| 1253 | + |  | 
| 1254 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1255 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1256 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1257 | + | } | 
| 1258 | + |  | 
| 1259 |  | #endif | 
| 1260 |  | } | 
| 1261 |  |  | 
| 1264 |  | #ifdef IS_MPI | 
| 1265 |  | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1266 |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1267 | + | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1268 | + | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1269 |  |  | 
| 1270 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1271 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1272 |  |  | 
| 1273 | < | // should particle pot be done here also? | 
| 1273 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1274 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1275 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1276 | > | } | 
| 1277 | > |  | 
| 1278 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1279 | > | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1280 | > | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1281 | > | } | 
| 1282 | > |  | 
| 1283 |  | #else | 
| 1284 |  | pairwisePot += *(idat.pot); | 
| 1285 | + | excludedPot += *(idat.excludedPot); | 
| 1286 |  |  | 
| 1287 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1288 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1289 |  |  | 
| 1290 |  | if (idat.doParticlePot) { | 
| 1291 | < | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1292 | < | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1291 | > | // This is the pairwise contribution to the particle pot.  The | 
| 1292 | > | // embedding contribution is added in each of the low level | 
| 1293 | > | // non-bonded routines.  In parallel, this calculation is done | 
| 1294 | > | // in collectData, not in unpackInteractionData. | 
| 1295 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1296 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1297 |  | } | 
| 1298 | < |  | 
| 1298 | > |  | 
| 1299 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1300 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1301 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1302 | > | } | 
| 1303 | > |  | 
| 1304 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1305 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1306 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1307 | > | } | 
| 1308 | > |  | 
| 1309 |  | #endif | 
| 1310 |  |  | 
| 1311 |  | } | 
| 1322 |  | groupCutoffs cuts; | 
| 1323 |  | bool doAllPairs = false; | 
| 1324 |  |  | 
| 1325 | + | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1326 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1327 | + | Mat3x3d box; | 
| 1328 | + | Mat3x3d invBox; | 
| 1329 | + |  | 
| 1330 | + | Vector3d rs, scaled, dr; | 
| 1331 | + | Vector3i whichCell; | 
| 1332 | + | int cellIndex; | 
| 1333 | + |  | 
| 1334 |  | #ifdef IS_MPI | 
| 1335 |  | cellListRow_.clear(); | 
| 1336 |  | cellListCol_.clear(); | 
| 1337 |  | #else | 
| 1338 |  | cellList_.clear(); | 
| 1339 |  | #endif | 
| 1340 | < |  | 
| 1341 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1342 | < | RealType rl2 = rList_ * rList_; | 
| 1343 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1344 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1345 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1346 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1347 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1348 | < |  | 
| 1349 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1350 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1351 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1352 | < |  | 
| 1340 | > |  | 
| 1341 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1342 | > | box = snap_->getBoundingBox(); | 
| 1343 | > | invBox = snap_->getInvBoundingBox(); | 
| 1344 | > | } else { | 
| 1345 | > | box = snap_->getHmat(); | 
| 1346 | > | invBox = snap_->getInvHmat(); | 
| 1347 | > | } | 
| 1348 | > |  | 
| 1349 | > | Vector3d boxX = box.getColumn(0); | 
| 1350 | > | Vector3d boxY = box.getColumn(1); | 
| 1351 | > | Vector3d boxZ = box.getColumn(2); | 
| 1352 | > |  | 
| 1353 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; | 
| 1354 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; | 
| 1355 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; | 
| 1356 | > |  | 
| 1357 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1358 |  |  | 
| 1359 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1360 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1361 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1362 | < |  | 
| 1125 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1126 | < | Vector3d rs, scaled, dr; | 
| 1127 | < | Vector3i whichCell; | 
| 1128 | < | int cellIndex; | 
| 1362 | > |  | 
| 1363 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1364 | < |  | 
| 1364 | > |  | 
| 1365 |  | #ifdef IS_MPI | 
| 1366 |  | cellListRow_.resize(nCtot); | 
| 1367 |  | cellListCol_.resize(nCtot); | 
| 1368 |  | #else | 
| 1369 |  | cellList_.resize(nCtot); | 
| 1370 |  | #endif | 
| 1371 | < |  | 
| 1371 | > |  | 
| 1372 |  | if (!doAllPairs) { | 
| 1373 |  | #ifdef IS_MPI | 
| 1374 | < |  | 
| 1374 | > |  | 
| 1375 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1376 |  | rs = cgRowData.position[i]; | 
| 1377 |  |  | 
| 1378 |  | // scaled positions relative to the box vectors | 
| 1379 | < | scaled = invHmat * rs; | 
| 1379 | > | scaled = invBox * rs; | 
| 1380 |  |  | 
| 1381 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1382 |  | // numbers | 
| 1383 |  | for (int j = 0; j < 3; j++) { | 
| 1384 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1385 |  | scaled[j] += 0.5; | 
| 1386 | + | // Handle the special case when an object is exactly on the | 
| 1387 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1388 | + | // scaled coordinate of 0.0) | 
| 1389 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1390 |  | } | 
| 1391 |  |  | 
| 1392 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1404 |  | rs = cgColData.position[i]; | 
| 1405 |  |  | 
| 1406 |  | // scaled positions relative to the box vectors | 
| 1407 | < | scaled = invHmat * rs; | 
| 1407 | > | scaled = invBox * rs; | 
| 1408 |  |  | 
| 1409 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1410 |  | // numbers | 
| 1411 |  | for (int j = 0; j < 3; j++) { | 
| 1412 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1413 |  | scaled[j] += 0.5; | 
| 1414 | + | // Handle the special case when an object is exactly on the | 
| 1415 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1416 | + | // scaled coordinate of 0.0) | 
| 1417 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1418 |  | } | 
| 1419 |  |  | 
| 1420 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1428 |  | // add this cutoff group to the list of groups in this cell; | 
| 1429 |  | cellListCol_[cellIndex].push_back(i); | 
| 1430 |  | } | 
| 1431 | < |  | 
| 1431 | > |  | 
| 1432 |  | #else | 
| 1433 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1434 |  | rs = snap_->cgData.position[i]; | 
| 1435 |  |  | 
| 1436 |  | // scaled positions relative to the box vectors | 
| 1437 | < | scaled = invHmat * rs; | 
| 1437 | > | scaled = invBox * rs; | 
| 1438 |  |  | 
| 1439 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1440 |  | // numbers | 
| 1441 |  | for (int j = 0; j < 3; j++) { | 
| 1442 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1443 |  | scaled[j] += 0.5; | 
| 1444 | + | // Handle the special case when an object is exactly on the | 
| 1445 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1446 | + | // scaled coordinate of 0.0) | 
| 1447 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1448 |  | } | 
| 1449 |  |  | 
| 1450 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1503 |  | // & column indicies and will divide labor in the | 
| 1504 |  | // force evaluation later. | 
| 1505 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1506 | < | snap_->wrapVector(dr); | 
| 1506 | > | if (usePeriodicBoundaryConditions_) { | 
| 1507 | > | snap_->wrapVector(dr); | 
| 1508 | > | } | 
| 1509 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1510 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1511 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1527 |  | // allows atoms within a single cutoff group to | 
| 1528 |  | // interact with each other. | 
| 1529 |  |  | 
| 1282 | – |  | 
| 1283 | – |  | 
| 1530 |  | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1531 |  |  | 
| 1532 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1533 | < | snap_->wrapVector(dr); | 
| 1533 | > | if (usePeriodicBoundaryConditions_) { | 
| 1534 | > | snap_->wrapVector(dr); | 
| 1535 | > | } | 
| 1536 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1537 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1538 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1551 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1552 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1553 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1554 | < | snap_->wrapVector(dr); | 
| 1554 | > | if (usePeriodicBoundaryConditions_) { | 
| 1555 | > | snap_->wrapVector(dr); | 
| 1556 | > | } | 
| 1557 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1558 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1559 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1566 |  | // include self group interactions j2 == j1 | 
| 1567 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1568 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1569 | < | snap_->wrapVector(dr); | 
| 1569 | > | if (usePeriodicBoundaryConditions_) { | 
| 1570 | > | snap_->wrapVector(dr); | 
| 1571 | > | } | 
| 1572 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1573 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1574 |  | neighborList.push_back(make_pair(j1, j2)); |