| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 54 |  | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 |  | // are used when the processor can see all pairs) | 
| 56 |  | #ifdef IS_MPI | 
| 57 | < | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 57 | < | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 58 | < | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 59 | < | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 60 | < | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 61 | < | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 57 | > | cellOffsets_.clear(); | 
| 58 |  | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 |  | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | < | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 60 | > | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | > | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | > | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 |  | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 66 | – | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | – | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 64 |  | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 |  | #endif | 
| 86 |  | } | 
| 87 |  |  | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 176 |  | pot_row.resize(nAtomsInRow_); | 
| 177 |  | pot_col.resize(nAtomsInCol_); | 
| 178 |  |  | 
| 179 | + | expot_row.resize(nAtomsInRow_); | 
| 180 | + | expot_col.resize(nAtomsInCol_); | 
| 181 | + |  | 
| 182 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 184 |  | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 185 |  | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 186 |  |  | 
| 157 | – | cerr << "Atoms in Local:\n"; | 
| 158 | – | for (int i = 0; i < AtomLocalToGlobal.size(); i++) { | 
| 159 | – | cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; | 
| 160 | – | } | 
| 161 | – | cerr << "Atoms in Row:\n"; | 
| 162 | – | for (int i = 0; i < AtomRowToGlobal.size(); i++) { | 
| 163 | – | cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; | 
| 164 | – | } | 
| 165 | – | cerr << "Atoms in Col:\n"; | 
| 166 | – | for (int i = 0; i < AtomColToGlobal.size(); i++) { | 
| 167 | – | cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; | 
| 168 | – | } | 
| 169 | – |  | 
| 187 |  | cgRowToGlobal.resize(nGroupsInRow_); | 
| 188 |  | cgColToGlobal.resize(nGroupsInCol_); | 
| 189 |  | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 190 |  | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 191 |  |  | 
| 175 | – | cerr << "Gruops in Local:\n"; | 
| 176 | – | for (int i = 0; i < cgLocalToGlobal.size(); i++) { | 
| 177 | – | cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; | 
| 178 | – | } | 
| 179 | – | cerr << "Groups in Row:\n"; | 
| 180 | – | for (int i = 0; i < cgRowToGlobal.size(); i++) { | 
| 181 | – | cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; | 
| 182 | – | } | 
| 183 | – | cerr << "Groups in Col:\n"; | 
| 184 | – | for (int i = 0; i < cgColToGlobal.size(); i++) { | 
| 185 | – | cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; | 
| 186 | – | } | 
| 187 | – |  | 
| 188 | – |  | 
| 192 |  | massFactorsRow.resize(nAtomsInRow_); | 
| 193 |  | massFactorsCol.resize(nAtomsInCol_); | 
| 194 |  | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 244 |  | topoDist[i].push_back(3); | 
| 245 |  | } | 
| 246 |  | } | 
| 244 | – | } | 
| 245 | – | } | 
| 246 | – | } | 
| 247 | – |  | 
| 248 | – | #endif | 
| 249 | – |  | 
| 250 | – | // allocate memory for the parallel objects | 
| 251 | – | atypesLocal.resize(nLocal_); | 
| 252 | – |  | 
| 253 | – | for (int i = 0; i < nLocal_; i++) | 
| 254 | – | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 255 | – |  | 
| 256 | – | groupList_.clear(); | 
| 257 | – | groupList_.resize(nGroups_); | 
| 258 | – | for (int i = 0; i < nGroups_; i++) { | 
| 259 | – | int gid = cgLocalToGlobal[i]; | 
| 260 | – | for (int j = 0; j < nLocal_; j++) { | 
| 261 | – | int aid = AtomLocalToGlobal[j]; | 
| 262 | – | if (globalGroupMembership[aid] == gid) { | 
| 263 | – | groupList_[i].push_back(j); | 
| 247 |  | } | 
| 248 |  | } | 
| 249 |  | } | 
| 250 |  |  | 
| 251 | + | #else | 
| 252 |  | excludesForAtom.clear(); | 
| 253 |  | excludesForAtom.resize(nLocal_); | 
| 254 |  | toposForAtom.clear(); | 
| 281 |  | } | 
| 282 |  | } | 
| 283 |  | } | 
| 284 | < |  | 
| 284 | > | #endif | 
| 285 | > |  | 
| 286 | > | // allocate memory for the parallel objects | 
| 287 | > | atypesLocal.resize(nLocal_); | 
| 288 | > |  | 
| 289 | > | for (int i = 0; i < nLocal_; i++) | 
| 290 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 291 | > |  | 
| 292 | > | groupList_.clear(); | 
| 293 | > | groupList_.resize(nGroups_); | 
| 294 | > | for (int i = 0; i < nGroups_; i++) { | 
| 295 | > | int gid = cgLocalToGlobal[i]; | 
| 296 | > | for (int j = 0; j < nLocal_; j++) { | 
| 297 | > | int aid = AtomLocalToGlobal[j]; | 
| 298 | > | if (globalGroupMembership[aid] == gid) { | 
| 299 | > | groupList_[i].push_back(j); | 
| 300 | > | } | 
| 301 | > | } | 
| 302 | > | } | 
| 303 | > |  | 
| 304 | > |  | 
| 305 |  | createGtypeCutoffMap(); | 
| 306 |  |  | 
| 307 |  | } | 
| 464 |  | } | 
| 465 |  | } | 
| 466 |  |  | 
| 463 | – |  | 
| 467 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 468 |  | int i, j; | 
| 469 |  | #ifdef IS_MPI | 
| 487 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 488 |  | pairwisePot = 0.0; | 
| 489 |  | embeddingPot = 0.0; | 
| 490 | + | excludedPot = 0.0; | 
| 491 |  |  | 
| 492 |  | #ifdef IS_MPI | 
| 493 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 506 |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 |  |  | 
| 509 | + | fill(expot_row.begin(), expot_row.end(), | 
| 510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 511 | + |  | 
| 512 | + | fill(expot_col.begin(), expot_col.end(), | 
| 513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 | + |  | 
| 515 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 516 |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 517 |  | 0.0); | 
| 545 |  | atomColData.skippedCharge.end(), 0.0); | 
| 546 |  | } | 
| 547 |  |  | 
| 548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 | + | fill(atomRowData.flucQFrc.begin(), | 
| 550 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 551 | + | fill(atomColData.flucQFrc.begin(), | 
| 552 | + | atomColData.flucQFrc.end(), 0.0); | 
| 553 | + | } | 
| 554 | + |  | 
| 555 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 | + | fill(atomRowData.electricField.begin(), | 
| 557 | + | atomRowData.electricField.end(), V3Zero); | 
| 558 | + | fill(atomColData.electricField.begin(), | 
| 559 | + | atomColData.electricField.end(), V3Zero); | 
| 560 | + | } | 
| 561 | + |  | 
| 562 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 563 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 564 | + | 0.0); | 
| 565 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 566 | + | 0.0); | 
| 567 | + | } | 
| 568 | + |  | 
| 569 |  | #endif | 
| 570 |  | // even in parallel, we need to zero out the local arrays: | 
| 571 |  |  | 
| 578 |  | fill(snap_->atomData.density.begin(), | 
| 579 |  | snap_->atomData.density.end(), 0.0); | 
| 580 |  | } | 
| 581 | + |  | 
| 582 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 583 |  | fill(snap_->atomData.functional.begin(), | 
| 584 |  | snap_->atomData.functional.end(), 0.0); | 
| 585 |  | } | 
| 586 | + |  | 
| 587 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 588 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 589 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 590 |  | } | 
| 591 | + |  | 
| 592 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 593 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 594 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 595 |  | } | 
| 596 | < |  | 
| 596 | > |  | 
| 597 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 598 | > | fill(snap_->atomData.electricField.begin(), | 
| 599 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 600 | > | } | 
| 601 |  | } | 
| 602 |  |  | 
| 603 |  |  | 
| 614 |  |  | 
| 615 |  | // gather up the cutoff group positions | 
| 616 |  |  | 
| 579 | – | cerr  << "before gather\n"; | 
| 580 | – | for (int i = 0; i < snap_->cgData.position.size(); i++) { | 
| 581 | – | cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; | 
| 582 | – | } | 
| 583 | – |  | 
| 617 |  | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 618 |  | cgRowData.position); | 
| 619 |  |  | 
| 587 | – | cerr  << "after gather\n"; | 
| 588 | – | for (int i = 0; i < cgRowData.position.size(); i++) { | 
| 589 | – | cerr << "cgRpos = " << cgRowData.position[i] << "\n"; | 
| 590 | – | } | 
| 591 | – |  | 
| 620 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 621 |  | cgColData.position); | 
| 622 | < | for (int i = 0; i < cgColData.position.size(); i++) { | 
| 623 | < | cerr << "cgCpos = " << cgColData.position[i] << "\n"; | 
| 622 | > |  | 
| 623 | > |  | 
| 624 | > |  | 
| 625 | > | if (needVelocities_) { | 
| 626 | > | // gather up the atomic velocities | 
| 627 | > | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 628 | > | atomColData.velocity); | 
| 629 | > |  | 
| 630 | > | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 631 | > | cgColData.velocity); | 
| 632 |  | } | 
| 633 |  |  | 
| 634 |  |  | 
| 646 |  | atomRowData.electroFrame); | 
| 647 |  | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 648 |  | atomColData.electroFrame); | 
| 649 | + | } | 
| 650 | + |  | 
| 651 | + | // if needed, gather the atomic fluctuating charge values | 
| 652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 654 | + | atomRowData.flucQPos); | 
| 655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 656 | + | atomColData.flucQPos); | 
| 657 |  | } | 
| 658 |  |  | 
| 659 |  | #endif | 
| 678 |  | for (int i = 0; i < n; i++) | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 |  | } | 
| 681 | + |  | 
| 682 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 683 | + |  | 
| 684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 685 | + | snap_->atomData.electricField); | 
| 686 | + |  | 
| 687 | + | int n = snap_->atomData.electricField.size(); | 
| 688 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 690 | + | for (int i = 0; i < n; i++) | 
| 691 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 692 | + | } | 
| 693 |  | #endif | 
| 694 |  | } | 
| 695 |  |  | 
| 764 |  | } | 
| 765 |  |  | 
| 766 |  | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 767 | < | for (int i = 0; i < ns; i++) | 
| 767 | > | for (int i = 0; i < ns; i++) | 
| 768 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 769 | + |  | 
| 770 |  | } | 
| 771 |  |  | 
| 772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 773 | + |  | 
| 774 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 776 | + |  | 
| 777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 778 | + | for (int i = 0; i < nq; i++) { | 
| 779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 780 | + | fqfrc_tmp[i] = 0.0; | 
| 781 | + | } | 
| 782 | + |  | 
| 783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 784 | + | for (int i = 0; i < nq; i++) | 
| 785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 786 | + |  | 
| 787 | + | } | 
| 788 | + |  | 
| 789 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 790 |  |  | 
| 791 |  | vector<potVec> pot_temp(nLocal_, | 
| 792 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 793 | + | vector<potVec> expot_temp(nLocal_, | 
| 794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 795 |  |  | 
| 796 |  | // scatter/gather pot_row into the members of my column | 
| 797 |  |  | 
| 798 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 799 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 800 |  |  | 
| 801 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 801 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 802 |  | pairwisePot += pot_temp[ii]; | 
| 803 | < |  | 
| 803 | > |  | 
| 804 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 805 | > | excludedPot += expot_temp[ii]; | 
| 806 | > |  | 
| 807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 808 | > | // This is the pairwise contribution to the particle pot.  The | 
| 809 | > | // embedding contribution is added in each of the low level | 
| 810 | > | // non-bonded routines.  In single processor, this is done in | 
| 811 | > | // unpackInteractionData, not in collectData. | 
| 812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 813 | > | for (int i = 0; i < nLocal_; i++) { | 
| 814 | > | // factor of two is because the total potential terms are divided | 
| 815 | > | // by 2 in parallel due to row/ column scatter | 
| 816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 817 | > | } | 
| 818 | > | } | 
| 819 | > | } | 
| 820 | > |  | 
| 821 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 822 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 823 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 824 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 825 |  |  | 
| 826 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 827 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 828 |  |  | 
| 829 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 830 |  | pairwisePot += pot_temp[ii]; | 
| 831 | + |  | 
| 832 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 833 | + | excludedPot += expot_temp[ii]; | 
| 834 | + |  | 
| 835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 836 | + | // This is the pairwise contribution to the particle pot.  The | 
| 837 | + | // embedding contribution is added in each of the low level | 
| 838 | + | // non-bonded routines.  In single processor, this is done in | 
| 839 | + | // unpackInteractionData, not in collectData. | 
| 840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 841 | + | for (int i = 0; i < nLocal_; i++) { | 
| 842 | + | // factor of two is because the total potential terms are divided | 
| 843 | + | // by 2 in parallel due to row/ column scatter | 
| 844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + | } | 
| 848 | + |  | 
| 849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 850 | + | int npp = snap_->atomData.particlePot.size(); | 
| 851 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 852 | + |  | 
| 853 | + | // This is the direct or embedding contribution to the particle | 
| 854 | + | // pot. | 
| 855 | + |  | 
| 856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 857 | + | for (int i = 0; i < npp; i++) { | 
| 858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 859 | + | } | 
| 860 | + |  | 
| 861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 862 | + |  | 
| 863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 864 | + | for (int i = 0; i < npp; i++) { | 
| 865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 866 | + | } | 
| 867 | + | } | 
| 868 | + |  | 
| 869 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 870 | + | RealType ploc1 = pairwisePot[ii]; | 
| 871 | + | RealType ploc2 = 0.0; | 
| 872 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 873 | + | pairwisePot[ii] = ploc2; | 
| 874 | + | } | 
| 875 | + |  | 
| 876 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 877 | + | RealType ploc1 = excludedPot[ii]; | 
| 878 | + | RealType ploc2 = 0.0; | 
| 879 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 880 | + | excludedPot[ii] = ploc2; | 
| 881 | + | } | 
| 882 | + |  | 
| 883 | + | // Here be dragons. | 
| 884 | + | MPI::Intracomm col = colComm.getComm(); | 
| 885 | + |  | 
| 886 | + | col.Allreduce(MPI::IN_PLACE, | 
| 887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 888 | + | MPI::REALTYPE, MPI::SUM); | 
| 889 | + |  | 
| 890 | + |  | 
| 891 |  | #endif | 
| 892 |  |  | 
| 736 | – | cerr << "pairwisePot = " <<  pairwisePot << "\n"; | 
| 893 |  | } | 
| 894 |  |  | 
| 895 | + | /** | 
| 896 | + | * Collects information obtained during the post-pair (and embedding | 
| 897 | + | * functional) loops onto local data structures. | 
| 898 | + | */ | 
| 899 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 900 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 901 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 902 | + |  | 
| 903 | + | #ifdef IS_MPI | 
| 904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 905 | + | RealType ploc1 = embeddingPot[ii]; | 
| 906 | + | RealType ploc2 = 0.0; | 
| 907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 908 | + | embeddingPot[ii] = ploc2; | 
| 909 | + | } | 
| 910 | + | #endif | 
| 911 | + |  | 
| 912 | + | } | 
| 913 | + |  | 
| 914 | + |  | 
| 915 | + |  | 
| 916 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 917 |  | #ifdef IS_MPI | 
| 918 |  | return nAtomsInRow_; | 
| 945 |  |  | 
| 946 |  | #ifdef IS_MPI | 
| 947 |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 771 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; | 
| 772 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; | 
| 948 |  | #else | 
| 949 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 775 | – | cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; | 
| 776 | – | cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; | 
| 950 |  | #endif | 
| 951 |  |  | 
| 952 |  | snap_->wrapVector(d); | 
| 953 |  | return d; | 
| 954 |  | } | 
| 955 |  |  | 
| 956 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 957 | + | #ifdef IS_MPI | 
| 958 | + | return cgColData.velocity[cg2]; | 
| 959 | + | #else | 
| 960 | + | return snap_->cgData.velocity[cg2]; | 
| 961 | + | #endif | 
| 962 | + | } | 
| 963 |  |  | 
| 964 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 965 | + | #ifdef IS_MPI | 
| 966 | + | return atomColData.velocity[atom2]; | 
| 967 | + | #else | 
| 968 | + | return snap_->atomData.velocity[atom2]; | 
| 969 | + | #endif | 
| 970 | + | } | 
| 971 | + |  | 
| 972 | + |  | 
| 973 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 974 |  |  | 
| 975 |  | Vector3d d; | 
| 1035 |  | * We need to exclude some overcounted interactions that result from | 
| 1036 |  | * the parallel decomposition. | 
| 1037 |  | */ | 
| 1038 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1039 | < | int unique_id_1, unique_id_2; | 
| 1040 | < |  | 
| 852 | < |  | 
| 853 | < | cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; | 
| 1038 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1039 | > | int unique_id_1, unique_id_2, group1, group2; | 
| 1040 | > |  | 
| 1041 |  | #ifdef IS_MPI | 
| 1042 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1043 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1044 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1045 | + | group1 = cgRowToGlobal[cg1]; | 
| 1046 | + | group2 = cgColToGlobal[cg2]; | 
| 1047 | + | #else | 
| 1048 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1049 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1050 | + | group1 = cgLocalToGlobal[cg1]; | 
| 1051 | + | group2 = cgLocalToGlobal[cg2]; | 
| 1052 | + | #endif | 
| 1053 |  |  | 
| 859 | – | cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; | 
| 860 | – | // this situation should only arise in MPI simulations | 
| 1054 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1055 | < |  | 
| 1055 | > |  | 
| 1056 | > | #ifdef IS_MPI | 
| 1057 |  | // this prevents us from doing the pair on multiple processors | 
| 1058 |  | if (unique_id_1 < unique_id_2) { | 
| 1059 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1060 |  | } else { | 
| 1061 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1061 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1062 |  | } | 
| 1063 | + | #endif | 
| 1064 | + |  | 
| 1065 | + | #ifndef IS_MPI | 
| 1066 | + | if (group1 == group2) { | 
| 1067 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1068 | + | } | 
| 1069 |  | #endif | 
| 1070 | + |  | 
| 1071 |  | return false; | 
| 1072 |  | } | 
| 1073 |  |  | 
| 1081 |  | * field) must still be handled for these pairs. | 
| 1082 |  | */ | 
| 1083 |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1084 | < | int unique_id_2; | 
| 1085 | < | #ifdef IS_MPI | 
| 1086 | < | // in MPI, we have to look up the unique IDs for the row atom. | 
| 886 | < | unique_id_2 = AtomColToGlobal[atom2]; | 
| 887 | < | #else | 
| 888 | < | // in the normal loop, the atom numbers are unique | 
| 889 | < | unique_id_2 = atom2; | 
| 890 | < | #endif | 
| 1084 | > |  | 
| 1085 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1086 | > | // version, and to use local IDs in the non-MPI version: | 
| 1087 |  |  | 
| 1088 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1089 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 1090 | < | if ( (*i) == unique_id_2 ) return true; | 
| 1090 | > | if ( (*i) == atom2 ) return true; | 
| 1091 |  | } | 
| 1092 |  |  | 
| 1093 |  | return false; | 
| 1161 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1162 |  | } | 
| 1163 |  |  | 
| 1164 | < | #else | 
| 1164 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1165 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1166 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1167 | > | } | 
| 1168 |  |  | 
| 1169 | + | #else | 
| 1170 | + |  | 
| 1171 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 971 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 972 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1172 |  |  | 
| 1173 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1174 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1209 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1210 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1211 |  | } | 
| 1212 | + |  | 
| 1213 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1214 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1215 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1216 | + | } | 
| 1217 | + |  | 
| 1218 |  | #endif | 
| 1219 |  | } | 
| 1220 |  |  | 
| 1221 |  |  | 
| 1222 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1223 |  | #ifdef IS_MPI | 
| 1224 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1225 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1224 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1225 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1226 | > | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1227 | > | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1228 |  |  | 
| 1229 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1230 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1231 | + |  | 
| 1232 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1233 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1234 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1235 | + | } | 
| 1236 | + |  | 
| 1237 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1238 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1239 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1240 | + | } | 
| 1241 | + |  | 
| 1242 |  | #else | 
| 1243 |  | pairwisePot += *(idat.pot); | 
| 1244 | + | excludedPot += *(idat.excludedPot); | 
| 1245 |  |  | 
| 1246 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1247 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1248 | + |  | 
| 1249 | + | if (idat.doParticlePot) { | 
| 1250 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1251 | + | // embedding contribution is added in each of the low level | 
| 1252 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1253 | + | // in collectData, not in unpackInteractionData. | 
| 1254 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1255 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1256 | + | } | 
| 1257 | + |  | 
| 1258 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1259 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1260 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1261 | + | } | 
| 1262 | + |  | 
| 1263 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1264 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1265 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1266 | + | } | 
| 1267 | + |  | 
| 1268 |  | #endif | 
| 1269 |  |  | 
| 1270 |  | } | 
| 1370 |  | // add this cutoff group to the list of groups in this cell; | 
| 1371 |  | cellListCol_[cellIndex].push_back(i); | 
| 1372 |  | } | 
| 1373 | + |  | 
| 1374 |  | #else | 
| 1375 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1376 |  | rs = snap_->cgData.position[i]; | 
| 1396 |  | // add this cutoff group to the list of groups in this cell; | 
| 1397 |  | cellList_[cellIndex].push_back(i); | 
| 1398 |  | } | 
| 1399 | + |  | 
| 1400 |  | #endif | 
| 1401 |  |  | 
| 1402 |  | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1409 |  | os != cellOffsets_.end(); ++os) { | 
| 1410 |  |  | 
| 1411 |  | Vector3i m2v = m1v + (*os); | 
| 1412 | < |  | 
| 1412 | > |  | 
| 1413 | > |  | 
| 1414 |  | if (m2v.x() >= nCells_.x()) { | 
| 1415 |  | m2v.x() = 0; | 
| 1416 |  | } else if (m2v.x() < 0) { | 
| 1428 |  | } else if (m2v.z() < 0) { | 
| 1429 |  | m2v.z() = nCells_.z() - 1; | 
| 1430 |  | } | 
| 1431 | < |  | 
| 1431 | > |  | 
| 1432 |  | int m2 = Vlinear (m2v, nCells_); | 
| 1433 |  |  | 
| 1434 |  | #ifdef IS_MPI | 
| 1437 |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1438 |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1439 |  |  | 
| 1440 | < | // In parallel, we need to visit *all* pairs of row & | 
| 1441 | < | // column indicies and will truncate later on. | 
| 1440 | > | // In parallel, we need to visit *all* pairs of row | 
| 1441 | > | // & column indicies and will divide labor in the | 
| 1442 | > | // force evaluation later. | 
| 1443 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1444 |  | snap_->wrapVector(dr); | 
| 1445 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1449 |  | } | 
| 1450 |  | } | 
| 1451 |  | #else | 
| 1209 | – |  | 
| 1452 |  | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1453 |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1454 |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1455 |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1456 | < |  | 
| 1456 | > |  | 
| 1457 |  | // Always do this if we're in different cells or if | 
| 1458 | < | // we're in the same cell and the global index of the | 
| 1459 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1460 | < |  | 
| 1461 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1458 | > | // we're in the same cell and the global index of | 
| 1459 | > | // the j2 cutoff group is greater than or equal to | 
| 1460 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1461 | > | // has a "less than" conditional here, but that | 
| 1462 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1463 | > | // allows atoms within a single cutoff group to | 
| 1464 | > | // interact with each other. | 
| 1465 | > |  | 
| 1466 | > |  | 
| 1467 | > |  | 
| 1468 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1469 | > |  | 
| 1470 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1471 |  | snap_->wrapVector(dr); | 
| 1472 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1485 |  | // branch to do all cutoff group pairs | 
| 1486 |  | #ifdef IS_MPI | 
| 1487 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1488 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1488 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1489 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1490 |  | snap_->wrapVector(dr); | 
| 1491 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1493 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1494 |  | } | 
| 1495 |  | } | 
| 1496 | < | } | 
| 1496 | > | } | 
| 1497 |  | #else | 
| 1498 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1499 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1498 | > | // include all groups here. | 
| 1499 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1500 | > | // include self group interactions j2 == j1 | 
| 1501 | > | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1502 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1503 |  | snap_->wrapVector(dr); | 
| 1504 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1505 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1506 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1507 |  | } | 
| 1508 | < | } | 
| 1509 | < | } | 
| 1508 | > | } | 
| 1509 | > | } | 
| 1510 |  | #endif | 
| 1511 |  | } | 
| 1512 |  |  |