| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 461 |  | } | 
| 462 |  | } | 
| 463 |  |  | 
| 453 | – |  | 
| 464 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 465 |  | int i, j; | 
| 466 |  | #ifdef IS_MPI | 
| 535 |  | atomColData.skippedCharge.end(), 0.0); | 
| 536 |  | } | 
| 537 |  |  | 
| 538 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 539 | + | fill(atomRowData.flucQFrc.begin(), | 
| 540 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 541 | + | fill(atomColData.flucQFrc.begin(), | 
| 542 | + | atomColData.flucQFrc.end(), 0.0); | 
| 543 | + | } | 
| 544 | + |  | 
| 545 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 546 |  | fill(atomRowData.electricField.begin(), | 
| 547 |  | atomRowData.electricField.end(), V3Zero); | 
| 548 |  | fill(atomColData.electricField.begin(), | 
| 549 |  | atomColData.electricField.end(), V3Zero); | 
| 550 |  | } | 
| 551 | + |  | 
| 552 |  | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 553 |  | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 554 |  | 0.0); | 
| 610 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 611 |  | cgColData.position); | 
| 612 |  |  | 
| 613 | + |  | 
| 614 | + |  | 
| 615 | + | if (needVelocities_) { | 
| 616 | + | // gather up the atomic velocities | 
| 617 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 618 | + | atomColData.velocity); | 
| 619 | + |  | 
| 620 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 621 | + | cgColData.velocity); | 
| 622 | + | } | 
| 623 | + |  | 
| 624 |  |  | 
| 625 |  | // if needed, gather the atomic rotation matrices | 
| 626 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 787 |  |  | 
| 788 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 789 |  | pairwisePot += pot_temp[ii]; | 
| 790 | < |  | 
| 790 | > |  | 
| 791 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 792 | > | // This is the pairwise contribution to the particle pot.  The | 
| 793 | > | // embedding contribution is added in each of the low level | 
| 794 | > | // non-bonded routines.  In single processor, this is done in | 
| 795 | > | // unpackInteractionData, not in collectData. | 
| 796 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 797 | > | for (int i = 0; i < nLocal_; i++) { | 
| 798 | > | // factor of two is because the total potential terms are divided | 
| 799 | > | // by 2 in parallel due to row/ column scatter | 
| 800 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 801 | > | } | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > |  | 
| 805 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 806 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 807 |  |  | 
| 809 |  |  | 
| 810 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 811 |  | pairwisePot += pot_temp[ii]; | 
| 812 | + |  | 
| 813 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 814 | + | // This is the pairwise contribution to the particle pot.  The | 
| 815 | + | // embedding contribution is added in each of the low level | 
| 816 | + | // non-bonded routines.  In single processor, this is done in | 
| 817 | + | // unpackInteractionData, not in collectData. | 
| 818 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 819 | + | for (int i = 0; i < nLocal_; i++) { | 
| 820 | + | // factor of two is because the total potential terms are divided | 
| 821 | + | // by 2 in parallel due to row/ column scatter | 
| 822 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 823 | + | } | 
| 824 | + | } | 
| 825 | + | } | 
| 826 |  |  | 
| 827 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 828 | + | int npp = snap_->atomData.particlePot.size(); | 
| 829 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 830 | + |  | 
| 831 | + | // This is the direct or embedding contribution to the particle | 
| 832 | + | // pot. | 
| 833 | + |  | 
| 834 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 835 | + | for (int i = 0; i < npp; i++) { | 
| 836 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 837 | + | } | 
| 838 | + |  | 
| 839 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 840 | + |  | 
| 841 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 842 | + | for (int i = 0; i < npp; i++) { | 
| 843 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 844 | + | } | 
| 845 | + | } | 
| 846 | + |  | 
| 847 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 848 |  | RealType ploc1 = pairwisePot[ii]; | 
| 849 |  | RealType ploc2 = 0.0; | 
| 850 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 851 |  | pairwisePot[ii] = ploc2; | 
| 852 |  | } | 
| 853 | + |  | 
| 854 | + | // Here be dragons. | 
| 855 | + | MPI::Intracomm col = colComm.getComm(); | 
| 856 | + |  | 
| 857 | + | col.Allreduce(MPI::IN_PLACE, | 
| 858 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 859 | + | MPI::REALTYPE, MPI::SUM); | 
| 860 | + |  | 
| 861 | + |  | 
| 862 | + | #endif | 
| 863 |  |  | 
| 864 | + | } | 
| 865 | + |  | 
| 866 | + | /** | 
| 867 | + | * Collects information obtained during the post-pair (and embedding | 
| 868 | + | * functional) loops onto local data structures. | 
| 869 | + | */ | 
| 870 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 871 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 872 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 873 | + |  | 
| 874 | + | #ifdef IS_MPI | 
| 875 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 876 |  | RealType ploc1 = embeddingPot[ii]; | 
| 877 |  | RealType ploc2 = 0.0; | 
| 878 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 879 |  | embeddingPot[ii] = ploc2; | 
| 880 | < | } | 
| 783 | < |  | 
| 880 | > | } | 
| 881 |  | #endif | 
| 882 | < |  | 
| 882 | > |  | 
| 883 |  | } | 
| 884 |  |  | 
| 885 | + |  | 
| 886 | + |  | 
| 887 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 888 |  | #ifdef IS_MPI | 
| 889 |  | return nAtomsInRow_; | 
| 924 |  | return d; | 
| 925 |  | } | 
| 926 |  |  | 
| 927 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 928 | + | #ifdef IS_MPI | 
| 929 | + | return cgColData.velocity[cg2]; | 
| 930 | + | #else | 
| 931 | + | return snap_->cgData.velocity[cg2]; | 
| 932 | + | #endif | 
| 933 | + | } | 
| 934 |  |  | 
| 935 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 936 | + | #ifdef IS_MPI | 
| 937 | + | return atomColData.velocity[atom2]; | 
| 938 | + | #else | 
| 939 | + | return snap_->atomData.velocity[atom2]; | 
| 940 | + | #endif | 
| 941 | + | } | 
| 942 | + |  | 
| 943 | + |  | 
| 944 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 945 |  |  | 
| 946 |  | Vector3d d; | 
| 1006 |  | * We need to exclude some overcounted interactions that result from | 
| 1007 |  | * the parallel decomposition. | 
| 1008 |  | */ | 
| 1009 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1010 | < | int unique_id_1, unique_id_2; | 
| 1009 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1010 | > | int unique_id_1, unique_id_2, group1, group2; | 
| 1011 |  |  | 
| 1012 |  | #ifdef IS_MPI | 
| 1013 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1014 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1015 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1016 | + | group1 = cgRowToGlobal[cg1]; | 
| 1017 | + | group2 = cgColToGlobal[cg2]; | 
| 1018 |  | #else | 
| 1019 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1020 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1021 | + | group1 = cgLocalToGlobal[cg1]; | 
| 1022 | + | group2 = cgLocalToGlobal[cg2]; | 
| 1023 |  | #endif | 
| 1024 |  |  | 
| 1025 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1031 |  | } else { | 
| 1032 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1033 |  | } | 
| 1034 | + | #endif | 
| 1035 | + |  | 
| 1036 | + | #ifndef IS_MPI | 
| 1037 | + | if (group1 == group2) { | 
| 1038 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1039 | + | } | 
| 1040 |  | #endif | 
| 1041 |  |  | 
| 1042 |  | return false; | 
| 1132 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1133 |  | } | 
| 1134 |  |  | 
| 1135 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1136 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1137 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1138 | + | } | 
| 1139 | + |  | 
| 1140 |  | #else | 
| 1141 |  |  | 
| 1012 | – |  | 
| 1013 | – | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1014 | – | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1015 | – | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1016 | – |  | 
| 1142 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1018 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1019 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1143 |  |  | 
| 1144 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1145 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1180 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1181 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1182 |  | } | 
| 1183 | + |  | 
| 1184 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1185 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1186 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1187 | + | } | 
| 1188 | + |  | 
| 1189 |  | #endif | 
| 1190 |  | } | 
| 1191 |  |  | 
| 1198 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1199 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1200 |  |  | 
| 1201 | < | // should particle pot be done here also? | 
| 1201 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1202 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1203 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1204 | > | } | 
| 1205 | > |  | 
| 1206 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1207 | > | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1208 | > | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1209 | > | } | 
| 1210 | > |  | 
| 1211 |  | #else | 
| 1212 |  | pairwisePot += *(idat.pot); | 
| 1213 |  |  | 
| 1215 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1216 |  |  | 
| 1217 |  | if (idat.doParticlePot) { | 
| 1218 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1219 | + | // embedding contribution is added in each of the low level | 
| 1220 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1221 | + | // in collectData, not in unpackInteractionData. | 
| 1222 |  | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1223 | < | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1223 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1224 |  | } | 
| 1225 | < |  | 
| 1225 | > |  | 
| 1226 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1227 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1228 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1229 | > | } | 
| 1230 | > |  | 
| 1231 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1232 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1233 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1234 | > | } | 
| 1235 | > |  | 
| 1236 |  | #endif | 
| 1237 |  |  | 
| 1238 |  | } |