| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 102 | + | regions = info_->getRegions(); | 
| 103 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 104 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 105 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 119 |  |  | 
| 120 |  | #ifdef IS_MPI | 
| 121 |  |  | 
| 122 | < | MPI::Intracomm row = rowComm.getComm(); | 
| 123 | < | MPI::Intracomm col = colComm.getComm(); | 
| 122 | > | MPI_Comm row = rowComm.getComm(); | 
| 123 | > | MPI_Comm col = colComm.getComm(); | 
| 124 |  |  | 
| 125 |  | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 126 |  | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 164 |  |  | 
| 165 |  | AtomPlanIntRow->gather(idents, identsRow); | 
| 166 |  | AtomPlanIntColumn->gather(idents, identsCol); | 
| 167 | + |  | 
| 168 | + | regionsRow.resize(nAtomsInRow_); | 
| 169 | + | regionsCol.resize(nAtomsInCol_); | 
| 170 |  |  | 
| 171 | + | AtomPlanIntRow->gather(regions, regionsRow); | 
| 172 | + | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 173 | + |  | 
| 174 |  | // allocate memory for the parallel objects | 
| 175 |  | atypesRow.resize(nAtomsInRow_); | 
| 176 |  | atypesCol.resize(nAtomsInCol_); | 
| 183 |  | pot_row.resize(nAtomsInRow_); | 
| 184 |  | pot_col.resize(nAtomsInCol_); | 
| 185 |  |  | 
| 186 | + | expot_row.resize(nAtomsInRow_); | 
| 187 | + | expot_col.resize(nAtomsInCol_); | 
| 188 | + |  | 
| 189 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 190 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 191 |  | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 315 |  |  | 
| 316 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 317 |  |  | 
| 318 | + | GrCut.clear(); | 
| 319 | + | GrCutSq.clear(); | 
| 320 | + | GrlistSq.clear(); | 
| 321 | + |  | 
| 322 |  | RealType tol = 1e-6; | 
| 323 |  | largestRcut_ = 0.0; | 
| 310 | – | RealType rc; | 
| 324 |  | int atid; | 
| 325 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 326 |  |  | 
| 405 |  | } | 
| 406 |  |  | 
| 407 |  | bool gTypeFound = false; | 
| 408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 409 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 410 |  | groupToGtype[cg1] = gt; | 
| 411 |  | gTypeFound = true; | 
| 424 |  | gTypeCutoffs.end()); | 
| 425 |  |  | 
| 426 |  | #ifdef IS_MPI | 
| 427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 428 | < | MPI::MAX); | 
| 427 | > | MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE, | 
| 428 | > | MPI_MAX, MPI_COMM_WORLD); | 
| 429 |  | #endif | 
| 430 |  |  | 
| 431 |  | RealType tradRcut = groupMax; | 
| 432 |  |  | 
| 433 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 434 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 433 | > | GrCut.resize( gTypeCutoffs.size() ); | 
| 434 | > | GrCutSq.resize( gTypeCutoffs.size() ); | 
| 435 | > | GrlistSq.resize( gTypeCutoffs.size() ); | 
| 436 | > |  | 
| 437 | > |  | 
| 438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); | 
| 440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 442 | > |  | 
| 443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 444 |  | RealType thisRcut; | 
| 445 |  | switch(cutoffPolicy_) { | 
| 446 |  | case TRADITIONAL: | 
| 462 |  | break; | 
| 463 |  | } | 
| 464 |  |  | 
| 465 | < | pair<int,int> key = make_pair(i,j); | 
| 444 | < | gTypeCutoffMap[key].first = thisRcut; | 
| 465 | > | GrCut[i][j] = thisRcut; | 
| 466 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 467 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 468 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 467 | > | GrCutSq[i][j] = thisRcut * thisRcut; | 
| 468 | > | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); | 
| 469 | > |  | 
| 470 | > | // pair<int,int> key = make_pair(i,j); | 
| 471 | > | // gTypeCutoffMap[key].first = thisRcut; | 
| 472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 473 |  | // sanity check | 
| 474 |  |  | 
| 475 |  | if (userChoseCutoff_) { | 
| 476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { | 
| 477 |  | sprintf(painCave.errMsg, | 
| 478 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 479 |  | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 486 |  | } | 
| 487 |  | } | 
| 488 |  |  | 
| 489 | < |  | 
| 465 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { | 
| 490 |  | int i, j; | 
| 491 |  | #ifdef IS_MPI | 
| 492 |  | i = groupRowToGtype[cg1]; | 
| 495 |  | i = groupToGtype[cg1]; | 
| 496 |  | j = groupToGtype[cg2]; | 
| 497 |  | #endif | 
| 498 | < | return gTypeCutoffMap[make_pair(i,j)]; | 
| 498 | > | rcut = GrCut[i][j]; | 
| 499 | > | rcutsq = GrCutSq[i][j]; | 
| 500 | > | rlistsq = GrlistSq[i][j]; | 
| 501 | > | return; | 
| 502 | > | //return gTypeCutoffMap[make_pair(i,j)]; | 
| 503 |  | } | 
| 504 |  |  | 
| 505 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 507 |  | if (toposForAtom[atom1][j] == atom2) | 
| 508 |  | return topoDist[atom1][j]; | 
| 509 | < | } | 
| 509 | > | } | 
| 510 |  | return 0; | 
| 511 |  | } | 
| 512 |  |  | 
| 513 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 514 |  | pairwisePot = 0.0; | 
| 515 |  | embeddingPot = 0.0; | 
| 516 | + | excludedPot = 0.0; | 
| 517 | + | excludedSelfPot = 0.0; | 
| 518 |  |  | 
| 519 |  | #ifdef IS_MPI | 
| 520 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 533 |  | fill(pot_col.begin(), pot_col.end(), | 
| 534 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 535 |  |  | 
| 536 | + | fill(expot_row.begin(), expot_row.end(), | 
| 537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 538 | + |  | 
| 539 | + | fill(expot_col.begin(), expot_col.end(), | 
| 540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 541 | + |  | 
| 542 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 543 |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 544 |  | 0.0); | 
| 586 |  | atomColData.electricField.end(), V3Zero); | 
| 587 |  | } | 
| 588 |  |  | 
| 589 | < | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 590 | < | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 591 | < | 0.0); | 
| 592 | < | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 593 | < | 0.0); | 
| 589 | > | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 590 | > | fill(atomRowData.sitePotential.begin(), | 
| 591 | > | atomRowData.sitePotential.end(), 0.0); | 
| 592 | > | fill(atomColData.sitePotential.begin(), | 
| 593 | > | atomColData.sitePotential.end(), 0.0); | 
| 594 |  | } | 
| 595 |  |  | 
| 596 |  | #endif | 
| 625 |  | fill(snap_->atomData.electricField.begin(), | 
| 626 |  | snap_->atomData.electricField.end(), V3Zero); | 
| 627 |  | } | 
| 628 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 629 | + | fill(snap_->atomData.sitePotential.begin(), | 
| 630 | + | snap_->atomData.sitePotential.end(), 0.0); | 
| 631 | + | } | 
| 632 |  | } | 
| 633 |  |  | 
| 634 |  |  | 
| 670 |  | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 671 |  | atomColData.aMat); | 
| 672 |  | } | 
| 673 | < |  | 
| 674 | < | // if needed, gather the atomic eletrostatic frames | 
| 675 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 676 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 677 | < | atomRowData.electroFrame); | 
| 678 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 679 | < | atomColData.electroFrame); | 
| 673 | > |  | 
| 674 | > | // if needed, gather the atomic eletrostatic information | 
| 675 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 676 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 677 | > | atomRowData.dipole); | 
| 678 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 679 | > | atomColData.dipole); | 
| 680 |  | } | 
| 681 |  |  | 
| 682 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 683 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 684 | + | atomRowData.quadrupole); | 
| 685 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 686 | + | atomColData.quadrupole); | 
| 687 | + | } | 
| 688 | + |  | 
| 689 |  | // if needed, gather the atomic fluctuating charge values | 
| 690 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 691 |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 717 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 718 |  | } | 
| 719 |  |  | 
| 720 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 721 | + | // we'll leave it here for now. | 
| 722 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 723 |  |  | 
| 724 |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 726 |  |  | 
| 727 |  | int n = snap_->atomData.electricField.size(); | 
| 728 |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 729 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 729 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 730 | > | field_tmp); | 
| 731 |  | for (int i = 0; i < n; i++) | 
| 732 |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 733 |  | } | 
| 825 |  | for (int i = 0; i < nq; i++) | 
| 826 |  | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 827 |  |  | 
| 828 | + | } | 
| 829 | + |  | 
| 830 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 831 | + |  | 
| 832 | + | int nef = snap_->atomData.electricField.size(); | 
| 833 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 834 | + |  | 
| 835 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 836 | + | for (int i = 0; i < nef; i++) { | 
| 837 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 838 | + | efield_tmp[i] = 0.0; | 
| 839 | + | } | 
| 840 | + |  | 
| 841 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 842 | + | for (int i = 0; i < nef; i++) | 
| 843 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 844 |  | } | 
| 845 |  |  | 
| 846 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 847 | + |  | 
| 848 | + | int nsp = snap_->atomData.sitePotential.size(); | 
| 849 | + | vector<RealType> sp_tmp(nsp, 0.0); | 
| 850 | + |  | 
| 851 | + | AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); | 
| 852 | + | for (int i = 0; i < nsp; i++) { | 
| 853 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 854 | + | sp_tmp[i] = 0.0; | 
| 855 | + | } | 
| 856 | + |  | 
| 857 | + | AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); | 
| 858 | + | for (int i = 0; i < nsp; i++) | 
| 859 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 860 | + | } | 
| 861 | + |  | 
| 862 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 863 |  |  | 
| 864 |  | vector<potVec> pot_temp(nLocal_, | 
| 865 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 866 | + | vector<potVec> expot_temp(nLocal_, | 
| 867 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 868 |  |  | 
| 869 |  | // scatter/gather pot_row into the members of my column | 
| 870 |  |  | 
| 871 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 872 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 873 |  |  | 
| 874 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 874 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 875 |  | pairwisePot += pot_temp[ii]; | 
| 876 | + |  | 
| 877 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 878 | + | excludedPot += expot_temp[ii]; | 
| 879 |  |  | 
| 880 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 881 |  | // This is the pairwise contribution to the particle pot.  The | 
| 893 |  |  | 
| 894 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 895 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 896 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 897 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 898 |  |  | 
| 899 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 900 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 901 |  |  | 
| 902 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 903 |  | pairwisePot += pot_temp[ii]; | 
| 904 |  |  | 
| 905 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 906 | + | excludedPot += expot_temp[ii]; | 
| 907 | + |  | 
| 908 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 909 |  | // This is the pairwise contribution to the particle pot.  The | 
| 910 |  | // embedding contribution is added in each of the low level | 
| 942 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 943 |  | RealType ploc1 = pairwisePot[ii]; | 
| 944 |  | RealType ploc2 = 0.0; | 
| 945 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 945 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 946 |  | pairwisePot[ii] = ploc2; | 
| 947 |  | } | 
| 948 |  |  | 
| 949 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 950 | < | RealType ploc1 = embeddingPot[ii]; | 
| 950 | > | RealType ploc1 = excludedPot[ii]; | 
| 951 |  | RealType ploc2 = 0.0; | 
| 952 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 953 | < | embeddingPot[ii] = ploc2; | 
| 952 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 953 | > | excludedPot[ii] = ploc2; | 
| 954 |  | } | 
| 955 | < |  | 
| 955 | > |  | 
| 956 |  | // Here be dragons. | 
| 957 | < | MPI::Intracomm col = colComm.getComm(); | 
| 957 | > | MPI_Comm col = colComm.getComm(); | 
| 958 |  |  | 
| 959 | < | col.Allreduce(MPI::IN_PLACE, | 
| 959 | > | MPI_Allreduce(MPI_IN_PLACE, | 
| 960 |  | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 961 | < | MPI::REALTYPE, MPI::SUM); | 
| 961 | > | MPI_REALTYPE, MPI_SUM, col); | 
| 962 |  |  | 
| 963 |  |  | 
| 964 |  | #endif | 
| 965 |  |  | 
| 966 |  | } | 
| 967 |  |  | 
| 968 | < | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 968 | > | /** | 
| 969 | > | * Collects information obtained during the post-pair (and embedding | 
| 970 | > | * functional) loops onto local data structures. | 
| 971 | > | */ | 
| 972 | > | void ForceMatrixDecomposition::collectSelfData() { | 
| 973 | > | snap_ = sman_->getCurrentSnapshot(); | 
| 974 | > | storageLayout_ = sman_->getStorageLayout(); | 
| 975 | > |  | 
| 976 |  | #ifdef IS_MPI | 
| 977 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 978 | + | RealType ploc1 = embeddingPot[ii]; | 
| 979 | + | RealType ploc2 = 0.0; | 
| 980 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 981 | + | embeddingPot[ii] = ploc2; | 
| 982 | + | } | 
| 983 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 984 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 985 | + | RealType ploc2 = 0.0; | 
| 986 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 987 | + | excludedSelfPot[ii] = ploc2; | 
| 988 | + | } | 
| 989 | + | #endif | 
| 990 | + |  | 
| 991 | + | } | 
| 992 | + |  | 
| 993 | + |  | 
| 994 | + |  | 
| 995 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 996 | + | #ifdef IS_MPI | 
| 997 |  | return nAtomsInRow_; | 
| 998 |  | #else | 
| 999 |  | return nLocal_; | 
| 1003 |  | /** | 
| 1004 |  | * returns the list of atoms belonging to this group. | 
| 1005 |  | */ | 
| 1006 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 1006 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 1007 |  | #ifdef IS_MPI | 
| 1008 |  | return groupListRow_[cg1]; | 
| 1009 |  | #else | 
| 1011 |  | #endif | 
| 1012 |  | } | 
| 1013 |  |  | 
| 1014 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 1014 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 1015 |  | #ifdef IS_MPI | 
| 1016 |  | return groupListCol_[cg2]; | 
| 1017 |  | #else | 
| 1028 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 1029 |  | #endif | 
| 1030 |  |  | 
| 1031 | < | snap_->wrapVector(d); | 
| 1031 | > | if (usePeriodicBoundaryConditions_) { | 
| 1032 | > | snap_->wrapVector(d); | 
| 1033 | > | } | 
| 1034 |  | return d; | 
| 1035 |  | } | 
| 1036 |  |  | 
| 1037 | < | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 1037 | > | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 1038 |  | #ifdef IS_MPI | 
| 1039 |  | return cgColData.velocity[cg2]; | 
| 1040 |  | #else | 
| 1042 |  | #endif | 
| 1043 |  | } | 
| 1044 |  |  | 
| 1045 | < | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 1045 | > | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 1046 |  | #ifdef IS_MPI | 
| 1047 |  | return atomColData.velocity[atom2]; | 
| 1048 |  | #else | 
| 1060 |  | #else | 
| 1061 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1062 |  | #endif | 
| 1063 | < |  | 
| 1064 | < | snap_->wrapVector(d); | 
| 1063 | > | if (usePeriodicBoundaryConditions_) { | 
| 1064 | > | snap_->wrapVector(d); | 
| 1065 | > | } | 
| 1066 |  | return d; | 
| 1067 |  | } | 
| 1068 |  |  | 
| 1074 |  | #else | 
| 1075 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1076 |  | #endif | 
| 1077 | < |  | 
| 1078 | < | snap_->wrapVector(d); | 
| 1077 | > | if (usePeriodicBoundaryConditions_) { | 
| 1078 | > | snap_->wrapVector(d); | 
| 1079 | > | } | 
| 1080 |  | return d; | 
| 1081 |  | } | 
| 1082 |  |  | 
| 1083 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1083 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1084 |  | #ifdef IS_MPI | 
| 1085 |  | return massFactorsRow[atom1]; | 
| 1086 |  | #else | 
| 1088 |  | #endif | 
| 1089 |  | } | 
| 1090 |  |  | 
| 1091 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1091 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1092 |  | #ifdef IS_MPI | 
| 1093 |  | return massFactorsCol[atom2]; | 
| 1094 |  | #else | 
| 1105 |  | #else | 
| 1106 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1107 |  | #endif | 
| 1108 | < |  | 
| 1109 | < | snap_->wrapVector(d); | 
| 1108 | > | if (usePeriodicBoundaryConditions_) { | 
| 1109 | > | snap_->wrapVector(d); | 
| 1110 | > | } | 
| 1111 |  | return d; | 
| 1112 |  | } | 
| 1113 |  |  | 
| 1114 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1114 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1115 |  | return excludesForAtom[atom1]; | 
| 1116 |  | } | 
| 1117 |  |  | 
| 1119 |  | * We need to exclude some overcounted interactions that result from | 
| 1120 |  | * the parallel decomposition. | 
| 1121 |  | */ | 
| 1122 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1122 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1123 |  | int unique_id_1, unique_id_2; | 
| 1124 |  |  | 
| 1125 |  | #ifdef IS_MPI | 
| 1126 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1127 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1128 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1129 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1130 | + | // group2 = cgColToGlobal[cg2]; | 
| 1131 |  | #else | 
| 1132 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1133 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1134 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1135 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1136 |  | #endif | 
| 1137 |  |  | 
| 1138 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1144 |  | } else { | 
| 1145 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1146 |  | } | 
| 1147 | + | #endif | 
| 1148 | + |  | 
| 1149 | + | #ifndef IS_MPI | 
| 1150 | + | if (group1 == group2) { | 
| 1151 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1152 | + | } | 
| 1153 |  | #endif | 
| 1154 |  |  | 
| 1155 |  | return false; | 
| 1201 |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1202 |  |  | 
| 1203 |  | #ifdef IS_MPI | 
| 1204 | < | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1205 | < | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1206 | < | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1207 | < |  | 
| 1204 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1205 | > | idat.atid1 = identsRow[atom1]; | 
| 1206 | > | idat.atid2 = identsCol[atom2]; | 
| 1207 | > |  | 
| 1208 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1209 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1210 | > | } else { | 
| 1211 | > | idat.sameRegion = false; | 
| 1212 | > | } | 
| 1213 | > |  | 
| 1214 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1215 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1216 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1217 |  | } | 
| 1218 |  |  | 
| 1077 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1078 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1079 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1080 | – | } | 
| 1081 | – |  | 
| 1219 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1220 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1221 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1222 |  | } | 
| 1223 |  |  | 
| 1224 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1225 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1226 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1227 | + | } | 
| 1228 | + |  | 
| 1229 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1230 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1231 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1232 | + | } | 
| 1233 | + |  | 
| 1234 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1235 |  | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1236 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1263 |  |  | 
| 1264 |  | #else | 
| 1265 |  |  | 
| 1266 | < | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1266 | > | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1267 | > | idat.atid1 = idents[atom1]; | 
| 1268 | > | idat.atid2 = idents[atom2]; | 
| 1269 |  |  | 
| 1270 | + | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1271 | + | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1272 | + | } else { | 
| 1273 | + | idat.sameRegion = false; | 
| 1274 | + | } | 
| 1275 | + |  | 
| 1276 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1277 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1278 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1279 |  | } | 
| 1280 |  |  | 
| 1126 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1127 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1128 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1129 | – | } | 
| 1130 | – |  | 
| 1281 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1282 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1283 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1284 |  | } | 
| 1285 |  |  | 
| 1286 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1287 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1288 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1289 | + | } | 
| 1290 | + |  | 
| 1291 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1292 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1293 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1294 | + | } | 
| 1295 | + |  | 
| 1296 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1297 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1298 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1331 |  | #ifdef IS_MPI | 
| 1332 |  | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1333 |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1334 | + | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1335 | + | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1336 |  |  | 
| 1337 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1338 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1347 |  | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1348 |  | } | 
| 1349 |  |  | 
| 1350 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1351 | + | atomRowData.sitePotential[atom1] += *(idat.sPot1); | 
| 1352 | + | atomColData.sitePotential[atom2] += *(idat.sPot2); | 
| 1353 | + | } | 
| 1354 | + |  | 
| 1355 |  | #else | 
| 1356 |  | pairwisePot += *(idat.pot); | 
| 1357 | + | excludedPot += *(idat.excludedPot); | 
| 1358 |  |  | 
| 1359 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1360 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1378 |  | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1379 |  | } | 
| 1380 |  |  | 
| 1381 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1382 | + | snap_->atomData.sitePotential[atom1] += *(idat.sPot1); | 
| 1383 | + | snap_->atomData.sitePotential[atom2] += *(idat.sPot2); | 
| 1384 | + | } | 
| 1385 | + |  | 
| 1386 |  | #endif | 
| 1387 |  |  | 
| 1388 |  | } | 
| 1393 |  | * first element of pair is row-indexed CutoffGroup | 
| 1394 |  | * second element of pair is column-indexed CutoffGroup | 
| 1395 |  | */ | 
| 1396 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1397 | < |  | 
| 1398 | < | vector<pair<int, int> > neighborList; | 
| 1396 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1397 | > |  | 
| 1398 | > | neighborList.clear(); | 
| 1399 |  | groupCutoffs cuts; | 
| 1400 |  | bool doAllPairs = false; | 
| 1401 | + |  | 
| 1402 | + | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1403 | + | RealType rcut, rcutsq, rlistsq; | 
| 1404 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1405 | + | Mat3x3d box; | 
| 1406 | + | Mat3x3d invBox; | 
| 1407 | + |  | 
| 1408 | + | Vector3d rs, scaled, dr; | 
| 1409 | + | Vector3i whichCell; | 
| 1410 | + | int cellIndex; | 
| 1411 |  |  | 
| 1412 |  | #ifdef IS_MPI | 
| 1413 |  | cellListRow_.clear(); | 
| 1415 |  | #else | 
| 1416 |  | cellList_.clear(); | 
| 1417 |  | #endif | 
| 1418 | < |  | 
| 1419 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1420 | < | RealType rl2 = rList_ * rList_; | 
| 1421 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1422 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1423 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1424 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1425 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1426 | < |  | 
| 1427 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1428 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1429 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1430 | < |  | 
| 1418 | > |  | 
| 1419 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1420 | > | box = snap_->getBoundingBox(); | 
| 1421 | > | invBox = snap_->getInvBoundingBox(); | 
| 1422 | > | } else { | 
| 1423 | > | box = snap_->getHmat(); | 
| 1424 | > | invBox = snap_->getInvHmat(); | 
| 1425 | > | } | 
| 1426 | > |  | 
| 1427 | > | Vector3d boxX = box.getColumn(0); | 
| 1428 | > | Vector3d boxY = box.getColumn(1); | 
| 1429 | > | Vector3d boxZ = box.getColumn(2); | 
| 1430 | > |  | 
| 1431 | > | nCells_.x() = int( boxX.length() / rList_ ); | 
| 1432 | > | nCells_.y() = int( boxY.length() / rList_ ); | 
| 1433 | > | nCells_.z() = int( boxZ.length() / rList_ ); | 
| 1434 | > |  | 
| 1435 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1436 |  |  | 
| 1437 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1438 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1439 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1440 | < |  | 
| 1254 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1255 | < | Vector3d rs, scaled, dr; | 
| 1256 | < | Vector3i whichCell; | 
| 1257 | < | int cellIndex; | 
| 1440 | > |  | 
| 1441 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1442 | < |  | 
| 1442 | > |  | 
| 1443 |  | #ifdef IS_MPI | 
| 1444 |  | cellListRow_.resize(nCtot); | 
| 1445 |  | cellListCol_.resize(nCtot); | 
| 1446 |  | #else | 
| 1447 |  | cellList_.resize(nCtot); | 
| 1448 |  | #endif | 
| 1449 | < |  | 
| 1449 | > |  | 
| 1450 |  | if (!doAllPairs) { | 
| 1451 |  | #ifdef IS_MPI | 
| 1452 | < |  | 
| 1452 | > |  | 
| 1453 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1454 |  | rs = cgRowData.position[i]; | 
| 1455 |  |  | 
| 1456 |  | // scaled positions relative to the box vectors | 
| 1457 | < | scaled = invHmat * rs; | 
| 1457 | > | scaled = invBox * rs; | 
| 1458 |  |  | 
| 1459 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1460 |  | // numbers | 
| 1461 |  | for (int j = 0; j < 3; j++) { | 
| 1462 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1463 |  | scaled[j] += 0.5; | 
| 1464 | + | // Handle the special case when an object is exactly on the | 
| 1465 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1466 | + | // scaled coordinate of 0.0) | 
| 1467 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1468 |  | } | 
| 1469 |  |  | 
| 1470 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1482 |  | rs = cgColData.position[i]; | 
| 1483 |  |  | 
| 1484 |  | // scaled positions relative to the box vectors | 
| 1485 | < | scaled = invHmat * rs; | 
| 1485 | > | scaled = invBox * rs; | 
| 1486 |  |  | 
| 1487 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1488 |  | // numbers | 
| 1489 |  | for (int j = 0; j < 3; j++) { | 
| 1490 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1491 |  | scaled[j] += 0.5; | 
| 1492 | + | // Handle the special case when an object is exactly on the | 
| 1493 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1494 | + | // scaled coordinate of 0.0) | 
| 1495 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1496 |  | } | 
| 1497 |  |  | 
| 1498 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1506 |  | // add this cutoff group to the list of groups in this cell; | 
| 1507 |  | cellListCol_[cellIndex].push_back(i); | 
| 1508 |  | } | 
| 1509 | < |  | 
| 1509 | > |  | 
| 1510 |  | #else | 
| 1511 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1512 |  | rs = snap_->cgData.position[i]; | 
| 1513 |  |  | 
| 1514 |  | // scaled positions relative to the box vectors | 
| 1515 | < | scaled = invHmat * rs; | 
| 1515 | > | scaled = invBox * rs; | 
| 1516 |  |  | 
| 1517 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1518 |  | // numbers | 
| 1519 |  | for (int j = 0; j < 3; j++) { | 
| 1520 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1521 |  | scaled[j] += 0.5; | 
| 1522 | + | // Handle the special case when an object is exactly on the | 
| 1523 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1524 | + | // scaled coordinate of 0.0) | 
| 1525 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1526 |  | } | 
| 1527 |  |  | 
| 1528 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1529 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1530 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1531 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1529 | > | whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1530 | > | whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1531 | > | whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1532 |  |  | 
| 1533 |  | // find single index of this cell: | 
| 1534 |  | cellIndex = Vlinear(whichCell, nCells_); | 
| 1581 |  | // & column indicies and will divide labor in the | 
| 1582 |  | // force evaluation later. | 
| 1583 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1584 | < | snap_->wrapVector(dr); | 
| 1585 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1586 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1584 | > | if (usePeriodicBoundaryConditions_) { | 
| 1585 | > | snap_->wrapVector(dr); | 
| 1586 | > | } | 
| 1587 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1588 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1589 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1590 |  | } | 
| 1591 |  | } | 
| 1605 |  | // allows atoms within a single cutoff group to | 
| 1606 |  | // interact with each other. | 
| 1607 |  |  | 
| 1411 | – |  | 
| 1412 | – |  | 
| 1608 |  | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1609 |  |  | 
| 1610 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1611 | < | snap_->wrapVector(dr); | 
| 1612 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1613 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1611 | > | if (usePeriodicBoundaryConditions_) { | 
| 1612 | > | snap_->wrapVector(dr); | 
| 1613 | > | } | 
| 1614 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1615 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1616 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1617 |  | } | 
| 1618 |  | } | 
| 1629 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1630 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1631 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1632 | < | snap_->wrapVector(dr); | 
| 1633 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1634 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1632 | > | if (usePeriodicBoundaryConditions_) { | 
| 1633 | > | snap_->wrapVector(dr); | 
| 1634 | > | } | 
| 1635 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); | 
| 1636 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1637 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1638 |  | } | 
| 1639 |  | } | 
| 1644 |  | // include self group interactions j2 == j1 | 
| 1645 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1646 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1647 | < | snap_->wrapVector(dr); | 
| 1648 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1649 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1647 | > | if (usePeriodicBoundaryConditions_) { | 
| 1648 | > | snap_->wrapVector(dr); | 
| 1649 | > | } | 
| 1650 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); | 
| 1651 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1652 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1653 |  | } | 
| 1654 |  | } | 
| 1661 |  | saved_CG_positions_.clear(); | 
| 1662 |  | for (int i = 0; i < nGroups_; i++) | 
| 1663 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1463 | – |  | 
| 1464 | – | return neighborList; | 
| 1664 |  | } | 
| 1665 |  | } //end namespace OpenMD |