| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 |  |  | 
| 51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | + |  | 
| 53 | + | // In a parallel computation, row and colum scans must visit all | 
| 54 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | + | // are used when the processor can see all pairs) | 
| 56 | + | #ifdef IS_MPI | 
| 57 | + | cellOffsets_.clear(); | 
| 58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | + | #endif | 
| 86 | + | } | 
| 87 | + |  | 
| 88 | + |  | 
| 89 |  | /** | 
| 90 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  | * SimulationSetup | 
| 92 |  | */ | 
| 54 | – |  | 
| 93 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 | < | identsLocal = info_->getIdentArray(); | 
| 101 | > | idents = info_->getIdentArray(); | 
| 102 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 103 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 104 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); | 
| 68 | – | PairList excludes = info_->getExcludedInteractions(); | 
| 69 | – | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 70 | – | PairList oneThree = info_->getOneThreeInteractions(); | 
| 71 | – | PairList oneFour = info_->getOneFourInteractions(); | 
| 105 |  |  | 
| 106 | + | massFactors = info_->getMassFactors(); | 
| 107 | + |  | 
| 108 | + | PairList* excludes = info_->getExcludedInteractions(); | 
| 109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 | + | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 | + | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | + |  | 
| 113 | + | if (needVelocities_) | 
| 114 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | + | DataStorage::dslVelocity); | 
| 116 | + | else | 
| 117 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | + |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 77 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 78 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 79 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 121 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 122 | > | MPI::Intracomm col = colComm.getComm(); | 
| 123 |  |  | 
| 124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 |  |  | 
| 130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 |  |  | 
| 136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 |  |  | 
| 141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 | + |  | 
| 146 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 147 |  | atomRowData.resize(nAtomsInRow_); | 
| 148 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 164 | < | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 165 | < | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 164 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 165 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 |  |  | 
| 167 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 168 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 169 | < |  | 
| 116 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 117 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 167 | > | // allocate memory for the parallel objects | 
| 168 | > | atypesRow.resize(nAtomsInRow_); | 
| 169 | > | atypesCol.resize(nAtomsInCol_); | 
| 170 |  |  | 
| 171 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); | 
| 172 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); | 
| 171 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 173 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 175 |  |  | 
| 176 | + | pot_row.resize(nAtomsInRow_); | 
| 177 | + | pot_col.resize(nAtomsInCol_); | 
| 178 | + |  | 
| 179 | + | expot_row.resize(nAtomsInRow_); | 
| 180 | + | expot_col.resize(nAtomsInCol_); | 
| 181 | + |  | 
| 182 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 184 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 185 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 186 | + |  | 
| 187 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 188 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 189 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 190 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 191 | + |  | 
| 192 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 193 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 194 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 195 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 196 | + |  | 
| 197 |  | groupListRow_.clear(); | 
| 198 |  | groupListRow_.resize(nGroupsInRow_); | 
| 199 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 216 |  | } | 
| 217 |  | } | 
| 218 |  |  | 
| 219 | < | skipsForRowAtom.clear(); | 
| 220 | < | skipsForRowAtom.resize(nAtomsInRow_); | 
| 219 | > | excludesForAtom.clear(); | 
| 220 | > | excludesForAtom.resize(nAtomsInRow_); | 
| 221 | > | toposForAtom.clear(); | 
| 222 | > | toposForAtom.resize(nAtomsInRow_); | 
| 223 | > | topoDist.clear(); | 
| 224 | > | topoDist.resize(nAtomsInRow_); | 
| 225 |  | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 226 |  | int iglob = AtomRowToGlobal[i]; | 
| 227 | + |  | 
| 228 |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 229 | < | int jglob = AtomColToGlobal[j]; | 
| 230 | < | if (excludes.hasPair(iglob, jglob)) | 
| 231 | < | skipsForRowAtom[i].push_back(j); | 
| 229 | > | int jglob = AtomColToGlobal[j]; | 
| 230 | > |  | 
| 231 | > | if (excludes->hasPair(iglob, jglob)) | 
| 232 | > | excludesForAtom[i].push_back(j); | 
| 233 | > |  | 
| 234 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 235 | > | toposForAtom[i].push_back(j); | 
| 236 | > | topoDist[i].push_back(1); | 
| 237 | > | } else { | 
| 238 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 239 | > | toposForAtom[i].push_back(j); | 
| 240 | > | topoDist[i].push_back(2); | 
| 241 | > | } else { | 
| 242 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 243 | > | toposForAtom[i].push_back(j); | 
| 244 | > | topoDist[i].push_back(3); | 
| 245 | > | } | 
| 246 | > | } | 
| 247 | > | } | 
| 248 |  | } | 
| 249 |  | } | 
| 250 |  |  | 
| 251 | < | toposForRowAtom.clear(); | 
| 252 | < | toposForRowAtom.resize(nAtomsInRow_); | 
| 253 | < | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 254 | < | int iglob = AtomRowToGlobal[i]; | 
| 255 | < | int nTopos = 0; | 
| 256 | < | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 257 | < | int jglob = AtomColToGlobal[j]; | 
| 258 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 259 | < | toposForRowAtom[i].push_back(j); | 
| 260 | < | topoDistRow[i][nTopos] = 1; | 
| 261 | < | nTopos++; | 
| 251 | > | #else | 
| 252 | > | excludesForAtom.clear(); | 
| 253 | > | excludesForAtom.resize(nLocal_); | 
| 254 | > | toposForAtom.clear(); | 
| 255 | > | toposForAtom.resize(nLocal_); | 
| 256 | > | topoDist.clear(); | 
| 257 | > | topoDist.resize(nLocal_); | 
| 258 | > |  | 
| 259 | > | for (int i = 0; i < nLocal_; i++) { | 
| 260 | > | int iglob = AtomLocalToGlobal[i]; | 
| 261 | > |  | 
| 262 | > | for (int j = 0; j < nLocal_; j++) { | 
| 263 | > | int jglob = AtomLocalToGlobal[j]; | 
| 264 | > |  | 
| 265 | > | if (excludes->hasPair(iglob, jglob)) | 
| 266 | > | excludesForAtom[i].push_back(j); | 
| 267 | > |  | 
| 268 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 269 | > | toposForAtom[i].push_back(j); | 
| 270 | > | topoDist[i].push_back(1); | 
| 271 | > | } else { | 
| 272 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 273 | > | toposForAtom[i].push_back(j); | 
| 274 | > | topoDist[i].push_back(2); | 
| 275 | > | } else { | 
| 276 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 277 | > | toposForAtom[i].push_back(j); | 
| 278 | > | topoDist[i].push_back(3); | 
| 279 | > | } | 
| 280 | > | } | 
| 281 |  | } | 
| 167 | – | if (oneThree.hasPair(iglob, jglob)) { | 
| 168 | – | toposForRowAtom[i].push_back(j); | 
| 169 | – | topoDistRow[i][nTopos] = 2; | 
| 170 | – | nTopos++; | 
| 171 | – | } | 
| 172 | – | if (oneFour.hasPair(iglob, jglob)) { | 
| 173 | – | toposForRowAtom[i].push_back(j); | 
| 174 | – | topoDistRow[i][nTopos] = 3; | 
| 175 | – | nTopos++; | 
| 176 | – | } | 
| 282 |  | } | 
| 283 |  | } | 
| 179 | – |  | 
| 284 |  | #endif | 
| 285 | + |  | 
| 286 | + | // allocate memory for the parallel objects | 
| 287 | + | atypesLocal.resize(nLocal_); | 
| 288 | + |  | 
| 289 | + | for (int i = 0; i < nLocal_; i++) | 
| 290 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 291 | + |  | 
| 292 |  | groupList_.clear(); | 
| 293 |  | groupList_.resize(nGroups_); | 
| 294 |  | for (int i = 0; i < nGroups_; i++) { | 
| 297 |  | int aid = AtomLocalToGlobal[j]; | 
| 298 |  | if (globalGroupMembership[aid] == gid) { | 
| 299 |  | groupList_[i].push_back(j); | 
| 189 | – |  | 
| 300 |  | } | 
| 301 |  | } | 
| 302 |  | } | 
| 303 |  |  | 
| 194 | – | skipsForLocalAtom.clear(); | 
| 195 | – | skipsForLocalAtom.resize(nLocal_); | 
| 304 |  |  | 
| 305 | < | for (int i = 0; i < nLocal_; i++) { | 
| 198 | < | int iglob = AtomLocalToGlobal[i]; | 
| 199 | < | for (int j = 0; j < nLocal_; j++) { | 
| 200 | < | int jglob = AtomLocalToGlobal[j]; | 
| 201 | < | if (excludes.hasPair(iglob, jglob)) | 
| 202 | < | skipsForLocalAtom[i].push_back(j); | 
| 203 | < | } | 
| 204 | < | } | 
| 205 | < | toposForLocalAtom.clear(); | 
| 206 | < | toposForLocalAtom.resize(nLocal_); | 
| 207 | < | for (int i = 0; i < nLocal_; i++) { | 
| 208 | < | int iglob = AtomLocalToGlobal[i]; | 
| 209 | < | int nTopos = 0; | 
| 210 | < | for (int j = 0; j < nLocal_; j++) { | 
| 211 | < | int jglob = AtomLocalToGlobal[j]; | 
| 212 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 213 | < | toposForLocalAtom[i].push_back(j); | 
| 214 | < | topoDistLocal[i][nTopos] = 1; | 
| 215 | < | nTopos++; | 
| 216 | < | } | 
| 217 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 218 | < | toposForLocalAtom[i].push_back(j); | 
| 219 | < | topoDistLocal[i][nTopos] = 2; | 
| 220 | < | nTopos++; | 
| 221 | < | } | 
| 222 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 223 | < | toposForLocalAtom[i].push_back(j); | 
| 224 | < | topoDistLocal[i][nTopos] = 3; | 
| 225 | < | nTopos++; | 
| 226 | < | } | 
| 227 | < | } | 
| 228 | < | } | 
| 305 | > | createGtypeCutoffMap(); | 
| 306 |  |  | 
| 307 |  | } | 
| 308 |  |  | 
| 309 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 310 | < |  | 
| 310 | > |  | 
| 311 |  | RealType tol = 1e-6; | 
| 312 | < | RealType rc; | 
| 312 | > | largestRcut_ = 0.0; | 
| 313 |  | int atid; | 
| 314 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 | < | vector<RealType> atypeCutoff; | 
| 316 | < | atypeCutoff.resize( atypes.size() ); | 
| 317 | < |  | 
| 318 | < | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ | 
| 319 | < | rc = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 315 | > |  | 
| 316 | > | map<int, RealType> atypeCutoff; | 
| 317 | > |  | 
| 318 | > | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 319 | > | at != atypes.end(); ++at){ | 
| 320 |  | atid = (*at)->getIdent(); | 
| 321 | < | atypeCutoff[atid] = rc; | 
| 321 | > | if (userChoseCutoff_) | 
| 322 | > | atypeCutoff[atid] = userCutoff_; | 
| 323 | > | else | 
| 324 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 325 |  | } | 
| 326 | < |  | 
| 326 | > |  | 
| 327 |  | vector<RealType> gTypeCutoffs; | 
| 248 | – |  | 
| 328 |  | // first we do a single loop over the cutoff groups to find the | 
| 329 |  | // largest cutoff for any atypes present in this group. | 
| 330 |  | #ifdef IS_MPI | 
| 331 |  | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 332 | + | groupRowToGtype.resize(nGroupsInRow_); | 
| 333 |  | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 334 |  | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 335 |  | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 355 |  |  | 
| 356 |  | } | 
| 357 |  | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 358 | + | groupColToGtype.resize(nGroupsInCol_); | 
| 359 |  | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 360 |  | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 361 |  | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 379 |  | } | 
| 380 |  | } | 
| 381 |  | #else | 
| 382 | + |  | 
| 383 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 384 | + | groupToGtype.resize(nGroups_); | 
| 385 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 386 |  | groupCutoff[cg1] = 0.0; | 
| 387 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 388 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 389 |  | ia != atomList.end(); ++ia) { | 
| 390 |  | int atom1 = (*ia); | 
| 391 | < | atid = identsLocal[atom1]; | 
| 392 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 391 | > | atid = idents[atom1]; | 
| 392 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 393 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 311 | – | } | 
| 394 |  | } | 
| 395 | < |  | 
| 395 | > |  | 
| 396 |  | bool gTypeFound = false; | 
| 397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  | groupToGtype[cg1] = gt; | 
| 400 |  | gTypeFound = true; | 
| 401 |  | } | 
| 402 |  | } | 
| 403 | < | if (!gTypeFound) { | 
| 403 | > | if (!gTypeFound) { | 
| 404 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 405 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 406 |  | } | 
| 409 |  |  | 
| 410 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 411 |  |  | 
| 412 | < | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 413 | < | RealType groupMax = *groupMaxLoc; | 
| 412 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 413 | > | gTypeCutoffs.end()); | 
| 414 |  |  | 
| 415 |  | #ifdef IS_MPI | 
| 416 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 416 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 417 | > | MPI::MAX); | 
| 418 |  | #endif | 
| 419 |  |  | 
| 420 |  | RealType tradRcut = groupMax; | 
| 421 |  |  | 
| 422 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 341 | < |  | 
| 422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 |  | RealType thisRcut; | 
| 425 |  | switch(cutoffPolicy_) { | 
| 426 |  | case TRADITIONAL: | 
| 427 |  | thisRcut = tradRcut; | 
| 428 | + | break; | 
| 429 |  | case MIX: | 
| 430 |  | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 431 | + | break; | 
| 432 |  | case MAX: | 
| 433 |  | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 434 | + | break; | 
| 435 |  | default: | 
| 436 |  | sprintf(painCave.errMsg, | 
| 437 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 438 |  | "hit an unknown cutoff policy!\n"); | 
| 439 |  | painCave.severity = OPENMD_ERROR; | 
| 440 |  | painCave.isFatal = 1; | 
| 441 | < | simError(); | 
| 441 | > | simError(); | 
| 442 | > | break; | 
| 443 |  | } | 
| 444 |  |  | 
| 445 |  | pair<int,int> key = make_pair(i,j); | 
| 446 |  | gTypeCutoffMap[key].first = thisRcut; | 
| 361 | – |  | 
| 447 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 363 | – |  | 
| 448 |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 365 | – |  | 
| 449 |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 367 | – |  | 
| 450 |  | // sanity check | 
| 451 |  |  | 
| 452 |  | if (userChoseCutoff_) { | 
| 453 |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 454 |  | sprintf(painCave.errMsg, | 
| 455 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 456 | < | "user-specified rCut does not match computed group Cutoff\n"); | 
| 456 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 457 |  | painCave.severity = OPENMD_ERROR; | 
| 458 |  | painCave.isFatal = 1; | 
| 459 |  | simError(); | 
| 463 |  | } | 
| 464 |  | } | 
| 465 |  |  | 
| 384 | – |  | 
| 466 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 | < | int i, j; | 
| 387 | < |  | 
| 467 | > | int i, j; | 
| 468 |  | #ifdef IS_MPI | 
| 469 |  | i = groupRowToGtype[cg1]; | 
| 470 |  | j = groupColToGtype[cg2]; | 
| 471 |  | #else | 
| 472 |  | i = groupToGtype[cg1]; | 
| 473 |  | j = groupToGtype[cg2]; | 
| 474 | < | #endif | 
| 395 | < |  | 
| 474 | > | #endif | 
| 475 |  | return gTypeCutoffMap[make_pair(i,j)]; | 
| 476 |  | } | 
| 477 |  |  | 
| 478 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | + | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 | + | if (toposForAtom[atom1][j] == atom2) | 
| 481 | + | return topoDist[atom1][j]; | 
| 482 | + | } | 
| 483 | + | return 0; | 
| 484 | + | } | 
| 485 |  |  | 
| 486 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 487 | < |  | 
| 488 | < | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { | 
| 489 | < | longRangePot_[j] = 0.0; | 
| 490 | < | } | 
| 487 | > | pairwisePot = 0.0; | 
| 488 | > | embeddingPot = 0.0; | 
| 489 | > | excludedPot = 0.0; | 
| 490 | > | excludedSelfPot = 0.0; | 
| 491 |  |  | 
| 492 |  | #ifdef IS_MPI | 
| 493 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 504 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 505 |  |  | 
| 506 |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 | + |  | 
| 509 | + | fill(expot_row.begin(), expot_row.end(), | 
| 510 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 422 | – |  | 
| 423 | – | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); | 
| 511 |  |  | 
| 512 | + | fill(expot_col.begin(), expot_col.end(), | 
| 513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 | + |  | 
| 515 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 516 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 517 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 516 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 517 | > | 0.0); | 
| 518 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 519 | > | 0.0); | 
| 520 |  | } | 
| 521 |  |  | 
| 522 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 525 |  | } | 
| 526 |  |  | 
| 527 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 528 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 529 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 528 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 529 | > | 0.0); | 
| 530 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 531 | > | 0.0); | 
| 532 |  | } | 
| 533 |  |  | 
| 534 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 538 |  | atomColData.functionalDerivative.end(), 0.0); | 
| 539 |  | } | 
| 540 |  |  | 
| 541 | < | #else | 
| 542 | < |  | 
| 541 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 542 | > | fill(atomRowData.skippedCharge.begin(), | 
| 543 | > | atomRowData.skippedCharge.end(), 0.0); | 
| 544 | > | fill(atomColData.skippedCharge.begin(), | 
| 545 | > | atomColData.skippedCharge.end(), 0.0); | 
| 546 | > | } | 
| 547 | > |  | 
| 548 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 | > | fill(atomRowData.flucQFrc.begin(), | 
| 550 | > | atomRowData.flucQFrc.end(), 0.0); | 
| 551 | > | fill(atomColData.flucQFrc.begin(), | 
| 552 | > | atomColData.flucQFrc.end(), 0.0); | 
| 553 | > | } | 
| 554 | > |  | 
| 555 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 | > | fill(atomRowData.electricField.begin(), | 
| 557 | > | atomRowData.electricField.end(), V3Zero); | 
| 558 | > | fill(atomColData.electricField.begin(), | 
| 559 | > | atomColData.electricField.end(), V3Zero); | 
| 560 | > | } | 
| 561 | > |  | 
| 562 | > | #endif | 
| 563 | > | // even in parallel, we need to zero out the local arrays: | 
| 564 | > |  | 
| 565 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 566 |  | fill(snap_->atomData.particlePot.begin(), | 
| 567 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 571 |  | fill(snap_->atomData.density.begin(), | 
| 572 |  | snap_->atomData.density.end(), 0.0); | 
| 573 |  | } | 
| 574 | + |  | 
| 575 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 576 |  | fill(snap_->atomData.functional.begin(), | 
| 577 |  | snap_->atomData.functional.end(), 0.0); | 
| 578 |  | } | 
| 579 | + |  | 
| 580 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 581 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 582 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 583 |  | } | 
| 584 | < | #endif | 
| 585 | < |  | 
| 584 | > |  | 
| 585 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 586 | > | fill(snap_->atomData.skippedCharge.begin(), | 
| 587 | > | snap_->atomData.skippedCharge.end(), 0.0); | 
| 588 | > | } | 
| 589 | > |  | 
| 590 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 591 | > | fill(snap_->atomData.electricField.begin(), | 
| 592 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 593 | > | } | 
| 594 |  | } | 
| 595 |  |  | 
| 596 |  |  | 
| 600 |  | #ifdef IS_MPI | 
| 601 |  |  | 
| 602 |  | // gather up the atomic positions | 
| 603 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 603 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 604 |  | atomRowData.position); | 
| 605 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 605 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 606 |  | atomColData.position); | 
| 607 |  |  | 
| 608 |  | // gather up the cutoff group positions | 
| 609 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 609 | > |  | 
| 610 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 611 |  | cgRowData.position); | 
| 612 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 612 | > |  | 
| 613 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 614 |  | cgColData.position); | 
| 615 | + |  | 
| 616 | + |  | 
| 617 | + |  | 
| 618 | + | if (needVelocities_) { | 
| 619 | + | // gather up the atomic velocities | 
| 620 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 621 | + | atomColData.velocity); | 
| 622 | + |  | 
| 623 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 624 | + | cgColData.velocity); | 
| 625 | + | } | 
| 626 | + |  | 
| 627 |  |  | 
| 628 |  | // if needed, gather the atomic rotation matrices | 
| 629 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 630 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 630 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 631 |  | atomRowData.aMat); | 
| 632 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 632 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 633 |  | atomColData.aMat); | 
| 634 |  | } | 
| 635 | < |  | 
| 636 | < | // if needed, gather the atomic eletrostatic frames | 
| 637 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 638 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 639 | < | atomRowData.electroFrame); | 
| 640 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 641 | < | atomColData.electroFrame); | 
| 635 | > |  | 
| 636 | > | // if needed, gather the atomic eletrostatic information | 
| 637 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 638 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 639 | > | atomRowData.dipole); | 
| 640 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 641 | > | atomColData.dipole); | 
| 642 |  | } | 
| 643 | + |  | 
| 644 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 645 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 646 | + | atomRowData.quadrupole); | 
| 647 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 648 | + | atomColData.quadrupole); | 
| 649 | + | } | 
| 650 | + |  | 
| 651 | + | // if needed, gather the atomic fluctuating charge values | 
| 652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 654 | + | atomRowData.flucQPos); | 
| 655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 656 | + | atomColData.flucQPos); | 
| 657 | + | } | 
| 658 | + |  | 
| 659 |  | #endif | 
| 660 |  | } | 
| 661 |  |  | 
| 669 |  |  | 
| 670 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 671 |  |  | 
| 672 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 672 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 673 |  | snap_->atomData.density); | 
| 674 |  |  | 
| 675 |  | int n = snap_->atomData.density.size(); | 
| 676 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 677 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 677 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 678 |  | for (int i = 0; i < n; i++) | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 |  | } | 
| 681 | + |  | 
| 682 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 683 | + | // we'll leave it here for now. | 
| 684 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 685 | + |  | 
| 686 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 687 | + | snap_->atomData.electricField); | 
| 688 | + |  | 
| 689 | + | int n = snap_->atomData.electricField.size(); | 
| 690 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 691 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 692 | + | field_tmp); | 
| 693 | + | for (int i = 0; i < n; i++) | 
| 694 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 695 | + | } | 
| 696 |  | #endif | 
| 697 |  | } | 
| 698 |  |  | 
| 705 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 706 |  | #ifdef IS_MPI | 
| 707 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 708 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 708 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 709 |  | atomRowData.functional); | 
| 710 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 710 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 711 |  | atomColData.functional); | 
| 712 |  | } | 
| 713 |  |  | 
| 714 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 715 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 715 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 716 |  | atomRowData.functionalDerivative); | 
| 717 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 717 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 718 |  | atomColData.functionalDerivative); | 
| 719 |  | } | 
| 720 |  | #endif | 
| 728 |  | int n = snap_->atomData.force.size(); | 
| 729 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 730 |  |  | 
| 731 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 731 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 732 |  | for (int i = 0; i < n; i++) { | 
| 733 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 734 |  | frc_tmp[i] = 0.0; | 
| 735 |  | } | 
| 736 |  |  | 
| 737 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 738 | < | for (int i = 0; i < n; i++) | 
| 737 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 738 | > | for (int i = 0; i < n; i++) { | 
| 739 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 740 | < |  | 
| 741 | < |  | 
| 740 | > | } | 
| 741 | > |  | 
| 742 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 743 |  |  | 
| 744 | < | int nt = snap_->atomData.force.size(); | 
| 744 | > | int nt = snap_->atomData.torque.size(); | 
| 745 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 746 |  |  | 
| 747 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 748 | < | for (int i = 0; i < n; i++) { | 
| 747 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 748 | > | for (int i = 0; i < nt; i++) { | 
| 749 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 750 |  | trq_tmp[i] = 0.0; | 
| 751 |  | } | 
| 752 |  |  | 
| 753 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 754 | < | for (int i = 0; i < n; i++) | 
| 753 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 754 | > | for (int i = 0; i < nt; i++) | 
| 755 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 756 |  | } | 
| 757 | + |  | 
| 758 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 759 | + |  | 
| 760 | + | int ns = snap_->atomData.skippedCharge.size(); | 
| 761 | + | vector<RealType> skch_tmp(ns, 0.0); | 
| 762 | + |  | 
| 763 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 764 | + | for (int i = 0; i < ns; i++) { | 
| 765 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 766 | + | skch_tmp[i] = 0.0; | 
| 767 | + | } | 
| 768 | + |  | 
| 769 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 770 | + | for (int i = 0; i < ns; i++) | 
| 771 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 772 | + |  | 
| 773 | + | } | 
| 774 |  |  | 
| 775 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 776 | + |  | 
| 777 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 778 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 779 | + |  | 
| 780 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 781 | + | for (int i = 0; i < nq; i++) { | 
| 782 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 783 | + | fqfrc_tmp[i] = 0.0; | 
| 784 | + | } | 
| 785 | + |  | 
| 786 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 787 | + | for (int i = 0; i < nq; i++) | 
| 788 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 789 | + |  | 
| 790 | + | } | 
| 791 | + |  | 
| 792 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 793 | + |  | 
| 794 | + | int nef = snap_->atomData.electricField.size(); | 
| 795 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 796 | + |  | 
| 797 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 798 | + | for (int i = 0; i < nef; i++) { | 
| 799 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 800 | + | efield_tmp[i] = 0.0; | 
| 801 | + | } | 
| 802 | + |  | 
| 803 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 804 | + | for (int i = 0; i < nef; i++) | 
| 805 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 806 | + | } | 
| 807 | + |  | 
| 808 | + |  | 
| 809 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 810 |  |  | 
| 811 |  | vector<potVec> pot_temp(nLocal_, | 
| 812 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 813 | + | vector<potVec> expot_temp(nLocal_, | 
| 814 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 815 |  |  | 
| 816 |  | // scatter/gather pot_row into the members of my column | 
| 817 |  |  | 
| 818 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 818 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 819 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 820 |  |  | 
| 821 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 822 | < | pot_local += pot_temp[ii]; | 
| 823 | < |  | 
| 821 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 822 | > | pairwisePot += pot_temp[ii]; | 
| 823 | > |  | 
| 824 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 825 | > | excludedPot += expot_temp[ii]; | 
| 826 | > |  | 
| 827 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 828 | > | // This is the pairwise contribution to the particle pot.  The | 
| 829 | > | // embedding contribution is added in each of the low level | 
| 830 | > | // non-bonded routines.  In single processor, this is done in | 
| 831 | > | // unpackInteractionData, not in collectData. | 
| 832 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 833 | > | for (int i = 0; i < nLocal_; i++) { | 
| 834 | > | // factor of two is because the total potential terms are divided | 
| 835 | > | // by 2 in parallel due to row/ column scatter | 
| 836 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 837 | > | } | 
| 838 | > | } | 
| 839 | > | } | 
| 840 | > |  | 
| 841 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 842 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 843 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 844 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 845 |  |  | 
| 846 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 846 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 847 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 848 |  |  | 
| 849 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 850 | < | pot_local += pot_temp[ii]; | 
| 850 | > | pairwisePot += pot_temp[ii]; | 
| 851 | > |  | 
| 852 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 853 | > | excludedPot += expot_temp[ii]; | 
| 854 | > |  | 
| 855 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 856 | > | // This is the pairwise contribution to the particle pot.  The | 
| 857 | > | // embedding contribution is added in each of the low level | 
| 858 | > | // non-bonded routines.  In single processor, this is done in | 
| 859 | > | // unpackInteractionData, not in collectData. | 
| 860 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 861 | > | for (int i = 0; i < nLocal_; i++) { | 
| 862 | > | // factor of two is because the total potential terms are divided | 
| 863 | > | // by 2 in parallel due to row/ column scatter | 
| 864 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 865 | > | } | 
| 866 | > | } | 
| 867 | > | } | 
| 868 |  |  | 
| 869 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 870 | + | int npp = snap_->atomData.particlePot.size(); | 
| 871 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 872 | + |  | 
| 873 | + | // This is the direct or embedding contribution to the particle | 
| 874 | + | // pot. | 
| 875 | + |  | 
| 876 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 877 | + | for (int i = 0; i < npp; i++) { | 
| 878 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 879 | + | } | 
| 880 | + |  | 
| 881 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 882 | + |  | 
| 883 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 884 | + | for (int i = 0; i < npp; i++) { | 
| 885 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 886 | + | } | 
| 887 | + | } | 
| 888 | + |  | 
| 889 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 890 | + | RealType ploc1 = pairwisePot[ii]; | 
| 891 | + | RealType ploc2 = 0.0; | 
| 892 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 893 | + | pairwisePot[ii] = ploc2; | 
| 894 | + | } | 
| 895 | + |  | 
| 896 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 897 | + | RealType ploc1 = excludedPot[ii]; | 
| 898 | + | RealType ploc2 = 0.0; | 
| 899 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 900 | + | excludedPot[ii] = ploc2; | 
| 901 | + | } | 
| 902 | + |  | 
| 903 | + | // Here be dragons. | 
| 904 | + | MPI::Intracomm col = colComm.getComm(); | 
| 905 | + |  | 
| 906 | + | col.Allreduce(MPI::IN_PLACE, | 
| 907 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 908 | + | MPI::REALTYPE, MPI::SUM); | 
| 909 | + |  | 
| 910 | + |  | 
| 911 | + | #endif | 
| 912 | + |  | 
| 913 | + | } | 
| 914 | + |  | 
| 915 | + | /** | 
| 916 | + | * Collects information obtained during the post-pair (and embedding | 
| 917 | + | * functional) loops onto local data structures. | 
| 918 | + | */ | 
| 919 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 920 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 921 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 922 | + |  | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 925 | + | RealType ploc1 = embeddingPot[ii]; | 
| 926 | + | RealType ploc2 = 0.0; | 
| 927 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 928 | + | embeddingPot[ii] = ploc2; | 
| 929 | + | } | 
| 930 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 931 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 932 | + | RealType ploc2 = 0.0; | 
| 933 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 934 | + | excludedSelfPot[ii] = ploc2; | 
| 935 | + | } | 
| 936 |  | #endif | 
| 937 | + |  | 
| 938 |  | } | 
| 939 |  |  | 
| 940 | + |  | 
| 941 | + |  | 
| 942 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 943 |  | #ifdef IS_MPI | 
| 944 |  | return nAtomsInRow_; | 
| 975 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 976 |  | #endif | 
| 977 |  |  | 
| 978 | < | snap_->wrapVector(d); | 
| 978 | > | if (usePeriodicBoundaryConditions_) { | 
| 979 | > | snap_->wrapVector(d); | 
| 980 | > | } | 
| 981 |  | return d; | 
| 982 |  | } | 
| 983 |  |  | 
| 984 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 985 | + | #ifdef IS_MPI | 
| 986 | + | return cgColData.velocity[cg2]; | 
| 987 | + | #else | 
| 988 | + | return snap_->cgData.velocity[cg2]; | 
| 989 | + | #endif | 
| 990 | + | } | 
| 991 |  |  | 
| 992 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 993 | + | #ifdef IS_MPI | 
| 994 | + | return atomColData.velocity[atom2]; | 
| 995 | + | #else | 
| 996 | + | return snap_->atomData.velocity[atom2]; | 
| 997 | + | #endif | 
| 998 | + | } | 
| 999 | + |  | 
| 1000 | + |  | 
| 1001 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1002 |  |  | 
| 1003 |  | Vector3d d; | 
| 1007 |  | #else | 
| 1008 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1009 |  | #endif | 
| 1010 | < |  | 
| 1011 | < | snap_->wrapVector(d); | 
| 1010 | > | if (usePeriodicBoundaryConditions_) { | 
| 1011 | > | snap_->wrapVector(d); | 
| 1012 | > | } | 
| 1013 |  | return d; | 
| 1014 |  | } | 
| 1015 |  |  | 
| 1021 |  | #else | 
| 1022 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1023 |  | #endif | 
| 1024 | < |  | 
| 1025 | < | snap_->wrapVector(d); | 
| 1024 | > | if (usePeriodicBoundaryConditions_) { | 
| 1025 | > | snap_->wrapVector(d); | 
| 1026 | > | } | 
| 1027 |  | return d; | 
| 1028 |  | } | 
| 1029 |  |  | 
| 1031 |  | #ifdef IS_MPI | 
| 1032 |  | return massFactorsRow[atom1]; | 
| 1033 |  | #else | 
| 1034 | < | return massFactorsLocal[atom1]; | 
| 1034 | > | return massFactors[atom1]; | 
| 1035 |  | #endif | 
| 1036 |  | } | 
| 1037 |  |  | 
| 1039 |  | #ifdef IS_MPI | 
| 1040 |  | return massFactorsCol[atom2]; | 
| 1041 |  | #else | 
| 1042 | < | return massFactorsLocal[atom2]; | 
| 1042 | > | return massFactors[atom2]; | 
| 1043 |  | #endif | 
| 1044 |  |  | 
| 1045 |  | } | 
| 1052 |  | #else | 
| 1053 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1054 |  | #endif | 
| 1055 | < |  | 
| 1056 | < | snap_->wrapVector(d); | 
| 1055 | > | if (usePeriodicBoundaryConditions_) { | 
| 1056 | > | snap_->wrapVector(d); | 
| 1057 | > | } | 
| 1058 |  | return d; | 
| 1059 |  | } | 
| 1060 |  |  | 
| 1061 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { | 
| 1062 | < | #ifdef IS_MPI | 
| 710 | < | return skipsForRowAtom[atom1]; | 
| 711 | < | #else | 
| 712 | < | return skipsForLocalAtom[atom1]; | 
| 713 | < | #endif | 
| 1061 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1062 | > | return excludesForAtom[atom1]; | 
| 1063 |  | } | 
| 1064 |  |  | 
| 1065 |  | /** | 
| 1066 | < | * There are a number of reasons to skip a pair or a | 
| 718 | < | * particle. Mostly we do this to exclude atoms who are involved in | 
| 719 | < | * short range interactions (bonds, bends, torsions), but we also | 
| 720 | < | * need to exclude some overcounted interactions that result from | 
| 1066 | > | * We need to exclude some overcounted interactions that result from | 
| 1067 |  | * the parallel decomposition. | 
| 1068 |  | */ | 
| 1069 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1069 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1070 |  | int unique_id_1, unique_id_2; | 
| 1071 | < |  | 
| 1071 | > |  | 
| 1072 |  | #ifdef IS_MPI | 
| 1073 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1074 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1075 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1076 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1077 | + | // group2 = cgColToGlobal[cg2]; | 
| 1078 | + | #else | 
| 1079 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1080 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1081 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1082 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1083 | + | #endif | 
| 1084 |  |  | 
| 731 | – | // this situation should only arise in MPI simulations | 
| 1085 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1086 | < |  | 
| 1086 | > |  | 
| 1087 | > | #ifdef IS_MPI | 
| 1088 |  | // this prevents us from doing the pair on multiple processors | 
| 1089 |  | if (unique_id_1 < unique_id_2) { | 
| 1090 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1091 |  | } else { | 
| 1092 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1092 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1093 |  | } | 
| 1094 | < | #else | 
| 1095 | < | // in the normal loop, the atom numbers are unique | 
| 1096 | < | unique_id_1 = atom1; | 
| 1097 | < | unique_id_2 = atom2; | 
| 1094 | > | #endif | 
| 1095 | > |  | 
| 1096 | > | #ifndef IS_MPI | 
| 1097 | > | if (group1 == group2) { | 
| 1098 | > | if (unique_id_1 < unique_id_2) return true; | 
| 1099 | > | } | 
| 1100 |  | #endif | 
| 1101 |  |  | 
| 1102 | < | #ifdef IS_MPI | 
| 747 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); | 
| 748 | < | i != skipsForRowAtom[atom1].end(); ++i) { | 
| 749 | < | if ( (*i) == unique_id_2 ) return true; | 
| 750 | < | } | 
| 751 | < | #else | 
| 752 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); | 
| 753 | < | i != skipsForLocalAtom[atom1].end(); ++i) { | 
| 754 | < | if ( (*i) == unique_id_2 ) return true; | 
| 755 | < | } | 
| 756 | < | #endif | 
| 1102 | > | return false; | 
| 1103 |  | } | 
| 1104 |  |  | 
| 1105 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { | 
| 1105 | > | /** | 
| 1106 | > | * We need to handle the interactions for atoms who are involved in | 
| 1107 | > | * the same rigid body as well as some short range interactions | 
| 1108 | > | * (bonds, bends, torsions) differently from other interactions. | 
| 1109 | > | * We'll still visit the pairwise routines, but with a flag that | 
| 1110 | > | * tells those routines to exclude the pair from direct long range | 
| 1111 | > | * interactions.  Some indirect interactions (notably reaction | 
| 1112 | > | * field) must still be handled for these pairs. | 
| 1113 | > | */ | 
| 1114 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1115 | > |  | 
| 1116 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1117 | > | // version, and to use local IDs in the non-MPI version: | 
| 1118 |  |  | 
| 1119 | < | #ifdef IS_MPI | 
| 1120 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { | 
| 1121 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; | 
| 1119 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1120 | > | i != excludesForAtom[atom1].end(); ++i) { | 
| 1121 | > | if ( (*i) == atom2 ) return true; | 
| 1122 |  | } | 
| 765 | – | #else | 
| 766 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { | 
| 767 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; | 
| 768 | – | } | 
| 769 | – | #endif | 
| 1123 |  |  | 
| 1124 | < | // zero is default for unconnected (i.e. normal) pair interactions | 
| 772 | < | return 0; | 
| 1124 | > | return false; | 
| 1125 |  | } | 
| 1126 |  |  | 
| 1127 | + |  | 
| 1128 |  | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1129 |  | #ifdef IS_MPI | 
| 1130 |  | atomRowData.force[atom1] += fg; | 
| 1142 |  | } | 
| 1143 |  |  | 
| 1144 |  | // filling interaction blocks with pointers | 
| 1145 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 1146 | < | InteractionData idat; | 
| 1145 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1146 | > | int atom1, int atom2) { | 
| 1147 |  |  | 
| 1148 | + | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1149 | + |  | 
| 1150 |  | #ifdef IS_MPI | 
| 1151 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1152 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1153 | + | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1154 |  |  | 
| 797 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 798 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 799 | – |  | 
| 800 | – |  | 
| 1155 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1156 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1157 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1158 |  | } | 
| 1159 |  |  | 
| 806 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 807 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 808 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 809 | – | } | 
| 810 | – |  | 
| 1160 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1161 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1162 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 | + | } | 
| 1164 | + |  | 
| 1165 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1166 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1167 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1168 | + | } | 
| 1169 | + |  | 
| 1170 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1171 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1172 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1173 |  | } | 
| 1174 |  |  | 
| 1175 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1192 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1193 |  | } | 
| 1194 |  |  | 
| 1195 | < | #else | 
| 1195 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1196 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1197 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1198 | > | } | 
| 1199 |  |  | 
| 1200 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 1201 | < | ff_->getAtomType(identsLocal[atom2]) ); | 
| 1200 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1201 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1202 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1203 | > | } | 
| 1204 |  |  | 
| 1205 | + | #else | 
| 1206 | + |  | 
| 1207 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1208 | + |  | 
| 1209 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1210 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1211 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1212 |  | } | 
| 1213 |  |  | 
| 846 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 847 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 848 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 849 | – | } | 
| 850 | – |  | 
| 1214 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1215 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1216 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1217 |  | } | 
| 1218 |  |  | 
| 1219 | < | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1219 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1220 | > | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1221 | > | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1222 | > | } | 
| 1223 | > |  | 
| 1224 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1225 | > | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1226 | > | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1227 | > | } | 
| 1228 | > |  | 
| 1229 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1230 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1231 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1232 |  | } | 
| 1246 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1247 |  | } | 
| 1248 |  |  | 
| 1249 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1250 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1251 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1252 | + | } | 
| 1253 | + |  | 
| 1254 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1255 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1256 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1257 | + | } | 
| 1258 | + |  | 
| 1259 |  | #endif | 
| 877 | – | return idat; | 
| 1260 |  | } | 
| 1261 |  |  | 
| 1262 |  |  | 
| 1263 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { | 
| 1263 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1264 |  | #ifdef IS_MPI | 
| 1265 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1266 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1265 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1266 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1267 | > | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1268 | > | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1269 |  |  | 
| 1270 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1271 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 888 | – | #else | 
| 889 | – | longRangePot_ += *(idat.pot); | 
| 890 | – |  | 
| 891 | – | snap_->atomData.force[atom1] += *(idat.f1); | 
| 892 | – | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 893 | – | #endif | 
| 1272 |  |  | 
| 1273 | < | } | 
| 1273 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1274 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1275 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1276 | > | } | 
| 1277 |  |  | 
| 1278 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1279 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1280 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1281 | + | } | 
| 1282 |  |  | 
| 1283 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 1283 | > | #else | 
| 1284 | > | pairwisePot += *(idat.pot); | 
| 1285 | > | excludedPot += *(idat.excludedPot); | 
| 1286 |  |  | 
| 1287 | < | InteractionData idat; | 
| 1288 | < | #ifdef IS_MPI | 
| 902 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 903 | < | ff_->getAtomType(identsCol[atom2]) ); | 
| 1287 | > | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1288 | > | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1289 |  |  | 
| 1290 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1291 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1292 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1290 | > | if (idat.doParticlePot) { | 
| 1291 | > | // This is the pairwise contribution to the particle pot.  The | 
| 1292 | > | // embedding contribution is added in each of the low level | 
| 1293 | > | // non-bonded routines.  In parallel, this calculation is done | 
| 1294 | > | // in collectData, not in unpackInteractionData. | 
| 1295 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1296 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1297 |  | } | 
| 1298 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1299 | < | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1300 | < | idat.t2 = &(atomColData.torque[atom2]); | 
| 1298 | > |  | 
| 1299 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1300 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1301 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1302 |  | } | 
| 913 | – | #else | 
| 914 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 915 | – | ff_->getAtomType(identsLocal[atom2]) ); | 
| 1303 |  |  | 
| 1304 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1305 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1306 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1304 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1305 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1306 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1307 |  | } | 
| 1308 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1309 | < | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1310 | < | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 924 | < | } | 
| 925 | < | #endif | 
| 1308 | > |  | 
| 1309 | > | #endif | 
| 1310 | > |  | 
| 1311 |  | } | 
| 1312 |  |  | 
| 1313 |  | /* | 
| 1320 |  |  | 
| 1321 |  | vector<pair<int, int> > neighborList; | 
| 1322 |  | groupCutoffs cuts; | 
| 1323 | < | #ifdef IS_MPI | 
| 939 | < | cellListRow_.clear(); | 
| 940 | < | cellListCol_.clear(); | 
| 941 | < | #else | 
| 942 | < | cellList_.clear(); | 
| 943 | < | #endif | 
| 1323 | > | bool doAllPairs = false; | 
| 1324 |  |  | 
| 1325 |  | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 946 | – | RealType rl2 = rList_ * rList_; | 
| 1326 |  | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1327 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1328 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 950 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 951 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1327 | > | Mat3x3d box; | 
| 1328 | > | Mat3x3d invBox; | 
| 1329 |  |  | 
| 953 | – | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 954 | – | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 955 | – | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 956 | – |  | 
| 957 | – | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1330 |  | Vector3d rs, scaled, dr; | 
| 1331 |  | Vector3i whichCell; | 
| 1332 |  | int cellIndex; | 
| 1333 |  |  | 
| 1334 |  | #ifdef IS_MPI | 
| 1335 | < | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1336 | < | rs = cgRowData.position[i]; | 
| 1337 | < | // scaled positions relative to the box vectors | 
| 1338 | < | scaled = invHmat * rs; | 
| 1339 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1340 | < | // numbers | 
| 1341 | < | for (int j = 0; j < 3; j++) | 
| 1342 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1343 | < |  | 
| 1344 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 1345 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1346 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 975 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 976 | < |  | 
| 977 | < | // find single index of this cell: | 
| 978 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 979 | < | // add this cutoff group to the list of groups in this cell; | 
| 980 | < | cellListRow_[cellIndex].push_back(i); | 
| 981 | < | } | 
| 982 | < |  | 
| 983 | < | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 984 | < | rs = cgColData.position[i]; | 
| 985 | < | // scaled positions relative to the box vectors | 
| 986 | < | scaled = invHmat * rs; | 
| 987 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 988 | < | // numbers | 
| 989 | < | for (int j = 0; j < 3; j++) | 
| 990 | < | scaled[j] -= roundMe(scaled[j]); | 
| 991 | < |  | 
| 992 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 993 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 994 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 995 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 996 | < |  | 
| 997 | < | // find single index of this cell: | 
| 998 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 999 | < | // add this cutoff group to the list of groups in this cell; | 
| 1000 | < | cellListCol_[cellIndex].push_back(i); | 
| 1335 | > | cellListRow_.clear(); | 
| 1336 | > | cellListCol_.clear(); | 
| 1337 | > | #else | 
| 1338 | > | cellList_.clear(); | 
| 1339 | > | #endif | 
| 1340 | > |  | 
| 1341 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1342 | > | box = snap_->getBoundingBox(); | 
| 1343 | > | invBox = snap_->getInvBoundingBox(); | 
| 1344 | > | } else { | 
| 1345 | > | box = snap_->getHmat(); | 
| 1346 | > | invBox = snap_->getInvHmat(); | 
| 1347 |  | } | 
| 1348 | + |  | 
| 1349 | + | Vector3d boxX = box.getColumn(0); | 
| 1350 | + | Vector3d boxY = box.getColumn(1); | 
| 1351 | + | Vector3d boxZ = box.getColumn(2); | 
| 1352 | + |  | 
| 1353 | + | nCells_.x() = (int) ( boxX.length() )/ rList_; | 
| 1354 | + | nCells_.y() = (int) ( boxY.length() )/ rList_; | 
| 1355 | + | nCells_.z() = (int) ( boxZ.length() )/ rList_; | 
| 1356 | + |  | 
| 1357 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1358 | + |  | 
| 1359 | + | if (nCells_.x() < 3) doAllPairs = true; | 
| 1360 | + | if (nCells_.y() < 3) doAllPairs = true; | 
| 1361 | + | if (nCells_.z() < 3) doAllPairs = true; | 
| 1362 | + |  | 
| 1363 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1364 | + |  | 
| 1365 | + | #ifdef IS_MPI | 
| 1366 | + | cellListRow_.resize(nCtot); | 
| 1367 | + | cellListCol_.resize(nCtot); | 
| 1368 |  | #else | 
| 1369 | < | for (int i = 0; i < nGroups_; i++) { | 
| 1370 | < | rs = snap_->cgData.position[i]; | 
| 1371 | < | // scaled positions relative to the box vectors | 
| 1372 | < | scaled = invHmat * rs; | 
| 1373 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1374 | < | // numbers | 
| 1375 | < | for (int j = 0; j < 3; j++) | 
| 1376 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1369 | > | cellList_.resize(nCtot); | 
| 1370 | > | #endif | 
| 1371 | > |  | 
| 1372 | > | if (!doAllPairs) { | 
| 1373 | > | #ifdef IS_MPI | 
| 1374 | > |  | 
| 1375 | > | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1376 | > | rs = cgRowData.position[i]; | 
| 1377 | > |  | 
| 1378 | > | // scaled positions relative to the box vectors | 
| 1379 | > | scaled = invBox * rs; | 
| 1380 | > |  | 
| 1381 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1382 | > | // numbers | 
| 1383 | > | for (int j = 0; j < 3; j++) { | 
| 1384 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1385 | > | scaled[j] += 0.5; | 
| 1386 | > | // Handle the special case when an object is exactly on the | 
| 1387 | > | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1388 | > | // scaled coordinate of 0.0) | 
| 1389 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1390 | > | } | 
| 1391 | > |  | 
| 1392 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1393 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1394 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1395 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1396 | > |  | 
| 1397 | > | // find single index of this cell: | 
| 1398 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1399 | > |  | 
| 1400 | > | // add this cutoff group to the list of groups in this cell; | 
| 1401 | > | cellListRow_[cellIndex].push_back(i); | 
| 1402 | > | } | 
| 1403 | > | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1404 | > | rs = cgColData.position[i]; | 
| 1405 | > |  | 
| 1406 | > | // scaled positions relative to the box vectors | 
| 1407 | > | scaled = invBox * rs; | 
| 1408 | > |  | 
| 1409 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1410 | > | // numbers | 
| 1411 | > | for (int j = 0; j < 3; j++) { | 
| 1412 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1413 | > | scaled[j] += 0.5; | 
| 1414 | > | // Handle the special case when an object is exactly on the | 
| 1415 | > | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1416 | > | // scaled coordinate of 0.0) | 
| 1417 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1418 | > | } | 
| 1419 | > |  | 
| 1420 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1421 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1422 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1423 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1424 | > |  | 
| 1425 | > | // find single index of this cell: | 
| 1426 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1427 | > |  | 
| 1428 | > | // add this cutoff group to the list of groups in this cell; | 
| 1429 | > | cellListCol_[cellIndex].push_back(i); | 
| 1430 | > | } | 
| 1431 | > |  | 
| 1432 | > | #else | 
| 1433 | > | for (int i = 0; i < nGroups_; i++) { | 
| 1434 | > | rs = snap_->cgData.position[i]; | 
| 1435 | > |  | 
| 1436 | > | // scaled positions relative to the box vectors | 
| 1437 | > | scaled = invBox * rs; | 
| 1438 | > |  | 
| 1439 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1440 | > | // numbers | 
| 1441 | > | for (int j = 0; j < 3; j++) { | 
| 1442 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1443 | > | scaled[j] += 0.5; | 
| 1444 | > | // Handle the special case when an object is exactly on the | 
| 1445 | > | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1446 | > | // scaled coordinate of 0.0) | 
| 1447 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1448 | > | } | 
| 1449 | > |  | 
| 1450 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1451 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1452 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1453 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1454 | > |  | 
| 1455 | > | // find single index of this cell: | 
| 1456 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1457 | > |  | 
| 1458 | > | // add this cutoff group to the list of groups in this cell; | 
| 1459 | > | cellList_[cellIndex].push_back(i); | 
| 1460 | > | } | 
| 1461 |  |  | 
| 1012 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1013 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1014 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1015 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1016 | – |  | 
| 1017 | – | // find single index of this cell: | 
| 1018 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1019 | – | // add this cutoff group to the list of groups in this cell; | 
| 1020 | – | cellList_[cellIndex].push_back(i); | 
| 1021 | – | } | 
| 1462 |  | #endif | 
| 1463 |  |  | 
| 1464 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1465 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1466 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1467 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1468 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1029 | < |  | 
| 1030 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1031 | < | os != cellOffsets_.end(); ++os) { | 
| 1464 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1465 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1466 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1467 | > | Vector3i m1v(m1x, m1y, m1z); | 
| 1468 | > | int m1 = Vlinear(m1v, nCells_); | 
| 1469 |  |  | 
| 1470 | < | Vector3i m2v = m1v + (*os); | 
| 1471 | < |  | 
| 1472 | < | if (m2v.x() >= nCells_.x()) { | 
| 1473 | < | m2v.x() = 0; | 
| 1474 | < | } else if (m2v.x() < 0) { | 
| 1038 | < | m2v.x() = nCells_.x() - 1; | 
| 1039 | < | } | 
| 1040 | < |  | 
| 1041 | < | if (m2v.y() >= nCells_.y()) { | 
| 1042 | < | m2v.y() = 0; | 
| 1043 | < | } else if (m2v.y() < 0) { | 
| 1044 | < | m2v.y() = nCells_.y() - 1; | 
| 1045 | < | } | 
| 1046 | < |  | 
| 1047 | < | if (m2v.z() >= nCells_.z()) { | 
| 1048 | < | m2v.z() = 0; | 
| 1049 | < | } else if (m2v.z() < 0) { | 
| 1050 | < | m2v.z() = nCells_.z() - 1; | 
| 1051 | < | } | 
| 1052 | < |  | 
| 1053 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1470 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1471 | > | os != cellOffsets_.end(); ++os) { | 
| 1472 | > |  | 
| 1473 | > | Vector3i m2v = m1v + (*os); | 
| 1474 | > |  | 
| 1475 |  |  | 
| 1476 | < | #ifdef IS_MPI | 
| 1477 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1478 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1479 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1480 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1481 | < |  | 
| 1482 | < | // Always do this if we're in different cells or if | 
| 1483 | < | // we're in the same cell and the global index of the | 
| 1484 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1476 | > | if (m2v.x() >= nCells_.x()) { | 
| 1477 | > | m2v.x() = 0; | 
| 1478 | > | } else if (m2v.x() < 0) { | 
| 1479 | > | m2v.x() = nCells_.x() - 1; | 
| 1480 | > | } | 
| 1481 | > |  | 
| 1482 | > | if (m2v.y() >= nCells_.y()) { | 
| 1483 | > | m2v.y() = 0; | 
| 1484 | > | } else if (m2v.y() < 0) { | 
| 1485 | > | m2v.y() = nCells_.y() - 1; | 
| 1486 | > | } | 
| 1487 | > |  | 
| 1488 | > | if (m2v.z() >= nCells_.z()) { | 
| 1489 | > | m2v.z() = 0; | 
| 1490 | > | } else if (m2v.z() < 0) { | 
| 1491 | > | m2v.z() = nCells_.z() - 1; | 
| 1492 | > | } | 
| 1493 |  |  | 
| 1494 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1494 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1495 | > |  | 
| 1496 | > | #ifdef IS_MPI | 
| 1497 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1498 | > | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1499 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1500 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1501 | > |  | 
| 1502 | > | // In parallel, we need to visit *all* pairs of row | 
| 1503 | > | // & column indicies and will divide labor in the | 
| 1504 | > | // force evaluation later. | 
| 1505 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1506 | < | snap_->wrapVector(dr); | 
| 1506 | > | if (usePeriodicBoundaryConditions_) { | 
| 1507 | > | snap_->wrapVector(dr); | 
| 1508 | > | } | 
| 1509 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1510 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1511 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1512 | < | } | 
| 1512 | > | } | 
| 1513 |  | } | 
| 1514 |  | } | 
| 1074 | – | } | 
| 1515 |  | #else | 
| 1516 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1517 | < | j1 != cellList_[m1].end(); ++j1) { | 
| 1518 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1519 | < | j2 != cellList_[m2].end(); ++j2) { | 
| 1520 | < |  | 
| 1521 | < | // Always do this if we're in different cells or if | 
| 1522 | < | // we're in the same cell and the global index of the | 
| 1523 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1516 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1517 | > | j1 != cellList_[m1].end(); ++j1) { | 
| 1518 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1519 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1520 | > |  | 
| 1521 | > | // Always do this if we're in different cells or if | 
| 1522 | > | // we're in the same cell and the global index of | 
| 1523 | > | // the j2 cutoff group is greater than or equal to | 
| 1524 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1525 | > | // has a "less than" conditional here, but that | 
| 1526 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1527 | > | // allows atoms within a single cutoff group to | 
| 1528 | > | // interact with each other. | 
| 1529 |  |  | 
| 1530 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1531 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1532 | < | snap_->wrapVector(dr); | 
| 1533 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1534 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1535 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1530 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1531 | > |  | 
| 1532 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1533 | > | if (usePeriodicBoundaryConditions_) { | 
| 1534 | > | snap_->wrapVector(dr); | 
| 1535 | > | } | 
| 1536 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1537 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1538 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1539 | > | } | 
| 1540 |  | } | 
| 1541 |  | } | 
| 1542 |  | } | 
| 1094 | – | } | 
| 1543 |  | #endif | 
| 1544 | + | } | 
| 1545 |  | } | 
| 1546 |  | } | 
| 1547 |  | } | 
| 1548 | + | } else { | 
| 1549 | + | // branch to do all cutoff group pairs | 
| 1550 | + | #ifdef IS_MPI | 
| 1551 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1552 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1553 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1554 | + | if (usePeriodicBoundaryConditions_) { | 
| 1555 | + | snap_->wrapVector(dr); | 
| 1556 | + | } | 
| 1557 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1558 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1559 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1560 | + | } | 
| 1561 | + | } | 
| 1562 | + | } | 
| 1563 | + | #else | 
| 1564 | + | // include all groups here. | 
| 1565 | + | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1566 | + | // include self group interactions j2 == j1 | 
| 1567 | + | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1568 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1569 | + | if (usePeriodicBoundaryConditions_) { | 
| 1570 | + | snap_->wrapVector(dr); | 
| 1571 | + | } | 
| 1572 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1573 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1574 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1575 | + | } | 
| 1576 | + | } | 
| 1577 | + | } | 
| 1578 | + | #endif | 
| 1579 |  | } | 
| 1580 | < |  | 
| 1580 | > |  | 
| 1581 |  | // save the local cutoff group positions for the check that is | 
| 1582 |  | // done on each loop: | 
| 1583 |  | saved_CG_positions_.clear(); | 
| 1584 |  | for (int i = 0; i < nGroups_; i++) | 
| 1585 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1586 | < |  | 
| 1586 | > |  | 
| 1587 |  | return neighborList; | 
| 1588 |  | } | 
| 1589 |  | } //end namespace OpenMD |