| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 175 |  |  | 
| 176 |  | pot_row.resize(nAtomsInRow_); | 
| 177 |  | pot_col.resize(nAtomsInCol_); | 
| 178 | + |  | 
| 179 | + | expot_row.resize(nAtomsInRow_); | 
| 180 | + | expot_col.resize(nAtomsInCol_); | 
| 181 |  |  | 
| 182 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 262 |  | for (int j = 0; j < nLocal_; j++) { | 
| 263 |  | int jglob = AtomLocalToGlobal[j]; | 
| 264 |  |  | 
| 265 | < | if (excludes->hasPair(iglob, jglob)) | 
| 265 | > | if (excludes->hasPair(iglob, jglob)) | 
| 266 |  | excludesForAtom[i].push_back(j); | 
| 267 |  |  | 
| 253 | – |  | 
| 268 |  | if (oneTwo->hasPair(iglob, jglob)) { | 
| 269 |  | toposForAtom[i].push_back(j); | 
| 270 |  | topoDist[i].push_back(1); | 
| 310 |  |  | 
| 311 |  | RealType tol = 1e-6; | 
| 312 |  | largestRcut_ = 0.0; | 
| 299 | – | RealType rc; | 
| 313 |  | int atid; | 
| 314 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 |  |  | 
| 394 |  | } | 
| 395 |  |  | 
| 396 |  | bool gTypeFound = false; | 
| 397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  | groupToGtype[cg1] = gt; | 
| 400 |  | gTypeFound = true; | 
| 419 |  |  | 
| 420 |  | RealType tradRcut = groupMax; | 
| 421 |  |  | 
| 422 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 |  | RealType thisRcut; | 
| 425 |  | switch(cutoffPolicy_) { | 
| 426 |  | case TRADITIONAL: | 
| 463 |  | } | 
| 464 |  | } | 
| 465 |  |  | 
| 453 | – |  | 
| 466 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 |  | int i, j; | 
| 468 |  | #ifdef IS_MPI | 
| 476 |  | } | 
| 477 |  |  | 
| 478 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 |  | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  | return topoDist[atom1][j]; | 
| 482 |  | } | 
| 486 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 487 |  | pairwisePot = 0.0; | 
| 488 |  | embeddingPot = 0.0; | 
| 489 | + | excludedPot = 0.0; | 
| 490 | + | excludedSelfPot = 0.0; | 
| 491 |  |  | 
| 492 |  | #ifdef IS_MPI | 
| 493 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 506 |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 |  |  | 
| 509 | + | fill(expot_row.begin(), expot_row.end(), | 
| 510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 511 | + |  | 
| 512 | + | fill(expot_col.begin(), expot_col.end(), | 
| 513 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 | + |  | 
| 515 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 516 |  | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 517 |  | 0.0); | 
| 543 |  | atomRowData.skippedCharge.end(), 0.0); | 
| 544 |  | fill(atomColData.skippedCharge.begin(), | 
| 545 |  | atomColData.skippedCharge.end(), 0.0); | 
| 546 | + | } | 
| 547 | + |  | 
| 548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 | + | fill(atomRowData.flucQFrc.begin(), | 
| 550 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 551 | + | fill(atomColData.flucQFrc.begin(), | 
| 552 | + | atomColData.flucQFrc.end(), 0.0); | 
| 553 |  | } | 
| 554 |  |  | 
| 555 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 | + | fill(atomRowData.electricField.begin(), | 
| 557 | + | atomRowData.electricField.end(), V3Zero); | 
| 558 | + | fill(atomColData.electricField.begin(), | 
| 559 | + | atomColData.electricField.end(), V3Zero); | 
| 560 | + | } | 
| 561 | + |  | 
| 562 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 563 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 564 | + | 0.0); | 
| 565 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 566 | + | 0.0); | 
| 567 | + | } | 
| 568 | + |  | 
| 569 |  | #endif | 
| 570 |  | // even in parallel, we need to zero out the local arrays: | 
| 571 |  |  | 
| 578 |  | fill(snap_->atomData.density.begin(), | 
| 579 |  | snap_->atomData.density.end(), 0.0); | 
| 580 |  | } | 
| 581 | + |  | 
| 582 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 583 |  | fill(snap_->atomData.functional.begin(), | 
| 584 |  | snap_->atomData.functional.end(), 0.0); | 
| 585 |  | } | 
| 586 | + |  | 
| 587 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 588 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 589 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 590 |  | } | 
| 591 | + |  | 
| 592 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 593 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 594 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 595 |  | } | 
| 596 | < |  | 
| 596 | > |  | 
| 597 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 598 | > | fill(snap_->atomData.electricField.begin(), | 
| 599 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 600 | > | } | 
| 601 |  | } | 
| 602 |  |  | 
| 603 |  |  | 
| 620 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 621 |  | cgColData.position); | 
| 622 |  |  | 
| 623 | + |  | 
| 624 | + |  | 
| 625 | + | if (needVelocities_) { | 
| 626 | + | // gather up the atomic velocities | 
| 627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 628 | + | atomColData.velocity); | 
| 629 | + |  | 
| 630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 631 | + | cgColData.velocity); | 
| 632 | + | } | 
| 633 | + |  | 
| 634 |  |  | 
| 635 |  | // if needed, gather the atomic rotation matrices | 
| 636 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 648 |  | atomColData.electroFrame); | 
| 649 |  | } | 
| 650 |  |  | 
| 651 | + | // if needed, gather the atomic fluctuating charge values | 
| 652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 654 | + | atomRowData.flucQPos); | 
| 655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 656 | + | atomColData.flucQPos); | 
| 657 | + | } | 
| 658 | + |  | 
| 659 |  | #endif | 
| 660 |  | } | 
| 661 |  |  | 
| 677 |  | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 678 |  | for (int i = 0; i < n; i++) | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 | + | } | 
| 681 | + |  | 
| 682 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 683 | + |  | 
| 684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 685 | + | snap_->atomData.electricField); | 
| 686 | + |  | 
| 687 | + | int n = snap_->atomData.electricField.size(); | 
| 688 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 690 | + | for (int i = 0; i < n; i++) | 
| 691 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 692 |  | } | 
| 693 |  | #endif | 
| 694 |  | } | 
| 769 |  |  | 
| 770 |  | } | 
| 771 |  |  | 
| 772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 773 | + |  | 
| 774 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 776 | + |  | 
| 777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 778 | + | for (int i = 0; i < nq; i++) { | 
| 779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 780 | + | fqfrc_tmp[i] = 0.0; | 
| 781 | + | } | 
| 782 | + |  | 
| 783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 784 | + | for (int i = 0; i < nq; i++) | 
| 785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 786 | + |  | 
| 787 | + | } | 
| 788 | + |  | 
| 789 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 790 |  |  | 
| 791 |  | vector<potVec> pot_temp(nLocal_, | 
| 792 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 793 | + | vector<potVec> expot_temp(nLocal_, | 
| 794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 795 |  |  | 
| 796 |  | // scatter/gather pot_row into the members of my column | 
| 797 |  |  | 
| 798 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 799 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 800 |  |  | 
| 801 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 801 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 802 |  | pairwisePot += pot_temp[ii]; | 
| 803 | < |  | 
| 803 | > |  | 
| 804 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 805 | > | excludedPot += expot_temp[ii]; | 
| 806 | > |  | 
| 807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 808 | > | // This is the pairwise contribution to the particle pot.  The | 
| 809 | > | // embedding contribution is added in each of the low level | 
| 810 | > | // non-bonded routines.  In single processor, this is done in | 
| 811 | > | // unpackInteractionData, not in collectData. | 
| 812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 813 | > | for (int i = 0; i < nLocal_; i++) { | 
| 814 | > | // factor of two is because the total potential terms are divided | 
| 815 | > | // by 2 in parallel due to row/ column scatter | 
| 816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 817 | > | } | 
| 818 | > | } | 
| 819 | > | } | 
| 820 | > |  | 
| 821 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 822 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 823 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 824 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 825 |  |  | 
| 826 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 827 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 828 |  |  | 
| 829 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 830 |  | pairwisePot += pot_temp[ii]; | 
| 831 | + |  | 
| 832 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 833 | + | excludedPot += expot_temp[ii]; | 
| 834 | + |  | 
| 835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 836 | + | // This is the pairwise contribution to the particle pot.  The | 
| 837 | + | // embedding contribution is added in each of the low level | 
| 838 | + | // non-bonded routines.  In single processor, this is done in | 
| 839 | + | // unpackInteractionData, not in collectData. | 
| 840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 841 | + | for (int i = 0; i < nLocal_; i++) { | 
| 842 | + | // factor of two is because the total potential terms are divided | 
| 843 | + | // by 2 in parallel due to row/ column scatter | 
| 844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + | } | 
| 848 |  |  | 
| 849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 850 | + | int npp = snap_->atomData.particlePot.size(); | 
| 851 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 852 | + |  | 
| 853 | + | // This is the direct or embedding contribution to the particle | 
| 854 | + | // pot. | 
| 855 | + |  | 
| 856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 857 | + | for (int i = 0; i < npp; i++) { | 
| 858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 859 | + | } | 
| 860 | + |  | 
| 861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 862 | + |  | 
| 863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 864 | + | for (int i = 0; i < npp; i++) { | 
| 865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 866 | + | } | 
| 867 | + | } | 
| 868 | + |  | 
| 869 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 870 |  | RealType ploc1 = pairwisePot[ii]; | 
| 871 |  | RealType ploc2 = 0.0; | 
| 874 |  | } | 
| 875 |  |  | 
| 876 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 877 | < | RealType ploc1 = embeddingPot[ii]; | 
| 877 | > | RealType ploc1 = excludedPot[ii]; | 
| 878 |  | RealType ploc2 = 0.0; | 
| 879 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 880 | < | embeddingPot[ii] = ploc2; | 
| 880 | > | excludedPot[ii] = ploc2; | 
| 881 |  | } | 
| 882 |  |  | 
| 883 | + | // Here be dragons. | 
| 884 | + | MPI::Intracomm col = colComm.getComm(); | 
| 885 | + |  | 
| 886 | + | col.Allreduce(MPI::IN_PLACE, | 
| 887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 888 | + | MPI::REALTYPE, MPI::SUM); | 
| 889 | + |  | 
| 890 | + |  | 
| 891 |  | #endif | 
| 892 |  |  | 
| 893 |  | } | 
| 894 |  |  | 
| 895 | + | /** | 
| 896 | + | * Collects information obtained during the post-pair (and embedding | 
| 897 | + | * functional) loops onto local data structures. | 
| 898 | + | */ | 
| 899 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 900 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 901 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 902 | + |  | 
| 903 | + | #ifdef IS_MPI | 
| 904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 905 | + | RealType ploc1 = embeddingPot[ii]; | 
| 906 | + | RealType ploc2 = 0.0; | 
| 907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 908 | + | embeddingPot[ii] = ploc2; | 
| 909 | + | } | 
| 910 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 911 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 912 | + | RealType ploc2 = 0.0; | 
| 913 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 914 | + | excludedSelfPot[ii] = ploc2; | 
| 915 | + | } | 
| 916 | + | #endif | 
| 917 | + |  | 
| 918 | + | } | 
| 919 | + |  | 
| 920 | + |  | 
| 921 | + |  | 
| 922 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 923 |  | #ifdef IS_MPI | 
| 924 |  | return nAtomsInRow_; | 
| 957 |  |  | 
| 958 |  | snap_->wrapVector(d); | 
| 959 |  | return d; | 
| 960 | + | } | 
| 961 | + |  | 
| 962 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 963 | + | #ifdef IS_MPI | 
| 964 | + | return cgColData.velocity[cg2]; | 
| 965 | + | #else | 
| 966 | + | return snap_->cgData.velocity[cg2]; | 
| 967 | + | #endif | 
| 968 | + | } | 
| 969 | + |  | 
| 970 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 971 | + | #ifdef IS_MPI | 
| 972 | + | return atomColData.velocity[atom2]; | 
| 973 | + | #else | 
| 974 | + | return snap_->atomData.velocity[atom2]; | 
| 975 | + | #endif | 
| 976 |  | } | 
| 977 |  |  | 
| 978 |  |  | 
| 1041 |  | * We need to exclude some overcounted interactions that result from | 
| 1042 |  | * the parallel decomposition. | 
| 1043 |  | */ | 
| 1044 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1044 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1045 |  | int unique_id_1, unique_id_2; | 
| 1046 | < |  | 
| 1046 | > |  | 
| 1047 |  | #ifdef IS_MPI | 
| 1048 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1049 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1050 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1051 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1052 | + | // group2 = cgColToGlobal[cg2]; | 
| 1053 | + | #else | 
| 1054 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1055 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1056 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1057 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1058 | + | #endif | 
| 1059 |  |  | 
| 845 | – | // this situation should only arise in MPI simulations | 
| 1060 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1061 | < |  | 
| 1061 | > |  | 
| 1062 | > | #ifdef IS_MPI | 
| 1063 |  | // this prevents us from doing the pair on multiple processors | 
| 1064 |  | if (unique_id_1 < unique_id_2) { | 
| 1065 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1066 |  | } else { | 
| 1067 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1067 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1068 |  | } | 
| 1069 | + | #endif | 
| 1070 | + |  | 
| 1071 | + | #ifndef IS_MPI | 
| 1072 | + | if (group1 == group2) { | 
| 1073 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1074 | + | } | 
| 1075 |  | #endif | 
| 1076 | + |  | 
| 1077 |  | return false; | 
| 1078 |  | } | 
| 1079 |  |  | 
| 1093 |  |  | 
| 1094 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1095 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 1096 | < | if ( (*i) == atom2 )  return true; | 
| 1096 | > | if ( (*i) == atom2 ) return true; | 
| 1097 |  | } | 
| 1098 |  |  | 
| 1099 |  | return false; | 
| 1167 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1168 |  | } | 
| 1169 |  |  | 
| 1170 | < | #else | 
| 1170 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1171 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1172 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1173 | > | } | 
| 1174 |  |  | 
| 1175 | + | #else | 
| 1176 | + |  | 
| 1177 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 951 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 952 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1178 |  |  | 
| 1179 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1180 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1214 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1215 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1216 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1217 | + | } | 
| 1218 | + |  | 
| 1219 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1220 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1221 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1222 |  | } | 
| 1223 | + |  | 
| 1224 |  | #endif | 
| 1225 |  | } | 
| 1226 |  |  | 
| 1227 |  |  | 
| 1228 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1229 |  | #ifdef IS_MPI | 
| 1230 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1231 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1230 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1231 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1232 | > | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1233 | > | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1234 |  |  | 
| 1235 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1236 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1237 | + |  | 
| 1238 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1239 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1240 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1241 | + | } | 
| 1242 | + |  | 
| 1243 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1244 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1245 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1246 | + | } | 
| 1247 | + |  | 
| 1248 |  | #else | 
| 1249 |  | pairwisePot += *(idat.pot); | 
| 1250 | + | excludedPot += *(idat.excludedPot); | 
| 1251 |  |  | 
| 1252 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1253 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1254 | + |  | 
| 1255 | + | if (idat.doParticlePot) { | 
| 1256 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1257 | + | // embedding contribution is added in each of the low level | 
| 1258 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1259 | + | // in collectData, not in unpackInteractionData. | 
| 1260 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1261 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1262 | + | } | 
| 1263 | + |  | 
| 1264 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1265 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1266 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1267 | + | } | 
| 1268 | + |  | 
| 1269 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1270 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1271 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1272 | + | } | 
| 1273 | + |  | 
| 1274 |  | #endif | 
| 1275 |  |  | 
| 1276 |  | } | 
| 1295 |  | #endif | 
| 1296 |  |  | 
| 1297 |  | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1033 | – | RealType rl2 = rList_ * rList_; | 
| 1298 |  | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1299 |  | Mat3x3d Hmat = snap_->getHmat(); | 
| 1300 |  | Vector3d Hx = Hmat.getColumn(0); | 
| 1338 |  | for (int j = 0; j < 3; j++) { | 
| 1339 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1340 |  | scaled[j] += 0.5; | 
| 1341 | + | // Handle the special case when an object is exactly on the | 
| 1342 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1343 | + | // scaled coordinate of 0.0) | 
| 1344 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1345 |  | } | 
| 1346 |  |  | 
| 1347 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1366 |  | for (int j = 0; j < 3; j++) { | 
| 1367 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1368 |  | scaled[j] += 0.5; | 
| 1369 | + | // Handle the special case when an object is exactly on the | 
| 1370 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1371 | + | // scaled coordinate of 0.0) | 
| 1372 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1373 |  | } | 
| 1374 |  |  | 
| 1375 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1396 |  | for (int j = 0; j < 3; j++) { | 
| 1397 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1398 |  | scaled[j] += 0.5; | 
| 1399 | + | // Handle the special case when an object is exactly on the | 
| 1400 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1401 | + | // scaled coordinate of 0.0) | 
| 1402 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1403 |  | } | 
| 1404 |  |  | 
| 1405 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1466 |  | } | 
| 1467 |  | } | 
| 1468 |  | #else | 
| 1193 | – |  | 
| 1469 |  | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1470 |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1471 |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1472 |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1473 | < |  | 
| 1473 | > |  | 
| 1474 |  | // Always do this if we're in different cells or if | 
| 1475 | < | // we're in the same cell and the global index of the | 
| 1476 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1477 | < |  | 
| 1478 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1475 | > | // we're in the same cell and the global index of | 
| 1476 | > | // the j2 cutoff group is greater than or equal to | 
| 1477 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1478 | > | // has a "less than" conditional here, but that | 
| 1479 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1480 | > | // allows atoms within a single cutoff group to | 
| 1481 | > | // interact with each other. | 
| 1482 | > |  | 
| 1483 | > |  | 
| 1484 | > |  | 
| 1485 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1486 | > |  | 
| 1487 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1488 |  | snap_->wrapVector(dr); | 
| 1489 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1502 |  | // branch to do all cutoff group pairs | 
| 1503 |  | #ifdef IS_MPI | 
| 1504 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1505 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1505 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1506 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1507 |  | snap_->wrapVector(dr); | 
| 1508 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1510 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1511 |  | } | 
| 1512 |  | } | 
| 1513 | < | } | 
| 1513 | > | } | 
| 1514 |  | #else | 
| 1515 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1516 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1515 | > | // include all groups here. | 
| 1516 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1517 | > | // include self group interactions j2 == j1 | 
| 1518 | > | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1519 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1520 |  | snap_->wrapVector(dr); | 
| 1521 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1522 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1523 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1524 |  | } | 
| 1525 | < | } | 
| 1526 | < | } | 
| 1525 | > | } | 
| 1526 | > | } | 
| 1527 |  | #endif | 
| 1528 |  | } | 
| 1529 |  |  |