| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 |  |  | 
| 51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | + |  | 
| 53 | + | // In a parallel computation, row and colum scans must visit all | 
| 54 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | + | // are used when the processor can see all pairs) | 
| 56 | + | #ifdef IS_MPI | 
| 57 | + | cellOffsets_.clear(); | 
| 58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | + | #endif | 
| 86 | + | } | 
| 87 | + |  | 
| 88 | + |  | 
| 89 |  | /** | 
| 90 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  | * SimulationSetup | 
| 92 |  | */ | 
| 54 | – |  | 
| 93 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 121 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 122 | > | MPI::Intracomm col = colComm.getComm(); | 
| 123 |  |  | 
| 124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 88 | < |  | 
| 89 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 90 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 91 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 92 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 |  |  | 
| 130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 |  |  | 
| 136 | + | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 | + | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 | + | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 | + | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 | + |  | 
| 141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 | + |  | 
| 146 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 147 |  | atomRowData.resize(nAtomsInRow_); | 
| 148 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 164 | < | AtomCommIntRow->gather(idents, identsRow); | 
| 165 | < | AtomCommIntColumn->gather(idents, identsCol); | 
| 164 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 165 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 |  |  | 
| 167 |  | // allocate memory for the parallel objects | 
| 168 |  | atypesRow.resize(nAtomsInRow_); | 
| 178 |  |  | 
| 179 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 180 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 181 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 182 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 183 | < |  | 
| 181 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 182 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 183 | > |  | 
| 184 |  | cgRowToGlobal.resize(nGroupsInRow_); | 
| 185 |  | cgColToGlobal.resize(nGroupsInCol_); | 
| 186 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 187 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 186 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 187 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 188 |  |  | 
| 189 |  | massFactorsRow.resize(nAtomsInRow_); | 
| 190 |  | massFactorsCol.resize(nAtomsInCol_); | 
| 191 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 192 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 191 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 192 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 193 |  |  | 
| 194 |  | groupListRow_.clear(); | 
| 195 |  | groupListRow_.resize(nGroupsInRow_); | 
| 245 |  | } | 
| 246 |  | } | 
| 247 |  |  | 
| 248 | < | #endif | 
| 197 | < |  | 
| 198 | < | // allocate memory for the parallel objects | 
| 199 | < | atypesLocal.resize(nLocal_); | 
| 200 | < |  | 
| 201 | < | for (int i = 0; i < nLocal_; i++) | 
| 202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 203 | < |  | 
| 204 | < | groupList_.clear(); | 
| 205 | < | groupList_.resize(nGroups_); | 
| 206 | < | for (int i = 0; i < nGroups_; i++) { | 
| 207 | < | int gid = cgLocalToGlobal[i]; | 
| 208 | < | for (int j = 0; j < nLocal_; j++) { | 
| 209 | < | int aid = AtomLocalToGlobal[j]; | 
| 210 | < | if (globalGroupMembership[aid] == gid) { | 
| 211 | < | groupList_[i].push_back(j); | 
| 212 | < | } | 
| 213 | < | } | 
| 214 | < | } | 
| 215 | < |  | 
| 248 | > | #else | 
| 249 |  | excludesForAtom.clear(); | 
| 250 |  | excludesForAtom.resize(nLocal_); | 
| 251 |  | toposForAtom.clear(); | 
| 278 |  | } | 
| 279 |  | } | 
| 280 |  | } | 
| 281 | < |  | 
| 281 | > | #endif | 
| 282 | > |  | 
| 283 | > | // allocate memory for the parallel objects | 
| 284 | > | atypesLocal.resize(nLocal_); | 
| 285 | > |  | 
| 286 | > | for (int i = 0; i < nLocal_; i++) | 
| 287 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 288 | > |  | 
| 289 | > | groupList_.clear(); | 
| 290 | > | groupList_.resize(nGroups_); | 
| 291 | > | for (int i = 0; i < nGroups_; i++) { | 
| 292 | > | int gid = cgLocalToGlobal[i]; | 
| 293 | > | for (int j = 0; j < nLocal_; j++) { | 
| 294 | > | int aid = AtomLocalToGlobal[j]; | 
| 295 | > | if (globalGroupMembership[aid] == gid) { | 
| 296 | > | groupList_[i].push_back(j); | 
| 297 | > | } | 
| 298 | > | } | 
| 299 | > | } | 
| 300 | > |  | 
| 301 | > |  | 
| 302 |  | createGtypeCutoffMap(); | 
| 303 |  |  | 
| 304 |  | } | 
| 534 |  | atomRowData.skippedCharge.end(), 0.0); | 
| 535 |  | fill(atomColData.skippedCharge.begin(), | 
| 536 |  | atomColData.skippedCharge.end(), 0.0); | 
| 537 | + | } | 
| 538 | + |  | 
| 539 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 540 | + | fill(atomRowData.flucQFrc.begin(), | 
| 541 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 542 | + | fill(atomColData.flucQFrc.begin(), | 
| 543 | + | atomColData.flucQFrc.end(), 0.0); | 
| 544 | + | } | 
| 545 | + |  | 
| 546 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 547 | + | fill(atomRowData.electricField.begin(), | 
| 548 | + | atomRowData.electricField.end(), V3Zero); | 
| 549 | + | fill(atomColData.electricField.begin(), | 
| 550 | + | atomColData.electricField.end(), V3Zero); | 
| 551 | + | } | 
| 552 | + |  | 
| 553 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 554 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 555 | + | 0.0); | 
| 556 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 557 | + | 0.0); | 
| 558 |  | } | 
| 559 |  |  | 
| 560 |  | #endif | 
| 569 |  | fill(snap_->atomData.density.begin(), | 
| 570 |  | snap_->atomData.density.end(), 0.0); | 
| 571 |  | } | 
| 572 | + |  | 
| 573 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 574 |  | fill(snap_->atomData.functional.begin(), | 
| 575 |  | snap_->atomData.functional.end(), 0.0); | 
| 576 |  | } | 
| 577 | + |  | 
| 578 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 579 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 580 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 581 |  | } | 
| 582 | + |  | 
| 583 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 584 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 585 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 586 |  | } | 
| 587 | < |  | 
| 587 | > |  | 
| 588 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 589 | > | fill(snap_->atomData.electricField.begin(), | 
| 590 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 591 | > | } | 
| 592 |  | } | 
| 593 |  |  | 
| 594 |  |  | 
| 598 |  | #ifdef IS_MPI | 
| 599 |  |  | 
| 600 |  | // gather up the atomic positions | 
| 601 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 601 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 602 |  | atomRowData.position); | 
| 603 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 603 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 604 |  | atomColData.position); | 
| 605 |  |  | 
| 606 |  | // gather up the cutoff group positions | 
| 607 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 607 | > |  | 
| 608 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 609 |  | cgRowData.position); | 
| 610 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 610 | > |  | 
| 611 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 612 |  | cgColData.position); | 
| 613 | + |  | 
| 614 | + |  | 
| 615 | + |  | 
| 616 | + | if (needVelocities_) { | 
| 617 | + | // gather up the atomic velocities | 
| 618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 619 | + | atomColData.velocity); | 
| 620 | + |  | 
| 621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 622 | + | cgColData.velocity); | 
| 623 | + | } | 
| 624 | + |  | 
| 625 |  |  | 
| 626 |  | // if needed, gather the atomic rotation matrices | 
| 627 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 628 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 628 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 629 |  | atomRowData.aMat); | 
| 630 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 630 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 631 |  | atomColData.aMat); | 
| 632 |  | } | 
| 633 |  |  | 
| 634 |  | // if needed, gather the atomic eletrostatic frames | 
| 635 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 636 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 636 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 637 |  | atomRowData.electroFrame); | 
| 638 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 638 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 639 |  | atomColData.electroFrame); | 
| 640 |  | } | 
| 641 |  |  | 
| 642 | + | // if needed, gather the atomic fluctuating charge values | 
| 643 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 644 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 645 | + | atomRowData.flucQPos); | 
| 646 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 647 | + | atomColData.flucQPos); | 
| 648 | + | } | 
| 649 | + |  | 
| 650 |  | #endif | 
| 651 |  | } | 
| 652 |  |  | 
| 660 |  |  | 
| 661 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 662 |  |  | 
| 663 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 663 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 664 |  | snap_->atomData.density); | 
| 665 |  |  | 
| 666 |  | int n = snap_->atomData.density.size(); | 
| 667 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 668 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 668 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 669 |  | for (int i = 0; i < n; i++) | 
| 670 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 671 |  | } | 
| 672 | + |  | 
| 673 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 674 | + |  | 
| 675 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 676 | + | snap_->atomData.electricField); | 
| 677 | + |  | 
| 678 | + | int n = snap_->atomData.electricField.size(); | 
| 679 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 680 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 681 | + | for (int i = 0; i < n; i++) | 
| 682 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 683 | + | } | 
| 684 |  | #endif | 
| 685 |  | } | 
| 686 |  |  | 
| 693 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 694 |  | #ifdef IS_MPI | 
| 695 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 696 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 696 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 697 |  | atomRowData.functional); | 
| 698 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 698 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 699 |  | atomColData.functional); | 
| 700 |  | } | 
| 701 |  |  | 
| 702 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 703 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 703 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 704 |  | atomRowData.functionalDerivative); | 
| 705 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 705 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 706 |  | atomColData.functionalDerivative); | 
| 707 |  | } | 
| 708 |  | #endif | 
| 716 |  | int n = snap_->atomData.force.size(); | 
| 717 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 718 |  |  | 
| 719 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 719 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 720 |  | for (int i = 0; i < n; i++) { | 
| 721 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 722 |  | frc_tmp[i] = 0.0; | 
| 723 |  | } | 
| 724 |  |  | 
| 725 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | < | for (int i = 0; i < n; i++) | 
| 725 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | > | for (int i = 0; i < n; i++) { | 
| 727 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 728 | + | } | 
| 729 |  |  | 
| 730 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 731 |  |  | 
| 732 |  | int nt = snap_->atomData.torque.size(); | 
| 733 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 734 |  |  | 
| 735 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 735 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 736 |  | for (int i = 0; i < nt; i++) { | 
| 737 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 738 |  | trq_tmp[i] = 0.0; | 
| 739 |  | } | 
| 740 |  |  | 
| 741 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 741 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 742 |  | for (int i = 0; i < nt; i++) | 
| 743 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 744 |  | } | 
| 748 |  | int ns = snap_->atomData.skippedCharge.size(); | 
| 749 |  | vector<RealType> skch_tmp(ns, 0.0); | 
| 750 |  |  | 
| 751 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 751 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 752 |  | for (int i = 0; i < ns; i++) { | 
| 753 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 754 |  | skch_tmp[i] = 0.0; | 
| 755 |  | } | 
| 756 |  |  | 
| 757 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 758 | < | for (int i = 0; i < ns; i++) | 
| 757 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 758 | > | for (int i = 0; i < ns; i++) | 
| 759 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 760 | + |  | 
| 761 |  | } | 
| 762 |  |  | 
| 763 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 764 | + |  | 
| 765 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 766 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 767 | + |  | 
| 768 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 769 | + | for (int i = 0; i < nq; i++) { | 
| 770 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 771 | + | fqfrc_tmp[i] = 0.0; | 
| 772 | + | } | 
| 773 | + |  | 
| 774 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 775 | + | for (int i = 0; i < nq; i++) | 
| 776 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 777 | + |  | 
| 778 | + | } | 
| 779 | + |  | 
| 780 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 781 |  |  | 
| 782 |  | vector<potVec> pot_temp(nLocal_, | 
| 784 |  |  | 
| 785 |  | // scatter/gather pot_row into the members of my column | 
| 786 |  |  | 
| 787 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 787 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 788 |  |  | 
| 789 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 790 |  | pairwisePot += pot_temp[ii]; | 
| 791 | < |  | 
| 791 | > |  | 
| 792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 793 | > | // This is the pairwise contribution to the particle pot.  The | 
| 794 | > | // embedding contribution is added in each of the low level | 
| 795 | > | // non-bonded routines.  In single processor, this is done in | 
| 796 | > | // unpackInteractionData, not in collectData. | 
| 797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 798 | > | for (int i = 0; i < nLocal_; i++) { | 
| 799 | > | // factor of two is because the total potential terms are divided | 
| 800 | > | // by 2 in parallel due to row/ column scatter | 
| 801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > | } | 
| 805 | > |  | 
| 806 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 807 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 808 |  |  | 
| 809 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 809 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 810 |  |  | 
| 811 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 812 |  | pairwisePot += pot_temp[ii]; | 
| 813 | + |  | 
| 814 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 815 | + | // This is the pairwise contribution to the particle pot.  The | 
| 816 | + | // embedding contribution is added in each of the low level | 
| 817 | + | // non-bonded routines.  In single processor, this is done in | 
| 818 | + | // unpackInteractionData, not in collectData. | 
| 819 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 820 | + | for (int i = 0; i < nLocal_; i++) { | 
| 821 | + | // factor of two is because the total potential terms are divided | 
| 822 | + | // by 2 in parallel due to row/ column scatter | 
| 823 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 824 | + | } | 
| 825 | + | } | 
| 826 | + | } | 
| 827 | + |  | 
| 828 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 829 | + | int npp = snap_->atomData.particlePot.size(); | 
| 830 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 831 | + |  | 
| 832 | + | // This is the direct or embedding contribution to the particle | 
| 833 | + | // pot. | 
| 834 | + |  | 
| 835 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 836 | + | for (int i = 0; i < npp; i++) { | 
| 837 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 838 | + | } | 
| 839 | + |  | 
| 840 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 841 | + |  | 
| 842 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 843 | + | for (int i = 0; i < npp; i++) { | 
| 844 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + |  | 
| 848 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 849 | + | RealType ploc1 = pairwisePot[ii]; | 
| 850 | + | RealType ploc2 = 0.0; | 
| 851 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 852 | + | pairwisePot[ii] = ploc2; | 
| 853 | + | } | 
| 854 | + |  | 
| 855 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 856 | + | RealType ploc1 = embeddingPot[ii]; | 
| 857 | + | RealType ploc2 = 0.0; | 
| 858 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 859 | + | embeddingPot[ii] = ploc2; | 
| 860 | + | } | 
| 861 | + |  | 
| 862 | + | // Here be dragons. | 
| 863 | + | MPI::Intracomm col = colComm.getComm(); | 
| 864 | + |  | 
| 865 | + | col.Allreduce(MPI::IN_PLACE, | 
| 866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 867 | + | MPI::REALTYPE, MPI::SUM); | 
| 868 | + |  | 
| 869 | + |  | 
| 870 |  | #endif | 
| 871 |  |  | 
| 872 |  | } | 
| 911 |  | return d; | 
| 912 |  | } | 
| 913 |  |  | 
| 914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 915 | + | #ifdef IS_MPI | 
| 916 | + | return cgColData.velocity[cg2]; | 
| 917 | + | #else | 
| 918 | + | return snap_->cgData.velocity[cg2]; | 
| 919 | + | #endif | 
| 920 | + | } | 
| 921 |  |  | 
| 922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | return atomColData.velocity[atom2]; | 
| 925 | + | #else | 
| 926 | + | return snap_->atomData.velocity[atom2]; | 
| 927 | + | #endif | 
| 928 | + | } | 
| 929 | + |  | 
| 930 | + |  | 
| 931 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 932 |  |  | 
| 933 |  | Vector3d d; | 
| 995 |  | */ | 
| 996 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 997 |  | int unique_id_1, unique_id_2; | 
| 998 | < |  | 
| 998 | > |  | 
| 999 |  | #ifdef IS_MPI | 
| 1000 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1001 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1002 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1003 | + | #else | 
| 1004 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1005 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1006 | + | #endif | 
| 1007 |  |  | 
| 783 | – | // this situation should only arise in MPI simulations | 
| 1008 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1009 | < |  | 
| 1009 | > |  | 
| 1010 | > | #ifdef IS_MPI | 
| 1011 |  | // this prevents us from doing the pair on multiple processors | 
| 1012 |  | if (unique_id_1 < unique_id_2) { | 
| 1013 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1014 |  | } else { | 
| 1015 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1015 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1016 |  | } | 
| 1017 |  | #endif | 
| 1018 | + |  | 
| 1019 |  | return false; | 
| 1020 |  | } | 
| 1021 |  |  | 
| 1029 |  | * field) must still be handled for these pairs. | 
| 1030 |  | */ | 
| 1031 |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1032 | < | int unique_id_2; | 
| 1032 | > |  | 
| 1033 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1034 | > | // version, and to use local IDs in the non-MPI version: | 
| 1035 |  |  | 
| 808 | – | #ifdef IS_MPI | 
| 809 | – | // in MPI, we have to look up the unique IDs for the row atom. | 
| 810 | – | unique_id_2 = AtomColToGlobal[atom2]; | 
| 811 | – | #else | 
| 812 | – | // in the normal loop, the atom numbers are unique | 
| 813 | – | unique_id_2 = atom2; | 
| 814 | – | #endif | 
| 815 | – |  | 
| 1036 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1037 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 1038 | < | if ( (*i) == unique_id_2 ) return true; | 
| 1038 | > | if ( (*i) == atom2 ) return true; | 
| 1039 |  | } | 
| 1040 |  |  | 
| 1041 |  | return false; | 
| 1109 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1110 |  | } | 
| 1111 |  |  | 
| 1112 | < | #else | 
| 1112 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1113 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1114 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1115 | > | } | 
| 1116 |  |  | 
| 1117 | + | #else | 
| 1118 | + |  | 
| 1119 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 895 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 896 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1120 |  |  | 
| 1121 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1122 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1157 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1158 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1159 |  | } | 
| 1160 | + |  | 
| 1161 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1162 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1163 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1164 | + | } | 
| 1165 | + |  | 
| 1166 |  | #endif | 
| 1167 |  | } | 
| 1168 |  |  | 
| 1169 |  |  | 
| 1170 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1171 |  | #ifdef IS_MPI | 
| 1172 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1173 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1172 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1173 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1174 |  |  | 
| 1175 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1176 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1177 | + |  | 
| 1178 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1179 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1180 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1181 | + | } | 
| 1182 | + |  | 
| 1183 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1184 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1185 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1186 | + | } | 
| 1187 | + |  | 
| 1188 |  | #else | 
| 1189 |  | pairwisePot += *(idat.pot); | 
| 1190 |  |  | 
| 1191 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1192 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1193 | + |  | 
| 1194 | + | if (idat.doParticlePot) { | 
| 1195 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1196 | + | // embedding contribution is added in each of the low level | 
| 1197 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1198 | + | // in collectData, not in unpackInteractionData. | 
| 1199 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1200 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1201 | + | } | 
| 1202 | + |  | 
| 1203 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1204 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1205 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1206 | + | } | 
| 1207 | + |  | 
| 1208 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1209 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1210 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1211 | + | } | 
| 1212 | + |  | 
| 1213 |  | #endif | 
| 1214 |  |  | 
| 1215 |  | } | 
| 1291 |  | // add this cutoff group to the list of groups in this cell; | 
| 1292 |  | cellListRow_[cellIndex].push_back(i); | 
| 1293 |  | } | 
| 1034 | – |  | 
| 1294 |  | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1295 |  | rs = cgColData.position[i]; | 
| 1296 |  |  | 
| 1315 |  | // add this cutoff group to the list of groups in this cell; | 
| 1316 |  | cellListCol_[cellIndex].push_back(i); | 
| 1317 |  | } | 
| 1318 | + |  | 
| 1319 |  | #else | 
| 1320 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1321 |  | rs = snap_->cgData.position[i]; | 
| 1336 |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1337 |  |  | 
| 1338 |  | // find single index of this cell: | 
| 1339 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1339 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1340 |  |  | 
| 1341 |  | // add this cutoff group to the list of groups in this cell; | 
| 1342 |  | cellList_[cellIndex].push_back(i); | 
| 1343 |  | } | 
| 1344 | + |  | 
| 1345 |  | #endif | 
| 1346 |  |  | 
| 1347 |  | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1354 |  | os != cellOffsets_.end(); ++os) { | 
| 1355 |  |  | 
| 1356 |  | Vector3i m2v = m1v + (*os); | 
| 1357 | < |  | 
| 1357 | > |  | 
| 1358 | > |  | 
| 1359 |  | if (m2v.x() >= nCells_.x()) { | 
| 1360 |  | m2v.x() = 0; | 
| 1361 |  | } else if (m2v.x() < 0) { | 
| 1373 |  | } else if (m2v.z() < 0) { | 
| 1374 |  | m2v.z() = nCells_.z() - 1; | 
| 1375 |  | } | 
| 1376 | < |  | 
| 1376 | > |  | 
| 1377 |  | int m2 = Vlinear (m2v, nCells_); | 
| 1378 |  |  | 
| 1379 |  | #ifdef IS_MPI | 
| 1382 |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1383 |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1384 |  |  | 
| 1385 | < | // Always do this if we're in different cells or if | 
| 1386 | < | // we're in the same cell and the global index of the | 
| 1387 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1388 | < |  | 
| 1389 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1390 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1391 | < | snap_->wrapVector(dr); | 
| 1392 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1393 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1132 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1133 | < | } | 
| 1134 | < | } | 
| 1385 | > | // In parallel, we need to visit *all* pairs of row | 
| 1386 | > | // & column indicies and will divide labor in the | 
| 1387 | > | // force evaluation later. | 
| 1388 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1389 | > | snap_->wrapVector(dr); | 
| 1390 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1391 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1392 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1393 | > | } | 
| 1394 |  | } | 
| 1395 |  | } | 
| 1396 |  | #else | 
| 1138 | – |  | 
| 1397 |  | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1398 |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1399 |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1400 |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1401 | < |  | 
| 1401 | > |  | 
| 1402 |  | // Always do this if we're in different cells or if | 
| 1403 | < | // we're in the same cell and the global index of the | 
| 1404 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1405 | < |  | 
| 1406 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1403 | > | // we're in the same cell and the global index of | 
| 1404 | > | // the j2 cutoff group is greater than or equal to | 
| 1405 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1406 | > | // has a "less than" conditional here, but that | 
| 1407 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1408 | > | // allows atoms within a single cutoff group to | 
| 1409 | > | // interact with each other. | 
| 1410 | > |  | 
| 1411 | > |  | 
| 1412 | > |  | 
| 1413 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1414 | > |  | 
| 1415 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1416 |  | snap_->wrapVector(dr); | 
| 1417 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1430 |  | // branch to do all cutoff group pairs | 
| 1431 |  | #ifdef IS_MPI | 
| 1432 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1433 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1433 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1434 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1435 |  | snap_->wrapVector(dr); | 
| 1436 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1438 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1439 |  | } | 
| 1440 |  | } | 
| 1441 | < | } | 
| 1441 | > | } | 
| 1442 |  | #else | 
| 1443 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1444 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1443 | > | // include all groups here. | 
| 1444 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1445 | > | // include self group interactions j2 == j1 | 
| 1446 | > | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1447 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1448 |  | snap_->wrapVector(dr); | 
| 1449 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1450 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1451 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1452 |  | } | 
| 1453 | < | } | 
| 1454 | < | } | 
| 1453 | > | } | 
| 1454 | > | } | 
| 1455 |  | #endif | 
| 1456 |  | } | 
| 1457 |  |  |