| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 102 | + | regions = info_->getRegions(); | 
| 103 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 104 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 105 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 110 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 111 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 112 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 113 | < |  | 
| 113 | > |  | 
| 114 | > | if (needVelocities_) | 
| 115 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 116 | > | DataStorage::dslVelocity); | 
| 117 | > | else | 
| 118 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 119 | > |  | 
| 120 |  | #ifdef IS_MPI | 
| 121 |  |  | 
| 122 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 152 |  | cgRowData.resize(nGroupsInRow_); | 
| 153 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 154 |  | cgColData.resize(nGroupsInCol_); | 
| 155 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 156 | < |  | 
| 155 | > | if (needVelocities_) | 
| 156 | > | // we only need column velocities if we need them. | 
| 157 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 158 | > | DataStorage::dslVelocity); | 
| 159 | > | else | 
| 160 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 161 | > |  | 
| 162 |  | identsRow.resize(nAtomsInRow_); | 
| 163 |  | identsCol.resize(nAtomsInCol_); | 
| 164 |  |  | 
| 165 |  | AtomPlanIntRow->gather(idents, identsRow); | 
| 166 |  | AtomPlanIntColumn->gather(idents, identsCol); | 
| 167 | + |  | 
| 168 | + | regionsRow.resize(nAtomsInRow_); | 
| 169 | + | regionsCol.resize(nAtomsInCol_); | 
| 170 |  |  | 
| 171 | + | AtomPlanIntRow->gather(regions, regionsRow); | 
| 172 | + | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 173 | + |  | 
| 174 |  | // allocate memory for the parallel objects | 
| 175 |  | atypesRow.resize(nAtomsInRow_); | 
| 176 |  | atypesCol.resize(nAtomsInCol_); | 
| 183 |  | pot_row.resize(nAtomsInRow_); | 
| 184 |  | pot_col.resize(nAtomsInCol_); | 
| 185 |  |  | 
| 186 | + | expot_row.resize(nAtomsInRow_); | 
| 187 | + | expot_col.resize(nAtomsInCol_); | 
| 188 | + |  | 
| 189 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 190 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 191 |  | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 315 |  |  | 
| 316 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 317 |  |  | 
| 318 | + | GrCut.clear(); | 
| 319 | + | GrCutSq.clear(); | 
| 320 | + | GrlistSq.clear(); | 
| 321 | + |  | 
| 322 |  | RealType tol = 1e-6; | 
| 323 |  | largestRcut_ = 0.0; | 
| 299 | – | RealType rc; | 
| 324 |  | int atid; | 
| 325 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 326 |  |  | 
| 405 |  | } | 
| 406 |  |  | 
| 407 |  | bool gTypeFound = false; | 
| 408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 409 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 410 |  | groupToGtype[cg1] = gt; | 
| 411 |  | gTypeFound = true; | 
| 430 |  |  | 
| 431 |  | RealType tradRcut = groupMax; | 
| 432 |  |  | 
| 433 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 434 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 433 | > | GrCut.resize( gTypeCutoffs.size() ); | 
| 434 | > | GrCutSq.resize( gTypeCutoffs.size() ); | 
| 435 | > | GrlistSq.resize( gTypeCutoffs.size() ); | 
| 436 | > |  | 
| 437 | > |  | 
| 438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); | 
| 440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 442 | > |  | 
| 443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 444 |  | RealType thisRcut; | 
| 445 |  | switch(cutoffPolicy_) { | 
| 446 |  | case TRADITIONAL: | 
| 462 |  | break; | 
| 463 |  | } | 
| 464 |  |  | 
| 465 | < | pair<int,int> key = make_pair(i,j); | 
| 433 | < | gTypeCutoffMap[key].first = thisRcut; | 
| 465 | > | GrCut[i][j] = thisRcut; | 
| 466 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 467 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 468 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 467 | > | GrCutSq[i][j] = thisRcut * thisRcut; | 
| 468 | > | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); | 
| 469 | > |  | 
| 470 | > | // pair<int,int> key = make_pair(i,j); | 
| 471 | > | // gTypeCutoffMap[key].first = thisRcut; | 
| 472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 473 |  | // sanity check | 
| 474 |  |  | 
| 475 |  | if (userChoseCutoff_) { | 
| 476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { | 
| 477 |  | sprintf(painCave.errMsg, | 
| 478 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 479 |  | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 486 |  | } | 
| 487 |  | } | 
| 488 |  |  | 
| 489 | < |  | 
| 454 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { | 
| 490 |  | int i, j; | 
| 491 |  | #ifdef IS_MPI | 
| 492 |  | i = groupRowToGtype[cg1]; | 
| 495 |  | i = groupToGtype[cg1]; | 
| 496 |  | j = groupToGtype[cg2]; | 
| 497 |  | #endif | 
| 498 | < | return gTypeCutoffMap[make_pair(i,j)]; | 
| 498 | > | rcut = GrCut[i][j]; | 
| 499 | > | rcutsq = GrCutSq[i][j]; | 
| 500 | > | rlistsq = GrlistSq[i][j]; | 
| 501 | > | return; | 
| 502 | > | //return gTypeCutoffMap[make_pair(i,j)]; | 
| 503 |  | } | 
| 504 |  |  | 
| 505 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 507 |  | if (toposForAtom[atom1][j] == atom2) | 
| 508 |  | return topoDist[atom1][j]; | 
| 509 | < | } | 
| 509 | > | } | 
| 510 |  | return 0; | 
| 511 |  | } | 
| 512 |  |  | 
| 513 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 514 |  | pairwisePot = 0.0; | 
| 515 |  | embeddingPot = 0.0; | 
| 516 | + | excludedPot = 0.0; | 
| 517 | + | excludedSelfPot = 0.0; | 
| 518 |  |  | 
| 519 |  | #ifdef IS_MPI | 
| 520 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 533 |  | fill(pot_col.begin(), pot_col.end(), | 
| 534 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 535 |  |  | 
| 536 | + | fill(expot_row.begin(), expot_row.end(), | 
| 537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 538 | + |  | 
| 539 | + | fill(expot_col.begin(), expot_col.end(), | 
| 540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 541 | + |  | 
| 542 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 543 |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 544 |  | 0.0); | 
| 586 |  | atomColData.electricField.end(), V3Zero); | 
| 587 |  | } | 
| 588 |  |  | 
| 542 | – | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 543 | – | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 544 | – | 0.0); | 
| 545 | – | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 546 | – | 0.0); | 
| 547 | – | } | 
| 548 | – |  | 
| 589 |  | #endif | 
| 590 |  | // even in parallel, we need to zero out the local arrays: | 
| 591 |  |  | 
| 640 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 641 |  | cgColData.position); | 
| 642 |  |  | 
| 643 | + |  | 
| 644 | + |  | 
| 645 | + | if (needVelocities_) { | 
| 646 | + | // gather up the atomic velocities | 
| 647 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 648 | + | atomColData.velocity); | 
| 649 | + |  | 
| 650 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 651 | + | cgColData.velocity); | 
| 652 | + | } | 
| 653 | + |  | 
| 654 |  |  | 
| 655 |  | // if needed, gather the atomic rotation matrices | 
| 656 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 659 |  | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 660 |  | atomColData.aMat); | 
| 661 |  | } | 
| 662 | < |  | 
| 663 | < | // if needed, gather the atomic eletrostatic frames | 
| 664 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 665 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 666 | < | atomRowData.electroFrame); | 
| 667 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 668 | < | atomColData.electroFrame); | 
| 662 | > |  | 
| 663 | > | // if needed, gather the atomic eletrostatic information | 
| 664 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 665 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 666 | > | atomRowData.dipole); | 
| 667 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 668 | > | atomColData.dipole); | 
| 669 |  | } | 
| 670 |  |  | 
| 671 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 672 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 673 | + | atomRowData.quadrupole); | 
| 674 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 675 | + | atomColData.quadrupole); | 
| 676 | + | } | 
| 677 | + |  | 
| 678 |  | // if needed, gather the atomic fluctuating charge values | 
| 679 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 680 |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 706 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 707 |  | } | 
| 708 |  |  | 
| 709 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 710 | + | // we'll leave it here for now. | 
| 711 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 712 |  |  | 
| 713 |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 715 |  |  | 
| 716 |  | int n = snap_->atomData.electricField.size(); | 
| 717 |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 718 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 718 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 719 | > | field_tmp); | 
| 720 |  | for (int i = 0; i < n; i++) | 
| 721 |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 722 |  | } | 
| 816 |  |  | 
| 817 |  | } | 
| 818 |  |  | 
| 819 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 820 | + |  | 
| 821 | + | int nef = snap_->atomData.electricField.size(); | 
| 822 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 823 | + |  | 
| 824 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 825 | + | for (int i = 0; i < nef; i++) { | 
| 826 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 827 | + | efield_tmp[i] = 0.0; | 
| 828 | + | } | 
| 829 | + |  | 
| 830 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 831 | + | for (int i = 0; i < nef; i++) | 
| 832 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 833 | + | } | 
| 834 | + |  | 
| 835 | + |  | 
| 836 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 837 |  |  | 
| 838 |  | vector<potVec> pot_temp(nLocal_, | 
| 839 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 840 | + | vector<potVec> expot_temp(nLocal_, | 
| 841 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 842 |  |  | 
| 843 |  | // scatter/gather pot_row into the members of my column | 
| 844 |  |  | 
| 845 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 846 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 847 |  |  | 
| 848 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 848 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 849 |  | pairwisePot += pot_temp[ii]; | 
| 850 | < |  | 
| 850 | > |  | 
| 851 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 852 | > | excludedPot += expot_temp[ii]; | 
| 853 | > |  | 
| 854 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 855 | > | // This is the pairwise contribution to the particle pot.  The | 
| 856 | > | // embedding contribution is added in each of the low level | 
| 857 | > | // non-bonded routines.  In single processor, this is done in | 
| 858 | > | // unpackInteractionData, not in collectData. | 
| 859 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 860 | > | for (int i = 0; i < nLocal_; i++) { | 
| 861 | > | // factor of two is because the total potential terms are divided | 
| 862 | > | // by 2 in parallel due to row/ column scatter | 
| 863 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 864 | > | } | 
| 865 | > | } | 
| 866 | > | } | 
| 867 | > |  | 
| 868 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 869 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 870 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 871 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 872 |  |  | 
| 873 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 874 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 875 |  |  | 
| 876 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 877 |  | pairwisePot += pot_temp[ii]; | 
| 878 | + |  | 
| 879 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 880 | + | excludedPot += expot_temp[ii]; | 
| 881 | + |  | 
| 882 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 883 | + | // This is the pairwise contribution to the particle pot.  The | 
| 884 | + | // embedding contribution is added in each of the low level | 
| 885 | + | // non-bonded routines.  In single processor, this is done in | 
| 886 | + | // unpackInteractionData, not in collectData. | 
| 887 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 888 | + | for (int i = 0; i < nLocal_; i++) { | 
| 889 | + | // factor of two is because the total potential terms are divided | 
| 890 | + | // by 2 in parallel due to row/ column scatter | 
| 891 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 892 | + | } | 
| 893 | + | } | 
| 894 | + | } | 
| 895 |  |  | 
| 896 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 897 | + | int npp = snap_->atomData.particlePot.size(); | 
| 898 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 899 | + |  | 
| 900 | + | // This is the direct or embedding contribution to the particle | 
| 901 | + | // pot. | 
| 902 | + |  | 
| 903 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 904 | + | for (int i = 0; i < npp; i++) { | 
| 905 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 906 | + | } | 
| 907 | + |  | 
| 908 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 909 | + |  | 
| 910 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 911 | + | for (int i = 0; i < npp; i++) { | 
| 912 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 913 | + | } | 
| 914 | + | } | 
| 915 | + |  | 
| 916 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 917 |  | RealType ploc1 = pairwisePot[ii]; | 
| 918 |  | RealType ploc2 = 0.0; | 
| 921 |  | } | 
| 922 |  |  | 
| 923 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 924 | < | RealType ploc1 = embeddingPot[ii]; | 
| 924 | > | RealType ploc1 = excludedPot[ii]; | 
| 925 |  | RealType ploc2 = 0.0; | 
| 926 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 927 | < | embeddingPot[ii] = ploc2; | 
| 927 | > | excludedPot[ii] = ploc2; | 
| 928 |  | } | 
| 929 |  |  | 
| 930 | + | // Here be dragons. | 
| 931 | + | MPI::Intracomm col = colComm.getComm(); | 
| 932 | + |  | 
| 933 | + | col.Allreduce(MPI::IN_PLACE, | 
| 934 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 935 | + | MPI::REALTYPE, MPI::SUM); | 
| 936 | + |  | 
| 937 | + |  | 
| 938 |  | #endif | 
| 939 |  |  | 
| 940 |  | } | 
| 941 |  |  | 
| 942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 942 | > | /** | 
| 943 | > | * Collects information obtained during the post-pair (and embedding | 
| 944 | > | * functional) loops onto local data structures. | 
| 945 | > | */ | 
| 946 | > | void ForceMatrixDecomposition::collectSelfData() { | 
| 947 | > | snap_ = sman_->getCurrentSnapshot(); | 
| 948 | > | storageLayout_ = sman_->getStorageLayout(); | 
| 949 | > |  | 
| 950 |  | #ifdef IS_MPI | 
| 951 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 952 | + | RealType ploc1 = embeddingPot[ii]; | 
| 953 | + | RealType ploc2 = 0.0; | 
| 954 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 955 | + | embeddingPot[ii] = ploc2; | 
| 956 | + | } | 
| 957 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 958 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 959 | + | RealType ploc2 = 0.0; | 
| 960 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 961 | + | excludedSelfPot[ii] = ploc2; | 
| 962 | + | } | 
| 963 | + | #endif | 
| 964 | + |  | 
| 965 | + | } | 
| 966 | + |  | 
| 967 | + |  | 
| 968 | + |  | 
| 969 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 970 | + | #ifdef IS_MPI | 
| 971 |  | return nAtomsInRow_; | 
| 972 |  | #else | 
| 973 |  | return nLocal_; | 
| 977 |  | /** | 
| 978 |  | * returns the list of atoms belonging to this group. | 
| 979 |  | */ | 
| 980 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 980 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 981 |  | #ifdef IS_MPI | 
| 982 |  | return groupListRow_[cg1]; | 
| 983 |  | #else | 
| 985 |  | #endif | 
| 986 |  | } | 
| 987 |  |  | 
| 988 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 988 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 989 |  | #ifdef IS_MPI | 
| 990 |  | return groupListCol_[cg2]; | 
| 991 |  | #else | 
| 1002 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 1003 |  | #endif | 
| 1004 |  |  | 
| 1005 | < | snap_->wrapVector(d); | 
| 1005 | > | if (usePeriodicBoundaryConditions_) { | 
| 1006 | > | snap_->wrapVector(d); | 
| 1007 | > | } | 
| 1008 |  | return d; | 
| 1009 |  | } | 
| 1010 |  |  | 
| 1011 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 1012 | + | #ifdef IS_MPI | 
| 1013 | + | return cgColData.velocity[cg2]; | 
| 1014 | + | #else | 
| 1015 | + | return snap_->cgData.velocity[cg2]; | 
| 1016 | + | #endif | 
| 1017 | + | } | 
| 1018 |  |  | 
| 1019 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 1020 | + | #ifdef IS_MPI | 
| 1021 | + | return atomColData.velocity[atom2]; | 
| 1022 | + | #else | 
| 1023 | + | return snap_->atomData.velocity[atom2]; | 
| 1024 | + | #endif | 
| 1025 | + | } | 
| 1026 | + |  | 
| 1027 | + |  | 
| 1028 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1029 |  |  | 
| 1030 |  | Vector3d d; | 
| 1034 |  | #else | 
| 1035 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1036 |  | #endif | 
| 1037 | < |  | 
| 1038 | < | snap_->wrapVector(d); | 
| 1037 | > | if (usePeriodicBoundaryConditions_) { | 
| 1038 | > | snap_->wrapVector(d); | 
| 1039 | > | } | 
| 1040 |  | return d; | 
| 1041 |  | } | 
| 1042 |  |  | 
| 1048 |  | #else | 
| 1049 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1050 |  | #endif | 
| 1051 | < |  | 
| 1052 | < | snap_->wrapVector(d); | 
| 1051 | > | if (usePeriodicBoundaryConditions_) { | 
| 1052 | > | snap_->wrapVector(d); | 
| 1053 | > | } | 
| 1054 |  | return d; | 
| 1055 |  | } | 
| 1056 |  |  | 
| 1057 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1057 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1058 |  | #ifdef IS_MPI | 
| 1059 |  | return massFactorsRow[atom1]; | 
| 1060 |  | #else | 
| 1062 |  | #endif | 
| 1063 |  | } | 
| 1064 |  |  | 
| 1065 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1065 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1066 |  | #ifdef IS_MPI | 
| 1067 |  | return massFactorsCol[atom2]; | 
| 1068 |  | #else | 
| 1079 |  | #else | 
| 1080 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1081 |  | #endif | 
| 1082 | < |  | 
| 1083 | < | snap_->wrapVector(d); | 
| 1082 | > | if (usePeriodicBoundaryConditions_) { | 
| 1083 | > | snap_->wrapVector(d); | 
| 1084 | > | } | 
| 1085 |  | return d; | 
| 1086 |  | } | 
| 1087 |  |  | 
| 1088 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1088 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1089 |  | return excludesForAtom[atom1]; | 
| 1090 |  | } | 
| 1091 |  |  | 
| 1093 |  | * We need to exclude some overcounted interactions that result from | 
| 1094 |  | * the parallel decomposition. | 
| 1095 |  | */ | 
| 1096 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1096 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1097 |  | int unique_id_1, unique_id_2; | 
| 1098 |  |  | 
| 1099 |  | #ifdef IS_MPI | 
| 1100 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1101 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1102 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1103 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1104 | + | // group2 = cgColToGlobal[cg2]; | 
| 1105 |  | #else | 
| 1106 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1107 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1108 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1109 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1110 |  | #endif | 
| 1111 |  |  | 
| 1112 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1118 |  | } else { | 
| 1119 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1120 |  | } | 
| 1121 | + | #endif | 
| 1122 | + |  | 
| 1123 | + | #ifndef IS_MPI | 
| 1124 | + | if (group1 == group2) { | 
| 1125 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1126 | + | } | 
| 1127 |  | #endif | 
| 1128 |  |  | 
| 1129 |  | return false; | 
| 1175 |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1176 |  |  | 
| 1177 |  | #ifdef IS_MPI | 
| 1178 | < | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1179 | < | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1180 | < | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1181 | < |  | 
| 1178 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1179 | > | idat.atid1 = identsRow[atom1]; | 
| 1180 | > | idat.atid2 = identsCol[atom2]; | 
| 1181 | > |  | 
| 1182 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1183 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1184 | > | } else { | 
| 1185 | > | idat.sameRegion = false; | 
| 1186 | > | } | 
| 1187 | > |  | 
| 1188 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1189 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1190 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1191 |  | } | 
| 1192 |  |  | 
| 983 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 984 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 985 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 986 | – | } | 
| 987 | – |  | 
| 1193 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1194 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1195 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1196 |  | } | 
| 1197 |  |  | 
| 1198 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1199 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1200 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1201 | + | } | 
| 1202 | + |  | 
| 1203 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1204 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1205 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1206 | + | } | 
| 1207 | + |  | 
| 1208 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1209 |  | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1210 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1237 |  |  | 
| 1238 |  | #else | 
| 1239 |  |  | 
| 1240 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1241 | + | idat.atid1 = idents[atom1]; | 
| 1242 | + | idat.atid2 = idents[atom2]; | 
| 1243 |  |  | 
| 1244 | < | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1245 | < | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1246 | < | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1244 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1245 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1246 | > | } else { | 
| 1247 | > | idat.sameRegion = false; | 
| 1248 | > | } | 
| 1249 |  |  | 
| 1030 | – | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1031 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1032 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1033 | – |  | 
| 1250 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1251 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1252 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1253 |  | } | 
| 1254 |  |  | 
| 1039 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1040 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1041 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1042 | – | } | 
| 1043 | – |  | 
| 1255 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1256 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1257 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1258 |  | } | 
| 1259 |  |  | 
| 1260 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1261 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1262 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1263 | + | } | 
| 1264 | + |  | 
| 1265 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1266 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1267 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1268 | + | } | 
| 1269 | + |  | 
| 1270 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1271 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1272 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1305 |  | #ifdef IS_MPI | 
| 1306 |  | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1307 |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1308 | + | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1309 | + | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1310 |  |  | 
| 1311 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1312 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1313 |  |  | 
| 1314 |  | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1315 | < | atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); | 
| 1316 | < | atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); | 
| 1315 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1316 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1317 |  | } | 
| 1318 |  |  | 
| 1319 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1321 |  | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1322 |  | } | 
| 1323 |  |  | 
| 1101 | – | // should particle pot be done here also? | 
| 1324 |  | #else | 
| 1325 |  | pairwisePot += *(idat.pot); | 
| 1326 | + | excludedPot += *(idat.excludedPot); | 
| 1327 |  |  | 
| 1328 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1329 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1330 |  |  | 
| 1331 |  | if (idat.doParticlePot) { | 
| 1332 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1333 | + | // embedding contribution is added in each of the low level | 
| 1334 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1335 | + | // in collectData, not in unpackInteractionData. | 
| 1336 |  | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1337 | < | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1337 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1338 |  | } | 
| 1339 |  |  | 
| 1340 |  | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1341 | < | snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); | 
| 1341 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1342 |  | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1343 |  | } | 
| 1344 |  |  | 
| 1357 |  | * first element of pair is row-indexed CutoffGroup | 
| 1358 |  | * second element of pair is column-indexed CutoffGroup | 
| 1359 |  | */ | 
| 1360 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1361 | < |  | 
| 1362 | < | vector<pair<int, int> > neighborList; | 
| 1360 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1361 | > |  | 
| 1362 | > | neighborList.clear(); | 
| 1363 |  | groupCutoffs cuts; | 
| 1364 |  | bool doAllPairs = false; | 
| 1365 |  |  | 
| 1366 | + | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1367 | + | RealType rcut, rcutsq, rlistsq; | 
| 1368 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1369 | + | Mat3x3d box; | 
| 1370 | + | Mat3x3d invBox; | 
| 1371 | + |  | 
| 1372 | + | Vector3d rs, scaled, dr; | 
| 1373 | + | Vector3i whichCell; | 
| 1374 | + | int cellIndex; | 
| 1375 | + |  | 
| 1376 |  | #ifdef IS_MPI | 
| 1377 |  | cellListRow_.clear(); | 
| 1378 |  | cellListCol_.clear(); | 
| 1379 |  | #else | 
| 1380 |  | cellList_.clear(); | 
| 1381 |  | #endif | 
| 1382 | < |  | 
| 1383 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1384 | < | RealType rl2 = rList_ * rList_; | 
| 1385 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1386 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1387 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1388 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1389 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1390 | < |  | 
| 1391 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1392 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1393 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1394 | < |  | 
| 1382 | > |  | 
| 1383 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1384 | > | box = snap_->getBoundingBox(); | 
| 1385 | > | invBox = snap_->getInvBoundingBox(); | 
| 1386 | > | } else { | 
| 1387 | > | box = snap_->getHmat(); | 
| 1388 | > | invBox = snap_->getInvHmat(); | 
| 1389 | > | } | 
| 1390 | > |  | 
| 1391 | > | Vector3d boxX = box.getColumn(0); | 
| 1392 | > | Vector3d boxY = box.getColumn(1); | 
| 1393 | > | Vector3d boxZ = box.getColumn(2); | 
| 1394 | > |  | 
| 1395 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; | 
| 1396 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; | 
| 1397 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; | 
| 1398 | > |  | 
| 1399 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1400 |  |  | 
| 1401 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1402 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1403 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1404 | < |  | 
| 1164 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1165 | < | Vector3d rs, scaled, dr; | 
| 1166 | < | Vector3i whichCell; | 
| 1167 | < | int cellIndex; | 
| 1404 | > |  | 
| 1405 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1406 | < |  | 
| 1406 | > |  | 
| 1407 |  | #ifdef IS_MPI | 
| 1408 |  | cellListRow_.resize(nCtot); | 
| 1409 |  | cellListCol_.resize(nCtot); | 
| 1410 |  | #else | 
| 1411 |  | cellList_.resize(nCtot); | 
| 1412 |  | #endif | 
| 1413 | < |  | 
| 1413 | > |  | 
| 1414 |  | if (!doAllPairs) { | 
| 1415 |  | #ifdef IS_MPI | 
| 1416 | < |  | 
| 1416 | > |  | 
| 1417 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1418 |  | rs = cgRowData.position[i]; | 
| 1419 |  |  | 
| 1420 |  | // scaled positions relative to the box vectors | 
| 1421 | < | scaled = invHmat * rs; | 
| 1421 | > | scaled = invBox * rs; | 
| 1422 |  |  | 
| 1423 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1424 |  | // numbers | 
| 1425 |  | for (int j = 0; j < 3; j++) { | 
| 1426 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1427 |  | scaled[j] += 0.5; | 
| 1428 | + | // Handle the special case when an object is exactly on the | 
| 1429 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1430 | + | // scaled coordinate of 0.0) | 
| 1431 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1432 |  | } | 
| 1433 |  |  | 
| 1434 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1446 |  | rs = cgColData.position[i]; | 
| 1447 |  |  | 
| 1448 |  | // scaled positions relative to the box vectors | 
| 1449 | < | scaled = invHmat * rs; | 
| 1449 | > | scaled = invBox * rs; | 
| 1450 |  |  | 
| 1451 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1452 |  | // numbers | 
| 1453 |  | for (int j = 0; j < 3; j++) { | 
| 1454 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1455 |  | scaled[j] += 0.5; | 
| 1456 | + | // Handle the special case when an object is exactly on the | 
| 1457 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1458 | + | // scaled coordinate of 0.0) | 
| 1459 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1460 |  | } | 
| 1461 |  |  | 
| 1462 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1470 |  | // add this cutoff group to the list of groups in this cell; | 
| 1471 |  | cellListCol_[cellIndex].push_back(i); | 
| 1472 |  | } | 
| 1473 | < |  | 
| 1473 | > |  | 
| 1474 |  | #else | 
| 1475 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1476 |  | rs = snap_->cgData.position[i]; | 
| 1477 |  |  | 
| 1478 |  | // scaled positions relative to the box vectors | 
| 1479 | < | scaled = invHmat * rs; | 
| 1479 | > | scaled = invBox * rs; | 
| 1480 |  |  | 
| 1481 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1482 |  | // numbers | 
| 1483 |  | for (int j = 0; j < 3; j++) { | 
| 1484 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1485 |  | scaled[j] += 0.5; | 
| 1486 | + | // Handle the special case when an object is exactly on the | 
| 1487 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1488 | + | // scaled coordinate of 0.0) | 
| 1489 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1490 |  | } | 
| 1491 |  |  | 
| 1492 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1545 |  | // & column indicies and will divide labor in the | 
| 1546 |  | // force evaluation later. | 
| 1547 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1548 | < | snap_->wrapVector(dr); | 
| 1549 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1550 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1548 | > | if (usePeriodicBoundaryConditions_) { | 
| 1549 | > | snap_->wrapVector(dr); | 
| 1550 | > | } | 
| 1551 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1552 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1553 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1554 |  | } | 
| 1555 |  | } | 
| 1569 |  | // allows atoms within a single cutoff group to | 
| 1570 |  | // interact with each other. | 
| 1571 |  |  | 
| 1321 | – |  | 
| 1322 | – |  | 
| 1572 |  | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1573 |  |  | 
| 1574 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1575 | < | snap_->wrapVector(dr); | 
| 1576 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1577 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1575 | > | if (usePeriodicBoundaryConditions_) { | 
| 1576 | > | snap_->wrapVector(dr); | 
| 1577 | > | } | 
| 1578 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1579 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1580 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1581 |  | } | 
| 1582 |  | } | 
| 1593 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1594 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1595 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1596 | < | snap_->wrapVector(dr); | 
| 1597 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1598 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1596 | > | if (usePeriodicBoundaryConditions_) { | 
| 1597 | > | snap_->wrapVector(dr); | 
| 1598 | > | } | 
| 1599 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); | 
| 1600 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1601 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1602 |  | } | 
| 1603 |  | } | 
| 1608 |  | // include self group interactions j2 == j1 | 
| 1609 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1610 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1611 | < | snap_->wrapVector(dr); | 
| 1612 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1613 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1611 | > | if (usePeriodicBoundaryConditions_) { | 
| 1612 | > | snap_->wrapVector(dr); | 
| 1613 | > | } | 
| 1614 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); | 
| 1615 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1616 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1617 |  | } | 
| 1618 |  | } | 
| 1625 |  | saved_CG_positions_.clear(); | 
| 1626 |  | for (int i = 0; i < nGroups_; i++) | 
| 1627 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1373 | – |  | 
| 1374 | – | return neighborList; | 
| 1628 |  | } | 
| 1629 |  | } //end namespace OpenMD |