| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 479 |  | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 |  | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  | return topoDist[atom1][j]; | 
| 482 | < | } | 
| 482 | > | } | 
| 483 |  | return 0; | 
| 484 |  | } | 
| 485 |  |  | 
| 557 |  | atomRowData.electricField.end(), V3Zero); | 
| 558 |  | fill(atomColData.electricField.begin(), | 
| 559 |  | atomColData.electricField.end(), V3Zero); | 
| 560 | – | } | 
| 561 | – |  | 
| 562 | – | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 563 | – | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 564 | – | 0.0); | 
| 565 | – | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 566 | – | 0.0); | 
| 560 |  | } | 
| 561 |  |  | 
| 562 |  | #endif | 
| 632 |  | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 633 |  | atomColData.aMat); | 
| 634 |  | } | 
| 635 | < |  | 
| 636 | < | // if needed, gather the atomic eletrostatic frames | 
| 637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 638 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 639 | < | atomRowData.electroFrame); | 
| 640 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 641 | < | atomColData.electroFrame); | 
| 635 | > |  | 
| 636 | > | // if needed, gather the atomic eletrostatic information | 
| 637 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 639 | > | atomRowData.dipole); | 
| 640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 641 | > | atomColData.dipole); | 
| 642 |  | } | 
| 643 |  |  | 
| 644 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 645 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 646 | + | atomRowData.quadrupole); | 
| 647 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 648 | + | atomColData.quadrupole); | 
| 649 | + | } | 
| 650 | + |  | 
| 651 |  | // if needed, gather the atomic fluctuating charge values | 
| 652 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 |  | } | 
| 681 |  |  | 
| 682 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 683 | + | // we'll leave it here for now. | 
| 684 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 685 |  |  | 
| 686 |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 688 |  |  | 
| 689 |  | int n = snap_->atomData.electricField.size(); | 
| 690 |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 691 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 691 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 692 | > | field_tmp); | 
| 693 |  | for (int i = 0; i < n; i++) | 
| 694 |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 695 |  | } | 
| 787 |  | for (int i = 0; i < nq; i++) | 
| 788 |  | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 789 |  |  | 
| 790 | + | } | 
| 791 | + |  | 
| 792 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 793 | + |  | 
| 794 | + | int nef = snap_->atomData.electricField.size(); | 
| 795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 796 | + |  | 
| 797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 798 | + | for (int i = 0; i < nef; i++) { | 
| 799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 800 | + | efield_tmp[i] = 0.0; | 
| 801 | + | } | 
| 802 | + |  | 
| 803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 804 | + | for (int i = 0; i < nef; i++) | 
| 805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 806 |  | } | 
| 807 |  |  | 
| 808 | + |  | 
| 809 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 810 |  |  | 
| 811 |  | vector<potVec> pot_temp(nLocal_, | 
| 939 |  |  | 
| 940 |  |  | 
| 941 |  |  | 
| 942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 942 | > | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 943 |  | #ifdef IS_MPI | 
| 944 |  | return nAtomsInRow_; | 
| 945 |  | #else | 
| 950 |  | /** | 
| 951 |  | * returns the list of atoms belonging to this group. | 
| 952 |  | */ | 
| 953 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 953 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 954 |  | #ifdef IS_MPI | 
| 955 |  | return groupListRow_[cg1]; | 
| 956 |  | #else | 
| 958 |  | #endif | 
| 959 |  | } | 
| 960 |  |  | 
| 961 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 961 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 962 |  | #ifdef IS_MPI | 
| 963 |  | return groupListCol_[cg2]; | 
| 964 |  | #else | 
| 975 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 976 |  | #endif | 
| 977 |  |  | 
| 978 | < | snap_->wrapVector(d); | 
| 978 | > | if (usePeriodicBoundaryConditions_) { | 
| 979 | > | snap_->wrapVector(d); | 
| 980 | > | } | 
| 981 |  | return d; | 
| 982 |  | } | 
| 983 |  |  | 
| 984 | < | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 984 | > | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 985 |  | #ifdef IS_MPI | 
| 986 |  | return cgColData.velocity[cg2]; | 
| 987 |  | #else | 
| 989 |  | #endif | 
| 990 |  | } | 
| 991 |  |  | 
| 992 | < | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 992 | > | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 993 |  | #ifdef IS_MPI | 
| 994 |  | return atomColData.velocity[atom2]; | 
| 995 |  | #else | 
| 1007 |  | #else | 
| 1008 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1009 |  | #endif | 
| 1010 | < |  | 
| 1011 | < | snap_->wrapVector(d); | 
| 1010 | > | if (usePeriodicBoundaryConditions_) { | 
| 1011 | > | snap_->wrapVector(d); | 
| 1012 | > | } | 
| 1013 |  | return d; | 
| 1014 |  | } | 
| 1015 |  |  | 
| 1021 |  | #else | 
| 1022 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1023 |  | #endif | 
| 1024 | < |  | 
| 1025 | < | snap_->wrapVector(d); | 
| 1024 | > | if (usePeriodicBoundaryConditions_) { | 
| 1025 | > | snap_->wrapVector(d); | 
| 1026 | > | } | 
| 1027 |  | return d; | 
| 1028 |  | } | 
| 1029 |  |  | 
| 1030 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1030 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1031 |  | #ifdef IS_MPI | 
| 1032 |  | return massFactorsRow[atom1]; | 
| 1033 |  | #else | 
| 1035 |  | #endif | 
| 1036 |  | } | 
| 1037 |  |  | 
| 1038 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1038 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1039 |  | #ifdef IS_MPI | 
| 1040 |  | return massFactorsCol[atom2]; | 
| 1041 |  | #else | 
| 1052 |  | #else | 
| 1053 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1054 |  | #endif | 
| 1055 | < |  | 
| 1056 | < | snap_->wrapVector(d); | 
| 1055 | > | if (usePeriodicBoundaryConditions_) { | 
| 1056 | > | snap_->wrapVector(d); | 
| 1057 | > | } | 
| 1058 |  | return d; | 
| 1059 |  | } | 
| 1060 |  |  | 
| 1061 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1061 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1062 |  | return excludesForAtom[atom1]; | 
| 1063 |  | } | 
| 1064 |  |  | 
| 1067 |  | * the parallel decomposition. | 
| 1068 |  | */ | 
| 1069 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1070 | < | int unique_id_1, unique_id_2, group1, group2; | 
| 1070 | > | int unique_id_1, unique_id_2; | 
| 1071 |  |  | 
| 1072 |  | #ifdef IS_MPI | 
| 1073 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1074 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1075 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1076 | < | group1 = cgRowToGlobal[cg1]; | 
| 1077 | < | group2 = cgColToGlobal[cg2]; | 
| 1076 | > | // group1 = cgRowToGlobal[cg1]; | 
| 1077 | > | // group2 = cgColToGlobal[cg2]; | 
| 1078 |  | #else | 
| 1079 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1080 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1081 | < | group1 = cgLocalToGlobal[cg1]; | 
| 1082 | < | group2 = cgLocalToGlobal[cg2]; | 
| 1081 | > | int group1 = cgLocalToGlobal[cg1]; | 
| 1082 | > | int group2 = cgLocalToGlobal[cg2]; | 
| 1083 |  | #endif | 
| 1084 |  |  | 
| 1085 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1149 |  |  | 
| 1150 |  | #ifdef IS_MPI | 
| 1151 |  | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1152 | + | idat.atid1 = identsRow[atom1]; | 
| 1153 | + | idat.atid2 = identsCol[atom2]; | 
| 1154 |  | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1155 |  | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1156 |  |  | 
| 1159 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1160 |  | } | 
| 1161 |  |  | 
| 1135 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1136 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1137 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1138 | – | } | 
| 1139 | – |  | 
| 1162 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1163 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1164 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1165 | + | } | 
| 1166 | + |  | 
| 1167 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1168 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1169 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1170 | + | } | 
| 1171 | + |  | 
| 1172 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1173 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1174 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1175 |  | } | 
| 1176 |  |  | 
| 1177 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1207 |  | #else | 
| 1208 |  |  | 
| 1209 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1210 | + | idat.atid1 = idents[atom1]; | 
| 1211 | + | idat.atid2 = idents[atom2]; | 
| 1212 |  |  | 
| 1213 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1214 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1215 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1216 |  | } | 
| 1217 |  |  | 
| 1184 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1185 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1186 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1187 | – | } | 
| 1188 | – |  | 
| 1218 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1219 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1220 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1221 |  | } | 
| 1222 |  |  | 
| 1223 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1224 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1225 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1226 | + | } | 
| 1227 | + |  | 
| 1228 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1229 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1230 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1231 | + | } | 
| 1232 | + |  | 
| 1233 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1234 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1235 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1320 |  | * first element of pair is row-indexed CutoffGroup | 
| 1321 |  | * second element of pair is column-indexed CutoffGroup | 
| 1322 |  | */ | 
| 1323 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1324 | < |  | 
| 1325 | < | vector<pair<int, int> > neighborList; | 
| 1323 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1324 | > |  | 
| 1325 | > | neighborList.clear(); | 
| 1326 |  | groupCutoffs cuts; | 
| 1327 |  | bool doAllPairs = false; | 
| 1328 |  |  | 
| 1329 | + | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1330 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1331 | + | Mat3x3d box; | 
| 1332 | + | Mat3x3d invBox; | 
| 1333 | + |  | 
| 1334 | + | Vector3d rs, scaled, dr; | 
| 1335 | + | Vector3i whichCell; | 
| 1336 | + | int cellIndex; | 
| 1337 | + |  | 
| 1338 |  | #ifdef IS_MPI | 
| 1339 |  | cellListRow_.clear(); | 
| 1340 |  | cellListCol_.clear(); | 
| 1341 |  | #else | 
| 1342 |  | cellList_.clear(); | 
| 1343 |  | #endif | 
| 1344 | < |  | 
| 1345 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1346 | < | RealType rl2 = rList_ * rList_; | 
| 1347 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1348 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1349 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1350 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1351 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1352 | < |  | 
| 1353 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1354 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1355 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1356 | < |  | 
| 1344 | > |  | 
| 1345 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1346 | > | box = snap_->getBoundingBox(); | 
| 1347 | > | invBox = snap_->getInvBoundingBox(); | 
| 1348 | > | } else { | 
| 1349 | > | box = snap_->getHmat(); | 
| 1350 | > | invBox = snap_->getInvHmat(); | 
| 1351 | > | } | 
| 1352 | > |  | 
| 1353 | > | Vector3d boxX = box.getColumn(0); | 
| 1354 | > | Vector3d boxY = box.getColumn(1); | 
| 1355 | > | Vector3d boxZ = box.getColumn(2); | 
| 1356 | > |  | 
| 1357 | > | nCells_.x() = (int) ( boxX.length() )/ rList_; | 
| 1358 | > | nCells_.y() = (int) ( boxY.length() )/ rList_; | 
| 1359 | > | nCells_.z() = (int) ( boxZ.length() )/ rList_; | 
| 1360 | > |  | 
| 1361 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1362 |  |  | 
| 1363 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1364 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1365 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1366 | < |  | 
| 1315 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1316 | < | Vector3d rs, scaled, dr; | 
| 1317 | < | Vector3i whichCell; | 
| 1318 | < | int cellIndex; | 
| 1366 | > |  | 
| 1367 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1368 | < |  | 
| 1368 | > |  | 
| 1369 |  | #ifdef IS_MPI | 
| 1370 |  | cellListRow_.resize(nCtot); | 
| 1371 |  | cellListCol_.resize(nCtot); | 
| 1372 |  | #else | 
| 1373 |  | cellList_.resize(nCtot); | 
| 1374 |  | #endif | 
| 1375 | < |  | 
| 1375 | > |  | 
| 1376 |  | if (!doAllPairs) { | 
| 1377 |  | #ifdef IS_MPI | 
| 1378 | < |  | 
| 1378 | > |  | 
| 1379 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1380 |  | rs = cgRowData.position[i]; | 
| 1381 |  |  | 
| 1382 |  | // scaled positions relative to the box vectors | 
| 1383 | < | scaled = invHmat * rs; | 
| 1383 | > | scaled = invBox * rs; | 
| 1384 |  |  | 
| 1385 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1386 |  | // numbers | 
| 1387 |  | for (int j = 0; j < 3; j++) { | 
| 1388 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1389 |  | scaled[j] += 0.5; | 
| 1390 | + | // Handle the special case when an object is exactly on the | 
| 1391 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1392 | + | // scaled coordinate of 0.0) | 
| 1393 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1394 |  | } | 
| 1395 |  |  | 
| 1396 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1408 |  | rs = cgColData.position[i]; | 
| 1409 |  |  | 
| 1410 |  | // scaled positions relative to the box vectors | 
| 1411 | < | scaled = invHmat * rs; | 
| 1411 | > | scaled = invBox * rs; | 
| 1412 |  |  | 
| 1413 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1414 |  | // numbers | 
| 1415 |  | for (int j = 0; j < 3; j++) { | 
| 1416 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1417 |  | scaled[j] += 0.5; | 
| 1418 | + | // Handle the special case when an object is exactly on the | 
| 1419 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1420 | + | // scaled coordinate of 0.0) | 
| 1421 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1422 |  | } | 
| 1423 |  |  | 
| 1424 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1432 |  | // add this cutoff group to the list of groups in this cell; | 
| 1433 |  | cellListCol_[cellIndex].push_back(i); | 
| 1434 |  | } | 
| 1435 | < |  | 
| 1435 | > |  | 
| 1436 |  | #else | 
| 1437 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1438 |  | rs = snap_->cgData.position[i]; | 
| 1439 |  |  | 
| 1440 |  | // scaled positions relative to the box vectors | 
| 1441 | < | scaled = invHmat * rs; | 
| 1441 | > | scaled = invBox * rs; | 
| 1442 |  |  | 
| 1443 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1444 |  | // numbers | 
| 1507 |  | // & column indicies and will divide labor in the | 
| 1508 |  | // force evaluation later. | 
| 1509 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1510 | < | snap_->wrapVector(dr); | 
| 1510 | > | if (usePeriodicBoundaryConditions_) { | 
| 1511 | > | snap_->wrapVector(dr); | 
| 1512 | > | } | 
| 1513 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1514 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1515 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1531 |  | // allows atoms within a single cutoff group to | 
| 1532 |  | // interact with each other. | 
| 1533 |  |  | 
| 1476 | – |  | 
| 1477 | – |  | 
| 1534 |  | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1535 |  |  | 
| 1536 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1537 | < | snap_->wrapVector(dr); | 
| 1537 | > | if (usePeriodicBoundaryConditions_) { | 
| 1538 | > | snap_->wrapVector(dr); | 
| 1539 | > | } | 
| 1540 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1541 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1542 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1555 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1556 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1557 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1558 | < | snap_->wrapVector(dr); | 
| 1558 | > | if (usePeriodicBoundaryConditions_) { | 
| 1559 | > | snap_->wrapVector(dr); | 
| 1560 | > | } | 
| 1561 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1562 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1563 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1570 |  | // include self group interactions j2 == j1 | 
| 1571 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1572 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1573 | < | snap_->wrapVector(dr); | 
| 1573 | > | if (usePeriodicBoundaryConditions_) { | 
| 1574 | > | snap_->wrapVector(dr); | 
| 1575 | > | } | 
| 1576 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1577 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1578 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1587 |  | saved_CG_positions_.clear(); | 
| 1588 |  | for (int i = 0; i < nGroups_; i++) | 
| 1589 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1528 | – |  | 
| 1529 | – | return neighborList; | 
| 1590 |  | } | 
| 1591 |  | } //end namespace OpenMD |