| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 536 |  | atomColData.skippedCharge.end(), 0.0); | 
| 537 |  | } | 
| 538 |  |  | 
| 539 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 540 | + | fill(atomRowData.flucQFrc.begin(), | 
| 541 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 542 | + | fill(atomColData.flucQFrc.begin(), | 
| 543 | + | atomColData.flucQFrc.end(), 0.0); | 
| 544 | + | } | 
| 545 | + |  | 
| 546 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 547 | + | fill(atomRowData.electricField.begin(), | 
| 548 | + | atomRowData.electricField.end(), V3Zero); | 
| 549 | + | fill(atomColData.electricField.begin(), | 
| 550 | + | atomColData.electricField.end(), V3Zero); | 
| 551 | + | } | 
| 552 | + |  | 
| 553 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 554 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 555 | + | 0.0); | 
| 556 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 557 | + | 0.0); | 
| 558 | + | } | 
| 559 | + |  | 
| 560 |  | #endif | 
| 561 |  | // even in parallel, we need to zero out the local arrays: | 
| 562 |  |  | 
| 569 |  | fill(snap_->atomData.density.begin(), | 
| 570 |  | snap_->atomData.density.end(), 0.0); | 
| 571 |  | } | 
| 572 | + |  | 
| 573 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 574 |  | fill(snap_->atomData.functional.begin(), | 
| 575 |  | snap_->atomData.functional.end(), 0.0); | 
| 576 |  | } | 
| 577 | + |  | 
| 578 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 579 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 580 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 581 |  | } | 
| 582 | + |  | 
| 583 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 584 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 585 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 586 |  | } | 
| 587 | < |  | 
| 587 | > |  | 
| 588 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 589 | > | fill(snap_->atomData.electricField.begin(), | 
| 590 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 591 | > | } | 
| 592 |  | } | 
| 593 |  |  | 
| 594 |  |  | 
| 610 |  |  | 
| 611 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 612 |  | cgColData.position); | 
| 613 | + |  | 
| 614 | + |  | 
| 615 | + |  | 
| 616 | + | if (needVelocities_) { | 
| 617 | + | // gather up the atomic velocities | 
| 618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 619 | + | atomColData.velocity); | 
| 620 | + |  | 
| 621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 622 | + | cgColData.velocity); | 
| 623 | + | } | 
| 624 |  |  | 
| 625 |  |  | 
| 626 |  | // if needed, gather the atomic rotation matrices | 
| 639 |  | atomColData.electroFrame); | 
| 640 |  | } | 
| 641 |  |  | 
| 642 | + | // if needed, gather the atomic fluctuating charge values | 
| 643 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 644 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 645 | + | atomRowData.flucQPos); | 
| 646 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 647 | + | atomColData.flucQPos); | 
| 648 | + | } | 
| 649 | + |  | 
| 650 |  | #endif | 
| 651 |  | } | 
| 652 |  |  | 
| 669 |  | for (int i = 0; i < n; i++) | 
| 670 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 671 |  | } | 
| 672 | + |  | 
| 673 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 674 | + |  | 
| 675 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 676 | + | snap_->atomData.electricField); | 
| 677 | + |  | 
| 678 | + | int n = snap_->atomData.electricField.size(); | 
| 679 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 680 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 681 | + | for (int i = 0; i < n; i++) | 
| 682 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 683 | + | } | 
| 684 |  | #endif | 
| 685 |  | } | 
| 686 |  |  | 
| 760 |  |  | 
| 761 |  | } | 
| 762 |  |  | 
| 763 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 764 | + |  | 
| 765 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 766 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 767 | + |  | 
| 768 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 769 | + | for (int i = 0; i < nq; i++) { | 
| 770 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 771 | + | fqfrc_tmp[i] = 0.0; | 
| 772 | + | } | 
| 773 | + |  | 
| 774 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 775 | + | for (int i = 0; i < nq; i++) | 
| 776 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 777 | + |  | 
| 778 | + | } | 
| 779 | + |  | 
| 780 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 781 |  |  | 
| 782 |  | vector<potVec> pot_temp(nLocal_, | 
| 788 |  |  | 
| 789 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 790 |  | pairwisePot += pot_temp[ii]; | 
| 791 | < |  | 
| 791 | > |  | 
| 792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 793 | > | // This is the pairwise contribution to the particle pot.  The | 
| 794 | > | // embedding contribution is added in each of the low level | 
| 795 | > | // non-bonded routines.  In single processor, this is done in | 
| 796 | > | // unpackInteractionData, not in collectData. | 
| 797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 798 | > | for (int i = 0; i < nLocal_; i++) { | 
| 799 | > | // factor of two is because the total potential terms are divided | 
| 800 | > | // by 2 in parallel due to row/ column scatter | 
| 801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > | } | 
| 805 | > |  | 
| 806 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 807 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 808 |  |  | 
| 810 |  |  | 
| 811 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 812 |  | pairwisePot += pot_temp[ii]; | 
| 813 | + |  | 
| 814 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 815 | + | // This is the pairwise contribution to the particle pot.  The | 
| 816 | + | // embedding contribution is added in each of the low level | 
| 817 | + | // non-bonded routines.  In single processor, this is done in | 
| 818 | + | // unpackInteractionData, not in collectData. | 
| 819 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 820 | + | for (int i = 0; i < nLocal_; i++) { | 
| 821 | + | // factor of two is because the total potential terms are divided | 
| 822 | + | // by 2 in parallel due to row/ column scatter | 
| 823 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 824 | + | } | 
| 825 | + | } | 
| 826 | + | } | 
| 827 |  |  | 
| 828 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 829 | + | int npp = snap_->atomData.particlePot.size(); | 
| 830 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 831 | + |  | 
| 832 | + | // This is the direct or embedding contribution to the particle | 
| 833 | + | // pot. | 
| 834 | + |  | 
| 835 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 836 | + | for (int i = 0; i < npp; i++) { | 
| 837 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 838 | + | } | 
| 839 | + |  | 
| 840 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 841 | + |  | 
| 842 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 843 | + | for (int i = 0; i < npp; i++) { | 
| 844 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + |  | 
| 848 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 849 |  | RealType ploc1 = pairwisePot[ii]; | 
| 850 |  | RealType ploc2 = 0.0; | 
| 858 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 859 |  | embeddingPot[ii] = ploc2; | 
| 860 |  | } | 
| 861 | + |  | 
| 862 | + | // Here be dragons. | 
| 863 | + | MPI::Intracomm col = colComm.getComm(); | 
| 864 |  |  | 
| 865 | + | col.Allreduce(MPI::IN_PLACE, | 
| 866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 867 | + | MPI::REALTYPE, MPI::SUM); | 
| 868 | + |  | 
| 869 | + |  | 
| 870 |  | #endif | 
| 871 |  |  | 
| 872 |  | } | 
| 911 |  | return d; | 
| 912 |  | } | 
| 913 |  |  | 
| 914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 915 | + | #ifdef IS_MPI | 
| 916 | + | return cgColData.velocity[cg2]; | 
| 917 | + | #else | 
| 918 | + | return snap_->cgData.velocity[cg2]; | 
| 919 | + | #endif | 
| 920 | + | } | 
| 921 |  |  | 
| 922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | return atomColData.velocity[atom2]; | 
| 925 | + | #else | 
| 926 | + | return snap_->atomData.velocity[atom2]; | 
| 927 | + | #endif | 
| 928 | + | } | 
| 929 | + |  | 
| 930 | + |  | 
| 931 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 932 |  |  | 
| 933 |  | Vector3d d; | 
| 1109 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1110 |  | } | 
| 1111 |  |  | 
| 1112 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1113 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1114 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1115 | + | } | 
| 1116 | + |  | 
| 1117 |  | #else | 
| 1118 |  |  | 
| 955 | – |  | 
| 956 | – | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 957 | – | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 958 | – | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 959 | – |  | 
| 1119 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 961 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 962 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1120 |  |  | 
| 1121 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1122 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1157 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1158 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1159 |  | } | 
| 1160 | + |  | 
| 1161 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1162 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1163 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1164 | + | } | 
| 1165 | + |  | 
| 1166 |  | #endif | 
| 1167 |  | } | 
| 1168 |  |  | 
| 1174 |  |  | 
| 1175 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1176 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1177 | + |  | 
| 1178 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1179 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1180 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1181 | + | } | 
| 1182 | + |  | 
| 1183 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1184 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1185 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1186 | + | } | 
| 1187 | + |  | 
| 1188 |  | #else | 
| 1189 |  | pairwisePot += *(idat.pot); | 
| 1190 |  |  | 
| 1191 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1192 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1193 | + |  | 
| 1194 | + | if (idat.doParticlePot) { | 
| 1195 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1196 | + | // embedding contribution is added in each of the low level | 
| 1197 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1198 | + | // in collectData, not in unpackInteractionData. | 
| 1199 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1200 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1201 | + | } | 
| 1202 | + |  | 
| 1203 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1204 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1205 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1206 | + | } | 
| 1207 | + |  | 
| 1208 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1209 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1210 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1211 | + | } | 
| 1212 | + |  | 
| 1213 |  | #endif | 
| 1214 |  |  | 
| 1215 |  | } |