| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | #include "math/SquareMatrix3.hpp" | 
| 43 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 | #include "brains/SnapshotManager.hpp" | 
| 45 | #include "brains/PairList.hpp" | 
| 46 |  | 
| 47 | using namespace std; | 
| 48 | namespace OpenMD { | 
| 49 |  | 
| 50 | /** | 
| 51 | * distributeInitialData is essentially a copy of the older fortran | 
| 52 | * SimulationSetup | 
| 53 | */ | 
| 54 |  | 
| 55 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 56 | snap_ = sman_->getCurrentSnapshot(); | 
| 57 | storageLayout_ = sman_->getStorageLayout(); | 
| 58 | ff_ = info_->getForceField(); | 
| 59 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 60 | nGroups_ = snap_->getNumberOfCutoffGroups(); | 
| 61 |  | 
| 62 | // gather the information for atomtype IDs (atids): | 
| 63 | identsLocal = info_->getIdentArray(); | 
| 64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 67 | vector<RealType> massFactorsLocal = info_->getMassFactors(); | 
| 68 | PairList excludes = info_->getExcludedInteractions(); | 
| 69 | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 70 | PairList oneThree = info_->getOneThreeInteractions(); | 
| 71 | PairList oneFour = info_->getOneFourInteractions(); | 
| 72 | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); | 
| 73 |  | 
| 74 | #ifdef IS_MPI | 
| 75 |  | 
| 76 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 77 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 78 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 79 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 80 |  | 
| 81 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 82 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 83 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 84 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 85 |  | 
| 86 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 87 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 88 | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 89 | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 90 |  | 
| 91 | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 92 | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 93 | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 94 | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 95 |  | 
| 96 | // Modify the data storage objects with the correct layouts and sizes: | 
| 97 | atomRowData.resize(nAtomsInRow_); | 
| 98 | atomRowData.setStorageLayout(storageLayout_); | 
| 99 | atomColData.resize(nAtomsInCol_); | 
| 100 | atomColData.setStorageLayout(storageLayout_); | 
| 101 | cgRowData.resize(nGroupsInRow_); | 
| 102 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 103 | cgColData.resize(nGroupsInCol_); | 
| 104 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 105 |  | 
| 106 | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, | 
| 107 | vector<RealType> (nAtomsInRow_, 0.0)); | 
| 108 | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, | 
| 109 | vector<RealType> (nAtomsInCol_, 0.0)); | 
| 110 |  | 
| 111 | identsRow.reserve(nAtomsInRow_); | 
| 112 | identsCol.reserve(nAtomsInCol_); | 
| 113 |  | 
| 114 | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 115 | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 116 |  | 
| 117 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 118 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 119 |  | 
| 120 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 121 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 122 |  | 
| 123 | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); | 
| 124 | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); | 
| 125 |  | 
| 126 | groupListRow_.clear(); | 
| 127 | groupListRow_.reserve(nGroupsInRow_); | 
| 128 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 129 | int gid = cgRowToGlobal[i]; | 
| 130 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 131 | int aid = AtomRowToGlobal[j]; | 
| 132 | if (globalGroupMembership[aid] == gid) | 
| 133 | groupListRow_[i].push_back(j); | 
| 134 | } | 
| 135 | } | 
| 136 |  | 
| 137 | groupListCol_.clear(); | 
| 138 | groupListCol_.reserve(nGroupsInCol_); | 
| 139 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 140 | int gid = cgColToGlobal[i]; | 
| 141 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 142 | int aid = AtomColToGlobal[j]; | 
| 143 | if (globalGroupMembership[aid] == gid) | 
| 144 | groupListCol_[i].push_back(j); | 
| 145 | } | 
| 146 | } | 
| 147 |  | 
| 148 | skipsForRowAtom.clear(); | 
| 149 | skipsForRowAtom.reserve(nAtomsInRow_); | 
| 150 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 151 | int iglob = AtomRowToGlobal[i]; | 
| 152 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 153 | int jglob = AtomColToGlobal[j]; | 
| 154 | if (excludes.hasPair(iglob, jglob)) | 
| 155 | skipsForRowAtom[i].push_back(j); | 
| 156 | } | 
| 157 | } | 
| 158 |  | 
| 159 | toposForRowAtom.clear(); | 
| 160 | toposForRowAtom.reserve(nAtomsInRow_); | 
| 161 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 162 | int iglob = AtomRowToGlobal[i]; | 
| 163 | int nTopos = 0; | 
| 164 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 165 | int jglob = AtomColToGlobal[j]; | 
| 166 | if (oneTwo.hasPair(iglob, jglob)) { | 
| 167 | toposForRowAtom[i].push_back(j); | 
| 168 | topoDistRow[i][nTopos] = 1; | 
| 169 | nTopos++; | 
| 170 | } | 
| 171 | if (oneThree.hasPair(iglob, jglob)) { | 
| 172 | toposForRowAtom[i].push_back(j); | 
| 173 | topoDistRow[i][nTopos] = 2; | 
| 174 | nTopos++; | 
| 175 | } | 
| 176 | if (oneFour.hasPair(iglob, jglob)) { | 
| 177 | toposForRowAtom[i].push_back(j); | 
| 178 | topoDistRow[i][nTopos] = 3; | 
| 179 | nTopos++; | 
| 180 | } | 
| 181 | } | 
| 182 | } | 
| 183 |  | 
| 184 | #endif | 
| 185 |  | 
| 186 | groupList_.clear(); | 
| 187 | groupList_.reserve(nGroups_); | 
| 188 | for (int i = 0; i < nGroups_; i++) { | 
| 189 | int gid = cgLocalToGlobal[i]; | 
| 190 | for (int j = 0; j < nLocal_; j++) { | 
| 191 | int aid = AtomLocalToGlobal[j]; | 
| 192 | if (globalGroupMembership[aid] == gid) | 
| 193 | groupList_[i].push_back(j); | 
| 194 | } | 
| 195 | } | 
| 196 |  | 
| 197 | skipsForLocalAtom.clear(); | 
| 198 | skipsForLocalAtom.reserve(nLocal_); | 
| 199 |  | 
| 200 | for (int i = 0; i < nLocal_; i++) { | 
| 201 | int iglob = AtomLocalToGlobal[i]; | 
| 202 | for (int j = 0; j < nLocal_; j++) { | 
| 203 | int jglob = AtomLocalToGlobal[j]; | 
| 204 | if (excludes.hasPair(iglob, jglob)) | 
| 205 | skipsForLocalAtom[i].push_back(j); | 
| 206 | } | 
| 207 | } | 
| 208 |  | 
| 209 | toposForLocalAtom.clear(); | 
| 210 | toposForLocalAtom.reserve(nLocal_); | 
| 211 | for (int i = 0; i < nLocal_; i++) { | 
| 212 | int iglob = AtomLocalToGlobal[i]; | 
| 213 | int nTopos = 0; | 
| 214 | for (int j = 0; j < nLocal_; j++) { | 
| 215 | int jglob = AtomLocalToGlobal[j]; | 
| 216 | if (oneTwo.hasPair(iglob, jglob)) { | 
| 217 | toposForLocalAtom[i].push_back(j); | 
| 218 | topoDistLocal[i][nTopos] = 1; | 
| 219 | nTopos++; | 
| 220 | } | 
| 221 | if (oneThree.hasPair(iglob, jglob)) { | 
| 222 | toposForLocalAtom[i].push_back(j); | 
| 223 | topoDistLocal[i][nTopos] = 2; | 
| 224 | nTopos++; | 
| 225 | } | 
| 226 | if (oneFour.hasPair(iglob, jglob)) { | 
| 227 | toposForLocalAtom[i].push_back(j); | 
| 228 | topoDistLocal[i][nTopos] = 3; | 
| 229 | nTopos++; | 
| 230 | } | 
| 231 | } | 
| 232 | } | 
| 233 | } | 
| 234 |  | 
| 235 | void ForceMatrixDecomposition::distributeData()  { | 
| 236 | snap_ = sman_->getCurrentSnapshot(); | 
| 237 | storageLayout_ = sman_->getStorageLayout(); | 
| 238 | #ifdef IS_MPI | 
| 239 |  | 
| 240 | // gather up the atomic positions | 
| 241 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 242 | atomRowData.position); | 
| 243 | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 244 | atomColData.position); | 
| 245 |  | 
| 246 | // gather up the cutoff group positions | 
| 247 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 248 | cgRowData.position); | 
| 249 | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 250 | cgColData.position); | 
| 251 |  | 
| 252 | // if needed, gather the atomic rotation matrices | 
| 253 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 254 | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 255 | atomRowData.aMat); | 
| 256 | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 257 | atomColData.aMat); | 
| 258 | } | 
| 259 |  | 
| 260 | // if needed, gather the atomic eletrostatic frames | 
| 261 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 262 | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 263 | atomRowData.electroFrame); | 
| 264 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 265 | atomColData.electroFrame); | 
| 266 | } | 
| 267 | #endif | 
| 268 | } | 
| 269 |  | 
| 270 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 271 | snap_ = sman_->getCurrentSnapshot(); | 
| 272 | storageLayout_ = sman_->getStorageLayout(); | 
| 273 | #ifdef IS_MPI | 
| 274 |  | 
| 275 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 276 |  | 
| 277 | AtomCommRealRow->scatter(atomRowData.density, | 
| 278 | snap_->atomData.density); | 
| 279 |  | 
| 280 | int n = snap_->atomData.density.size(); | 
| 281 | std::vector<RealType> rho_tmp(n, 0.0); | 
| 282 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 283 | for (int i = 0; i < n; i++) | 
| 284 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 285 | } | 
| 286 | #endif | 
| 287 | } | 
| 288 |  | 
| 289 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 290 | snap_ = sman_->getCurrentSnapshot(); | 
| 291 | storageLayout_ = sman_->getStorageLayout(); | 
| 292 | #ifdef IS_MPI | 
| 293 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 294 | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 295 | atomRowData.functional); | 
| 296 | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 297 | atomColData.functional); | 
| 298 | } | 
| 299 |  | 
| 300 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 301 | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 302 | atomRowData.functionalDerivative); | 
| 303 | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 304 | atomColData.functionalDerivative); | 
| 305 | } | 
| 306 | #endif | 
| 307 | } | 
| 308 |  | 
| 309 |  | 
| 310 | void ForceMatrixDecomposition::collectData() { | 
| 311 | snap_ = sman_->getCurrentSnapshot(); | 
| 312 | storageLayout_ = sman_->getStorageLayout(); | 
| 313 | #ifdef IS_MPI | 
| 314 | int n = snap_->atomData.force.size(); | 
| 315 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 316 |  | 
| 317 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 318 | for (int i = 0; i < n; i++) { | 
| 319 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 320 | frc_tmp[i] = 0.0; | 
| 321 | } | 
| 322 |  | 
| 323 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 324 | for (int i = 0; i < n; i++) | 
| 325 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 326 |  | 
| 327 |  | 
| 328 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 329 |  | 
| 330 | int nt = snap_->atomData.force.size(); | 
| 331 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 332 |  | 
| 333 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 334 | for (int i = 0; i < n; i++) { | 
| 335 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 336 | trq_tmp[i] = 0.0; | 
| 337 | } | 
| 338 |  | 
| 339 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 340 | for (int i = 0; i < n; i++) | 
| 341 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 342 | } | 
| 343 |  | 
| 344 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 345 |  | 
| 346 | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, | 
| 347 | vector<RealType> (nLocal_, 0.0)); | 
| 348 |  | 
| 349 | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { | 
| 350 | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); | 
| 351 | for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) { | 
| 352 | pot_local[i] += pot_temp[i][ii]; | 
| 353 | } | 
| 354 | } | 
| 355 | #endif | 
| 356 | } | 
| 357 |  | 
| 358 | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 359 | #ifdef IS_MPI | 
| 360 | return nAtomsInRow_; | 
| 361 | #else | 
| 362 | return nLocal_; | 
| 363 | #endif | 
| 364 | } | 
| 365 |  | 
| 366 | /** | 
| 367 | * returns the list of atoms belonging to this group. | 
| 368 | */ | 
| 369 | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 370 | #ifdef IS_MPI | 
| 371 | return groupListRow_[cg1]; | 
| 372 | #else | 
| 373 | return groupList_[cg1]; | 
| 374 | #endif | 
| 375 | } | 
| 376 |  | 
| 377 | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 378 | #ifdef IS_MPI | 
| 379 | return groupListCol_[cg2]; | 
| 380 | #else | 
| 381 | return groupList_[cg2]; | 
| 382 | #endif | 
| 383 | } | 
| 384 |  | 
| 385 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 386 | Vector3d d; | 
| 387 |  | 
| 388 | #ifdef IS_MPI | 
| 389 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 390 | #else | 
| 391 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 392 | #endif | 
| 393 |  | 
| 394 | snap_->wrapVector(d); | 
| 395 | return d; | 
| 396 | } | 
| 397 |  | 
| 398 |  | 
| 399 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 400 |  | 
| 401 | Vector3d d; | 
| 402 |  | 
| 403 | #ifdef IS_MPI | 
| 404 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 405 | #else | 
| 406 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 407 | #endif | 
| 408 |  | 
| 409 | snap_->wrapVector(d); | 
| 410 | return d; | 
| 411 | } | 
| 412 |  | 
| 413 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 414 | Vector3d d; | 
| 415 |  | 
| 416 | #ifdef IS_MPI | 
| 417 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 418 | #else | 
| 419 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 420 | #endif | 
| 421 |  | 
| 422 | snap_->wrapVector(d); | 
| 423 | return d; | 
| 424 | } | 
| 425 |  | 
| 426 | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 427 | #ifdef IS_MPI | 
| 428 | return massFactorsRow[atom1]; | 
| 429 | #else | 
| 430 | return massFactorsLocal[atom1]; | 
| 431 | #endif | 
| 432 | } | 
| 433 |  | 
| 434 | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 435 | #ifdef IS_MPI | 
| 436 | return massFactorsCol[atom2]; | 
| 437 | #else | 
| 438 | return massFactorsLocal[atom2]; | 
| 439 | #endif | 
| 440 |  | 
| 441 | } | 
| 442 |  | 
| 443 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 444 | Vector3d d; | 
| 445 |  | 
| 446 | #ifdef IS_MPI | 
| 447 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 448 | #else | 
| 449 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 450 | #endif | 
| 451 |  | 
| 452 | snap_->wrapVector(d); | 
| 453 | return d; | 
| 454 | } | 
| 455 |  | 
| 456 | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { | 
| 457 | #ifdef IS_MPI | 
| 458 | return skipsForRowAtom[atom1]; | 
| 459 | #else | 
| 460 | return skipsForLocalAtom[atom1]; | 
| 461 | #endif | 
| 462 | } | 
| 463 |  | 
| 464 | /** | 
| 465 | * there are a number of reasons to skip a pair or a particle mostly | 
| 466 | * we do this to exclude atoms who are involved in short range | 
| 467 | * interactions (bonds, bends, torsions), but we also need to | 
| 468 | * exclude some overcounted interactions that result from the | 
| 469 | * parallel decomposition. | 
| 470 | */ | 
| 471 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 472 | int unique_id_1, unique_id_2; | 
| 473 |  | 
| 474 | #ifdef IS_MPI | 
| 475 | // in MPI, we have to look up the unique IDs for each atom | 
| 476 | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 477 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 478 |  | 
| 479 | // this situation should only arise in MPI simulations | 
| 480 | if (unique_id_1 == unique_id_2) return true; | 
| 481 |  | 
| 482 | // this prevents us from doing the pair on multiple processors | 
| 483 | if (unique_id_1 < unique_id_2) { | 
| 484 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 485 | } else { | 
| 486 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 487 | } | 
| 488 | #else | 
| 489 | // in the normal loop, the atom numbers are unique | 
| 490 | unique_id_1 = atom1; | 
| 491 | unique_id_2 = atom2; | 
| 492 | #endif | 
| 493 |  | 
| 494 | #ifdef IS_MPI | 
| 495 | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); | 
| 496 | i != skipsForRowAtom[atom1].end(); ++i) { | 
| 497 | if ( (*i) == unique_id_2 ) return true; | 
| 498 | } | 
| 499 | #else | 
| 500 | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); | 
| 501 | i != skipsForLocalAtom[atom1].end(); ++i) { | 
| 502 | if ( (*i) == unique_id_2 ) return true; | 
| 503 | } | 
| 504 | #endif | 
| 505 | } | 
| 506 |  | 
| 507 | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { | 
| 508 |  | 
| 509 | #ifdef IS_MPI | 
| 510 | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { | 
| 511 | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; | 
| 512 | } | 
| 513 | #else | 
| 514 | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { | 
| 515 | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; | 
| 516 | } | 
| 517 | #endif | 
| 518 |  | 
| 519 | // zero is default for unconnected (i.e. normal) pair interactions | 
| 520 | return 0; | 
| 521 | } | 
| 522 |  | 
| 523 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 524 | #ifdef IS_MPI | 
| 525 | atomRowData.force[atom1] += fg; | 
| 526 | #else | 
| 527 | snap_->atomData.force[atom1] += fg; | 
| 528 | #endif | 
| 529 | } | 
| 530 |  | 
| 531 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 532 | #ifdef IS_MPI | 
| 533 | atomColData.force[atom2] += fg; | 
| 534 | #else | 
| 535 | snap_->atomData.force[atom2] += fg; | 
| 536 | #endif | 
| 537 | } | 
| 538 |  | 
| 539 | // filling interaction blocks with pointers | 
| 540 | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 541 | InteractionData idat; | 
| 542 |  | 
| 543 | #ifdef IS_MPI | 
| 544 |  | 
| 545 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 546 | ff_->getAtomType(identsCol[atom2]) ); | 
| 547 |  | 
| 548 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 549 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 550 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 551 | } | 
| 552 |  | 
| 553 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 554 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 555 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 556 | } | 
| 557 |  | 
| 558 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 559 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 560 | idat.t2 = &(atomColData.torque[atom2]); | 
| 561 | } | 
| 562 |  | 
| 563 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 564 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 565 | idat.rho2 = &(atomColData.density[atom2]); | 
| 566 | } | 
| 567 |  | 
| 568 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 569 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 570 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 571 | } | 
| 572 |  | 
| 573 | #else | 
| 574 |  | 
| 575 | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 576 | ff_->getAtomType(identsLocal[atom2]) ); | 
| 577 |  | 
| 578 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 579 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 580 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 581 | } | 
| 582 |  | 
| 583 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 584 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 585 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 586 | } | 
| 587 |  | 
| 588 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 589 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 590 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 591 | } | 
| 592 |  | 
| 593 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 594 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 595 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 596 | } | 
| 597 |  | 
| 598 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 599 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 600 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 601 | } | 
| 602 | #endif | 
| 603 | return idat; | 
| 604 | } | 
| 605 |  | 
| 606 | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 607 |  | 
| 608 | InteractionData idat; | 
| 609 | #ifdef IS_MPI | 
| 610 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 611 | ff_->getAtomType(identsCol[atom2]) ); | 
| 612 |  | 
| 613 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 614 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 615 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 616 | } | 
| 617 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 618 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 619 | idat.t2 = &(atomColData.torque[atom2]); | 
| 620 | } | 
| 621 | if (storageLayout_ & DataStorage::dslForce) { | 
| 622 | idat.t1 = &(atomRowData.force[atom1]); | 
| 623 | idat.t2 = &(atomColData.force[atom2]); | 
| 624 | } | 
| 625 | #else | 
| 626 | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 627 | ff_->getAtomType(identsLocal[atom2]) ); | 
| 628 |  | 
| 629 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 630 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 631 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 632 | } | 
| 633 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 634 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 635 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 636 | } | 
| 637 | if (storageLayout_ & DataStorage::dslForce) { | 
| 638 | idat.t1 = &(snap_->atomData.force[atom1]); | 
| 639 | idat.t2 = &(snap_->atomData.force[atom2]); | 
| 640 | } | 
| 641 | #endif | 
| 642 | } | 
| 643 |  | 
| 644 | /* | 
| 645 | * buildNeighborList | 
| 646 | * | 
| 647 | * first element of pair is row-indexed CutoffGroup | 
| 648 | * second element of pair is column-indexed CutoffGroup | 
| 649 | */ | 
| 650 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 651 |  | 
| 652 | vector<pair<int, int> > neighborList; | 
| 653 | #ifdef IS_MPI | 
| 654 | cellListRow_.clear(); | 
| 655 | cellListCol_.clear(); | 
| 656 | #else | 
| 657 | cellList_.clear(); | 
| 658 | #endif | 
| 659 |  | 
| 660 | // dangerous to not do error checking. | 
| 661 | RealType rCut_; | 
| 662 |  | 
| 663 | RealType rList_ = (rCut_ + skinThickness_); | 
| 664 | RealType rl2 = rList_ * rList_; | 
| 665 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 666 | Mat3x3d Hmat = snap_->getHmat(); | 
| 667 | Vector3d Hx = Hmat.getColumn(0); | 
| 668 | Vector3d Hy = Hmat.getColumn(1); | 
| 669 | Vector3d Hz = Hmat.getColumn(2); | 
| 670 |  | 
| 671 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 672 | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 673 | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 674 |  | 
| 675 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 676 | Vector3d rs, scaled, dr; | 
| 677 | Vector3i whichCell; | 
| 678 | int cellIndex; | 
| 679 |  | 
| 680 | #ifdef IS_MPI | 
| 681 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 682 | rs = cgRowData.position[i]; | 
| 683 | // scaled positions relative to the box vectors | 
| 684 | scaled = invHmat * rs; | 
| 685 | // wrap the vector back into the unit box by subtracting integer box | 
| 686 | // numbers | 
| 687 | for (int j = 0; j < 3; j++) | 
| 688 | scaled[j] -= roundMe(scaled[j]); | 
| 689 |  | 
| 690 | // find xyz-indices of cell that cutoffGroup is in. | 
| 691 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 692 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 693 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 694 |  | 
| 695 | // find single index of this cell: | 
| 696 | cellIndex = Vlinear(whichCell, nCells_); | 
| 697 | // add this cutoff group to the list of groups in this cell; | 
| 698 | cellListRow_[cellIndex].push_back(i); | 
| 699 | } | 
| 700 |  | 
| 701 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 702 | rs = cgColData.position[i]; | 
| 703 | // scaled positions relative to the box vectors | 
| 704 | scaled = invHmat * rs; | 
| 705 | // wrap the vector back into the unit box by subtracting integer box | 
| 706 | // numbers | 
| 707 | for (int j = 0; j < 3; j++) | 
| 708 | scaled[j] -= roundMe(scaled[j]); | 
| 709 |  | 
| 710 | // find xyz-indices of cell that cutoffGroup is in. | 
| 711 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 712 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 713 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 714 |  | 
| 715 | // find single index of this cell: | 
| 716 | cellIndex = Vlinear(whichCell, nCells_); | 
| 717 | // add this cutoff group to the list of groups in this cell; | 
| 718 | cellListCol_[cellIndex].push_back(i); | 
| 719 | } | 
| 720 | #else | 
| 721 | for (int i = 0; i < nGroups_; i++) { | 
| 722 | rs = snap_->cgData.position[i]; | 
| 723 | // scaled positions relative to the box vectors | 
| 724 | scaled = invHmat * rs; | 
| 725 | // wrap the vector back into the unit box by subtracting integer box | 
| 726 | // numbers | 
| 727 | for (int j = 0; j < 3; j++) | 
| 728 | scaled[j] -= roundMe(scaled[j]); | 
| 729 |  | 
| 730 | // find xyz-indices of cell that cutoffGroup is in. | 
| 731 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 732 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 733 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 734 |  | 
| 735 | // find single index of this cell: | 
| 736 | cellIndex = Vlinear(whichCell, nCells_); | 
| 737 | // add this cutoff group to the list of groups in this cell; | 
| 738 | cellList_[cellIndex].push_back(i); | 
| 739 | } | 
| 740 | #endif | 
| 741 |  | 
| 742 |  | 
| 743 |  | 
| 744 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 745 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 746 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 747 | Vector3i m1v(m1x, m1y, m1z); | 
| 748 | int m1 = Vlinear(m1v, nCells_); | 
| 749 |  | 
| 750 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 751 | os != cellOffsets_.end(); ++os) { | 
| 752 |  | 
| 753 | Vector3i m2v = m1v + (*os); | 
| 754 |  | 
| 755 | if (m2v.x() >= nCells_.x()) { | 
| 756 | m2v.x() = 0; | 
| 757 | } else if (m2v.x() < 0) { | 
| 758 | m2v.x() = nCells_.x() - 1; | 
| 759 | } | 
| 760 |  | 
| 761 | if (m2v.y() >= nCells_.y()) { | 
| 762 | m2v.y() = 0; | 
| 763 | } else if (m2v.y() < 0) { | 
| 764 | m2v.y() = nCells_.y() - 1; | 
| 765 | } | 
| 766 |  | 
| 767 | if (m2v.z() >= nCells_.z()) { | 
| 768 | m2v.z() = 0; | 
| 769 | } else if (m2v.z() < 0) { | 
| 770 | m2v.z() = nCells_.z() - 1; | 
| 771 | } | 
| 772 |  | 
| 773 | int m2 = Vlinear (m2v, nCells_); | 
| 774 |  | 
| 775 | #ifdef IS_MPI | 
| 776 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 777 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 778 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 779 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 780 |  | 
| 781 | // Always do this if we're in different cells or if | 
| 782 | // we're in the same cell and the global index of the | 
| 783 | // j2 cutoff group is less than the j1 cutoff group | 
| 784 |  | 
| 785 | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 786 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 787 | snap_->wrapVector(dr); | 
| 788 | if (dr.lengthSquare() < rl2) { | 
| 789 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 790 | } | 
| 791 | } | 
| 792 | } | 
| 793 | } | 
| 794 | #else | 
| 795 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 796 | j1 != cellList_[m1].end(); ++j1) { | 
| 797 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 798 | j2 != cellList_[m2].end(); ++j2) { | 
| 799 |  | 
| 800 | // Always do this if we're in different cells or if | 
| 801 | // we're in the same cell and the global index of the | 
| 802 | // j2 cutoff group is less than the j1 cutoff group | 
| 803 |  | 
| 804 | if (m2 != m1 || (*j2) < (*j1)) { | 
| 805 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 806 | snap_->wrapVector(dr); | 
| 807 | if (dr.lengthSquare() < rl2) { | 
| 808 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 809 | } | 
| 810 | } | 
| 811 | } | 
| 812 | } | 
| 813 | #endif | 
| 814 | } | 
| 815 | } | 
| 816 | } | 
| 817 | } | 
| 818 |  | 
| 819 | // save the local cutoff group positions for the check that is | 
| 820 | // done on each loop: | 
| 821 | saved_CG_positions_.clear(); | 
| 822 | for (int i = 0; i < nGroups_; i++) | 
| 823 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 824 |  | 
| 825 | return neighborList; | 
| 826 | } | 
| 827 | } //end namespace OpenMD |