| 47 |  | using namespace std; | 
| 48 |  | namespace OpenMD { | 
| 49 |  |  | 
| 50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 51 | + |  | 
| 52 | + | // In a parallel computation, row and colum scans must visit all | 
| 53 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 54 | + | // are used when the processor can see all pairs) | 
| 55 | + | #ifdef IS_MPI | 
| 56 | + | cellOffsets_.clear(); | 
| 57 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 58 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 84 | + | #endif | 
| 85 | + | } | 
| 86 | + |  | 
| 87 | + |  | 
| 88 |  | /** | 
| 89 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 90 |  | * SimulationSetup | 
| 91 |  | */ | 
| 54 | – |  | 
| 92 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 93 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 94 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 95 |  | ff_ = info_->getForceField(); | 
| 96 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 97 | < |  | 
| 97 | > |  | 
| 98 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; | 
| 99 |  | // gather the information for atomtype IDs (atids): | 
| 100 | < | identsLocal = info_->getIdentArray(); | 
| 100 | > | idents = info_->getIdentArray(); | 
| 101 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 102 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 103 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 104 | + |  | 
| 105 |  | massFactors = info_->getMassFactors(); | 
| 69 | – | PairList excludes = info_->getExcludedInteractions(); | 
| 70 | – | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 71 | – | PairList oneThree = info_->getOneThreeInteractions(); | 
| 72 | – | PairList oneFour = info_->getOneFourInteractions(); | 
| 106 |  |  | 
| 107 | + | PairList* excludes = info_->getExcludedInteractions(); | 
| 108 | + | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 109 | + | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 110 | + | PairList* oneFour = info_->getOneFourInteractions(); | 
| 111 | + |  | 
| 112 |  | #ifdef IS_MPI | 
| 113 |  |  | 
| 114 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 115 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 78 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 79 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 80 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 114 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 115 | > | MPI::Intracomm col = colComm.getComm(); | 
| 116 |  |  | 
| 117 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 118 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 119 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 120 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 121 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 117 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 118 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 119 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 120 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 121 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 122 |  |  | 
| 123 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 124 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 125 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 126 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 123 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 124 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 125 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 126 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 127 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 128 |  |  | 
| 129 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 130 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 131 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 132 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 129 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 130 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 131 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 132 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 133 |  |  | 
| 134 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 135 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 136 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 137 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 138 | + |  | 
| 139 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 140 |  | atomRowData.resize(nAtomsInRow_); | 
| 141 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 149 |  | identsRow.resize(nAtomsInRow_); | 
| 150 |  | identsCol.resize(nAtomsInCol_); | 
| 151 |  |  | 
| 152 | < | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 153 | < | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 152 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 153 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 154 |  |  | 
| 155 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 156 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 157 | < |  | 
| 117 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 118 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 155 | > | // allocate memory for the parallel objects | 
| 156 | > | atypesRow.resize(nAtomsInRow_); | 
| 157 | > | atypesCol.resize(nAtomsInCol_); | 
| 158 |  |  | 
| 159 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 160 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 159 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 160 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 161 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 162 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 163 |  |  | 
| 164 | + | pot_row.resize(nAtomsInRow_); | 
| 165 | + | pot_col.resize(nAtomsInCol_); | 
| 166 | + |  | 
| 167 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 168 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 169 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 170 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 171 | + |  | 
| 172 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 173 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 174 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 175 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 176 | + |  | 
| 177 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 178 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 179 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 180 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 181 | + |  | 
| 182 |  | groupListRow_.clear(); | 
| 183 |  | groupListRow_.resize(nGroupsInRow_); | 
| 184 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 201 |  | } | 
| 202 |  | } | 
| 203 |  |  | 
| 204 | < | skipsForAtom.clear(); | 
| 205 | < | skipsForAtom.resize(nAtomsInRow_); | 
| 204 | > | excludesForAtom.clear(); | 
| 205 | > | excludesForAtom.resize(nAtomsInRow_); | 
| 206 |  | toposForAtom.clear(); | 
| 207 |  | toposForAtom.resize(nAtomsInRow_); | 
| 208 |  | topoDist.clear(); | 
| 213 |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 214 |  | int jglob = AtomColToGlobal[j]; | 
| 215 |  |  | 
| 216 | < | if (excludes.hasPair(iglob, jglob)) | 
| 217 | < | skipsForAtom[i].push_back(j); | 
| 216 | > | if (excludes->hasPair(iglob, jglob)) | 
| 217 | > | excludesForAtom[i].push_back(j); | 
| 218 |  |  | 
| 219 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 219 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 220 |  | toposForAtom[i].push_back(j); | 
| 221 |  | topoDist[i].push_back(1); | 
| 222 |  | } else { | 
| 223 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 223 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 224 |  | toposForAtom[i].push_back(j); | 
| 225 |  | topoDist[i].push_back(2); | 
| 226 |  | } else { | 
| 227 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 227 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 228 |  | toposForAtom[i].push_back(j); | 
| 229 |  | topoDist[i].push_back(3); | 
| 230 |  | } | 
| 233 |  | } | 
| 234 |  | } | 
| 235 |  |  | 
| 236 | < | #endif | 
| 237 | < |  | 
| 238 | < | groupList_.clear(); | 
| 180 | < | groupList_.resize(nGroups_); | 
| 181 | < | for (int i = 0; i < nGroups_; i++) { | 
| 182 | < | int gid = cgLocalToGlobal[i]; | 
| 183 | < | for (int j = 0; j < nLocal_; j++) { | 
| 184 | < | int aid = AtomLocalToGlobal[j]; | 
| 185 | < | if (globalGroupMembership[aid] == gid) { | 
| 186 | < | groupList_[i].push_back(j); | 
| 187 | < | } | 
| 188 | < | } | 
| 189 | < | } | 
| 190 | < |  | 
| 191 | < | skipsForAtom.clear(); | 
| 192 | < | skipsForAtom.resize(nLocal_); | 
| 236 | > | #else | 
| 237 | > | excludesForAtom.clear(); | 
| 238 | > | excludesForAtom.resize(nLocal_); | 
| 239 |  | toposForAtom.clear(); | 
| 240 |  | toposForAtom.resize(nLocal_); | 
| 241 |  | topoDist.clear(); | 
| 247 |  | for (int j = 0; j < nLocal_; j++) { | 
| 248 |  | int jglob = AtomLocalToGlobal[j]; | 
| 249 |  |  | 
| 250 | < | if (excludes.hasPair(iglob, jglob)) | 
| 251 | < | skipsForAtom[i].push_back(j); | 
| 250 | > | if (excludes->hasPair(iglob, jglob)) | 
| 251 | > | excludesForAtom[i].push_back(j); | 
| 252 |  |  | 
| 253 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 253 | > |  | 
| 254 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 255 |  | toposForAtom[i].push_back(j); | 
| 256 |  | topoDist[i].push_back(1); | 
| 257 |  | } else { | 
| 258 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 258 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 259 |  | toposForAtom[i].push_back(j); | 
| 260 |  | topoDist[i].push_back(2); | 
| 261 |  | } else { | 
| 262 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 262 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 263 |  | toposForAtom[i].push_back(j); | 
| 264 |  | topoDist[i].push_back(3); | 
| 265 |  | } | 
| 267 |  | } | 
| 268 |  | } | 
| 269 |  | } | 
| 270 | < |  | 
| 270 | > | #endif | 
| 271 | > |  | 
| 272 | > | // allocate memory for the parallel objects | 
| 273 | > | atypesLocal.resize(nLocal_); | 
| 274 | > |  | 
| 275 | > | for (int i = 0; i < nLocal_; i++) | 
| 276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 277 | > |  | 
| 278 | > | groupList_.clear(); | 
| 279 | > | groupList_.resize(nGroups_); | 
| 280 | > | for (int i = 0; i < nGroups_; i++) { | 
| 281 | > | int gid = cgLocalToGlobal[i]; | 
| 282 | > | for (int j = 0; j < nLocal_; j++) { | 
| 283 | > | int aid = AtomLocalToGlobal[j]; | 
| 284 | > | if (globalGroupMembership[aid] == gid) { | 
| 285 | > | groupList_[i].push_back(j); | 
| 286 | > | } | 
| 287 | > | } | 
| 288 | > | } | 
| 289 | > |  | 
| 290 | > |  | 
| 291 |  | createGtypeCutoffMap(); | 
| 292 | + |  | 
| 293 |  | } | 
| 294 |  |  | 
| 295 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 296 | < |  | 
| 296 | > |  | 
| 297 |  | RealType tol = 1e-6; | 
| 298 | + | largestRcut_ = 0.0; | 
| 299 |  | RealType rc; | 
| 300 |  | int atid; | 
| 301 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 302 | < | vector<RealType> atypeCutoff; | 
| 303 | < | atypeCutoff.resize( atypes.size() ); | 
| 304 | < |  | 
| 302 | > |  | 
| 303 | > | map<int, RealType> atypeCutoff; | 
| 304 | > |  | 
| 305 |  | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 306 |  | at != atypes.end(); ++at){ | 
| 238 | – | rc = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 307 |  | atid = (*at)->getIdent(); | 
| 308 | < | atypeCutoff[atid] = rc; | 
| 308 | > | if (userChoseCutoff_) | 
| 309 | > | atypeCutoff[atid] = userCutoff_; | 
| 310 | > | else | 
| 311 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 312 |  | } | 
| 313 | < |  | 
| 313 | > |  | 
| 314 |  | vector<RealType> gTypeCutoffs; | 
| 244 | – |  | 
| 315 |  | // first we do a single loop over the cutoff groups to find the | 
| 316 |  | // largest cutoff for any atypes present in this group. | 
| 317 |  | #ifdef IS_MPI | 
| 369 |  |  | 
| 370 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 371 |  | groupToGtype.resize(nGroups_); | 
| 302 | – |  | 
| 303 | – | cerr << "nGroups = " << nGroups_ << "\n"; | 
| 372 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 305 | – |  | 
| 373 |  | groupCutoff[cg1] = 0.0; | 
| 374 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 308 | – |  | 
| 375 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 376 |  | ia != atomList.end(); ++ia) { | 
| 377 |  | int atom1 = (*ia); | 
| 378 | < | atid = identsLocal[atom1]; | 
| 379 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 378 | > | atid = idents[atom1]; | 
| 379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 380 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 315 | – | } | 
| 381 |  | } | 
| 382 | < |  | 
| 382 | > |  | 
| 383 |  | bool gTypeFound = false; | 
| 384 |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 385 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 387 |  | gTypeFound = true; | 
| 388 |  | } | 
| 389 |  | } | 
| 390 | < | if (!gTypeFound) { | 
| 390 | > | if (!gTypeFound) { | 
| 391 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 392 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 393 |  | } | 
| 394 |  | } | 
| 395 |  | #endif | 
| 396 |  |  | 
| 332 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; | 
| 397 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 398 |  |  | 
| 399 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 399 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 400 | > | gTypeCutoffs.end()); | 
| 401 |  |  | 
| 402 |  | #ifdef IS_MPI | 
| 403 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 403 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 404 | > | MPI::MAX); | 
| 405 |  | #endif | 
| 406 |  |  | 
| 407 |  | RealType tradRcut = groupMax; | 
| 431 |  |  | 
| 432 |  | pair<int,int> key = make_pair(i,j); | 
| 433 |  | gTypeCutoffMap[key].first = thisRcut; | 
| 368 | – |  | 
| 434 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 370 | – |  | 
| 435 |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 372 | – |  | 
| 436 |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 374 | – |  | 
| 437 |  | // sanity check | 
| 438 |  |  | 
| 439 |  | if (userChoseCutoff_) { | 
| 440 |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 441 |  | sprintf(painCave.errMsg, | 
| 442 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 443 | < | "user-specified rCut does not match computed group Cutoff\n"); | 
| 443 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 444 |  | painCave.severity = OPENMD_ERROR; | 
| 445 |  | painCave.isFatal = 1; | 
| 446 |  | simError(); | 
| 472 |  | } | 
| 473 |  |  | 
| 474 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 475 | + | pairwisePot = 0.0; | 
| 476 | + | embeddingPot = 0.0; | 
| 477 |  |  | 
| 414 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { | 
| 415 | – | longRangePot_[j] = 0.0; | 
| 416 | – | } | 
| 417 | – |  | 
| 478 |  | #ifdef IS_MPI | 
| 479 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 480 |  | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 490 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 491 |  |  | 
| 492 |  | fill(pot_col.begin(), pot_col.end(), | 
| 493 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 434 | < |  | 
| 435 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); | 
| 493 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 494 |  |  | 
| 495 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 496 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 497 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 496 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 497 | > | 0.0); | 
| 498 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 499 | > | 0.0); | 
| 500 |  | } | 
| 501 |  |  | 
| 502 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 505 |  | } | 
| 506 |  |  | 
| 507 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 508 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 509 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 508 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 509 | > | 0.0); | 
| 510 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 511 | > | 0.0); | 
| 512 |  | } | 
| 513 |  |  | 
| 514 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 518 |  | atomColData.functionalDerivative.end(), 0.0); | 
| 519 |  | } | 
| 520 |  |  | 
| 521 | < | #else | 
| 522 | < |  | 
| 521 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 522 | > | fill(atomRowData.skippedCharge.begin(), | 
| 523 | > | atomRowData.skippedCharge.end(), 0.0); | 
| 524 | > | fill(atomColData.skippedCharge.begin(), | 
| 525 | > | atomColData.skippedCharge.end(), 0.0); | 
| 526 | > | } | 
| 527 | > |  | 
| 528 | > | #endif | 
| 529 | > | // even in parallel, we need to zero out the local arrays: | 
| 530 | > |  | 
| 531 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 532 |  | fill(snap_->atomData.particlePot.begin(), | 
| 533 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 545 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 546 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 547 |  | } | 
| 548 | < | #endif | 
| 548 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 549 | > | fill(snap_->atomData.skippedCharge.begin(), | 
| 550 | > | snap_->atomData.skippedCharge.end(), 0.0); | 
| 551 | > | } | 
| 552 |  |  | 
| 553 |  | } | 
| 554 |  |  | 
| 559 |  | #ifdef IS_MPI | 
| 560 |  |  | 
| 561 |  | // gather up the atomic positions | 
| 562 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 562 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 563 |  | atomRowData.position); | 
| 564 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 564 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 565 |  | atomColData.position); | 
| 566 |  |  | 
| 567 |  | // gather up the cutoff group positions | 
| 568 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 568 | > |  | 
| 569 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 570 |  | cgRowData.position); | 
| 571 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 571 | > |  | 
| 572 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 573 |  | cgColData.position); | 
| 574 | + |  | 
| 575 |  |  | 
| 576 |  | // if needed, gather the atomic rotation matrices | 
| 577 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 578 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 578 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 579 |  | atomRowData.aMat); | 
| 580 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 580 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 581 |  | atomColData.aMat); | 
| 582 |  | } | 
| 583 |  |  | 
| 584 |  | // if needed, gather the atomic eletrostatic frames | 
| 585 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 586 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 586 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 587 |  | atomRowData.electroFrame); | 
| 588 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 588 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 589 |  | atomColData.electroFrame); | 
| 590 |  | } | 
| 591 | + |  | 
| 592 |  | #endif | 
| 593 |  | } | 
| 594 |  |  | 
| 602 |  |  | 
| 603 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 604 |  |  | 
| 605 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 605 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 606 |  | snap_->atomData.density); | 
| 607 |  |  | 
| 608 |  | int n = snap_->atomData.density.size(); | 
| 609 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 610 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 610 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 611 |  | for (int i = 0; i < n; i++) | 
| 612 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 613 |  | } | 
| 623 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 624 |  | #ifdef IS_MPI | 
| 625 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 626 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 626 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 627 |  | atomRowData.functional); | 
| 628 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 628 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 629 |  | atomColData.functional); | 
| 630 |  | } | 
| 631 |  |  | 
| 632 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 633 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 633 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 634 |  | atomRowData.functionalDerivative); | 
| 635 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 635 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 636 |  | atomColData.functionalDerivative); | 
| 637 |  | } | 
| 638 |  | #endif | 
| 646 |  | int n = snap_->atomData.force.size(); | 
| 647 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 648 |  |  | 
| 649 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 649 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 650 |  | for (int i = 0; i < n; i++) { | 
| 651 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 652 |  | frc_tmp[i] = 0.0; | 
| 653 |  | } | 
| 654 |  |  | 
| 655 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 656 | < | for (int i = 0; i < n; i++) | 
| 655 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 656 | > | for (int i = 0; i < n; i++) { | 
| 657 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 658 | < |  | 
| 659 | < |  | 
| 658 | > | } | 
| 659 | > |  | 
| 660 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 661 |  |  | 
| 662 | < | int nt = snap_->atomData.force.size(); | 
| 662 | > | int nt = snap_->atomData.torque.size(); | 
| 663 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 664 |  |  | 
| 665 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 666 | < | for (int i = 0; i < n; i++) { | 
| 665 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 666 | > | for (int i = 0; i < nt; i++) { | 
| 667 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 668 |  | trq_tmp[i] = 0.0; | 
| 669 |  | } | 
| 670 |  |  | 
| 671 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 672 | < | for (int i = 0; i < n; i++) | 
| 671 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 672 | > | for (int i = 0; i < nt; i++) | 
| 673 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 674 |  | } | 
| 675 | + |  | 
| 676 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 677 | + |  | 
| 678 | + | int ns = snap_->atomData.skippedCharge.size(); | 
| 679 | + | vector<RealType> skch_tmp(ns, 0.0); | 
| 680 | + |  | 
| 681 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 682 | + | for (int i = 0; i < ns; i++) { | 
| 683 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 684 | + | skch_tmp[i] = 0.0; | 
| 685 | + | } | 
| 686 | + |  | 
| 687 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 688 | + | for (int i = 0; i < ns; i++) | 
| 689 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 690 | + |  | 
| 691 | + | } | 
| 692 |  |  | 
| 693 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 694 |  |  | 
| 697 |  |  | 
| 698 |  | // scatter/gather pot_row into the members of my column | 
| 699 |  |  | 
| 700 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 700 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 701 |  |  | 
| 702 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 703 | < | pot_local += pot_temp[ii]; | 
| 703 | > | pairwisePot += pot_temp[ii]; | 
| 704 |  |  | 
| 705 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 706 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 707 |  |  | 
| 708 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 708 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 709 |  |  | 
| 710 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 711 | < | pot_local += pot_temp[ii]; | 
| 711 | > | pairwisePot += pot_temp[ii]; | 
| 712 |  |  | 
| 713 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 714 | + | RealType ploc1 = pairwisePot[ii]; | 
| 715 | + | RealType ploc2 = 0.0; | 
| 716 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 717 | + | pairwisePot[ii] = ploc2; | 
| 718 | + | } | 
| 719 | + |  | 
| 720 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 721 | + | RealType ploc1 = embeddingPot[ii]; | 
| 722 | + | RealType ploc2 = 0.0; | 
| 723 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 724 | + | embeddingPot[ii] = ploc2; | 
| 725 | + | } | 
| 726 | + |  | 
| 727 |  | #endif | 
| 728 | + |  | 
| 729 |  | } | 
| 730 |  |  | 
| 731 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 826 |  | return d; | 
| 827 |  | } | 
| 828 |  |  | 
| 829 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { | 
| 830 | < | return skipsForAtom[atom1]; | 
| 829 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 830 | > | return excludesForAtom[atom1]; | 
| 831 |  | } | 
| 832 |  |  | 
| 833 |  | /** | 
| 834 | < | * There are a number of reasons to skip a pair or a | 
| 726 | < | * particle. Mostly we do this to exclude atoms who are involved in | 
| 727 | < | * short range interactions (bonds, bends, torsions), but we also | 
| 728 | < | * need to exclude some overcounted interactions that result from | 
| 834 | > | * We need to exclude some overcounted interactions that result from | 
| 835 |  | * the parallel decomposition. | 
| 836 |  | */ | 
| 837 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 838 |  | int unique_id_1, unique_id_2; | 
| 839 | < |  | 
| 839 | > |  | 
| 840 |  | #ifdef IS_MPI | 
| 841 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 842 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 851 |  | } else { | 
| 852 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 853 |  | } | 
| 748 | – | #else | 
| 749 | – | // in the normal loop, the atom numbers are unique | 
| 750 | – | unique_id_1 = atom1; | 
| 751 | – | unique_id_2 = atom2; | 
| 854 |  | #endif | 
| 855 | + | return false; | 
| 856 | + | } | 
| 857 | + |  | 
| 858 | + | /** | 
| 859 | + | * We need to handle the interactions for atoms who are involved in | 
| 860 | + | * the same rigid body as well as some short range interactions | 
| 861 | + | * (bonds, bends, torsions) differently from other interactions. | 
| 862 | + | * We'll still visit the pairwise routines, but with a flag that | 
| 863 | + | * tells those routines to exclude the pair from direct long range | 
| 864 | + | * interactions.  Some indirect interactions (notably reaction | 
| 865 | + | * field) must still be handled for these pairs. | 
| 866 | + | */ | 
| 867 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 868 | + |  | 
| 869 | + | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 870 | + | // version, and to use local IDs in the non-MPI version: | 
| 871 |  |  | 
| 872 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); | 
| 873 | < | i != skipsForAtom[atom1].end(); ++i) { | 
| 874 | < | if ( (*i) == unique_id_2 ) return true; | 
| 875 | < | } | 
| 872 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 873 | > | i != excludesForAtom[atom1].end(); ++i) { | 
| 874 | > | if ( (*i) == atom2 )  return true; | 
| 875 | > | } | 
| 876 |  |  | 
| 877 | + | return false; | 
| 878 |  | } | 
| 879 |  |  | 
| 880 |  |  | 
| 896 |  |  | 
| 897 |  | // filling interaction blocks with pointers | 
| 898 |  | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 899 | < | int atom1, int atom2) { | 
| 899 | > | int atom1, int atom2) { | 
| 900 | > |  | 
| 901 | > | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 902 | > |  | 
| 903 |  | #ifdef IS_MPI | 
| 904 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 905 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 906 | + | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 907 |  |  | 
| 783 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 784 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 785 | – |  | 
| 908 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 909 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 910 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 940 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 941 |  | } | 
| 942 |  |  | 
| 943 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 944 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 945 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 946 | + | } | 
| 947 | + |  | 
| 948 |  | #else | 
| 949 |  |  | 
| 950 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 951 | < | ff_->getAtomType(identsLocal[atom2]) ); | 
| 950 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 951 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 952 | > | //                         ff_->getAtomType(idents[atom2]) ); | 
| 953 |  |  | 
| 954 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 955 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 966 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 967 |  | } | 
| 968 |  |  | 
| 969 | < | if (storageLayout_ & DataStorage::dslDensity) { | 
| 969 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 970 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 971 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 972 |  | } | 
| 986 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 987 |  | } | 
| 988 |  |  | 
| 989 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 990 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 991 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 992 | + | } | 
| 993 |  | #endif | 
| 994 |  | } | 
| 995 |  |  | 
| 1002 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1003 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1004 |  | #else | 
| 1005 | < | longRangePot_ += *(idat.pot); | 
| 1006 | < |  | 
| 1005 | > | pairwisePot += *(idat.pot); | 
| 1006 | > |  | 
| 1007 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1008 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1009 |  | #endif | 
| 1010 | < |  | 
| 1010 | > |  | 
| 1011 |  | } | 
| 1012 |  |  | 
| 881 | – |  | 
| 882 | – | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, | 
| 883 | – | int atom1, int atom2) { | 
| 884 | – | #ifdef IS_MPI | 
| 885 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 886 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 887 | – |  | 
| 888 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 889 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 890 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 891 | – | } | 
| 892 | – | if (storageLayout_ & DataStorage::dslTorque) { | 
| 893 | – | idat.t1 = &(atomRowData.torque[atom1]); | 
| 894 | – | idat.t2 = &(atomColData.torque[atom2]); | 
| 895 | – | } | 
| 896 | – | #else | 
| 897 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 898 | – | ff_->getAtomType(identsLocal[atom2]) ); | 
| 899 | – |  | 
| 900 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 901 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 902 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 903 | – | } | 
| 904 | – | if (storageLayout_ & DataStorage::dslTorque) { | 
| 905 | – | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 906 | – | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 907 | – | } | 
| 908 | – | #endif | 
| 909 | – | } | 
| 910 | – |  | 
| 1013 |  | /* | 
| 1014 |  | * buildNeighborList | 
| 1015 |  | * | 
| 1020 |  |  | 
| 1021 |  | vector<pair<int, int> > neighborList; | 
| 1022 |  | groupCutoffs cuts; | 
| 1023 | + | bool doAllPairs = false; | 
| 1024 | + |  | 
| 1025 |  | #ifdef IS_MPI | 
| 1026 |  | cellListRow_.clear(); | 
| 1027 |  | cellListCol_.clear(); | 
| 1041 |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1042 |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1043 |  |  | 
| 1044 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1045 | + |  | 
| 1046 | + | if (nCells_.x() < 3) doAllPairs = true; | 
| 1047 | + | if (nCells_.y() < 3) doAllPairs = true; | 
| 1048 | + | if (nCells_.z() < 3) doAllPairs = true; | 
| 1049 | + |  | 
| 1050 |  | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1051 |  | Vector3d rs, scaled, dr; | 
| 1052 |  | Vector3i whichCell; | 
| 1060 |  | cellList_.resize(nCtot); | 
| 1061 |  | #endif | 
| 1062 |  |  | 
| 1063 | + | if (!doAllPairs) { | 
| 1064 |  | #ifdef IS_MPI | 
| 954 | – | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 955 | – | rs = cgRowData.position[i]; | 
| 1065 |  |  | 
| 1066 | < | // scaled positions relative to the box vectors | 
| 1067 | < | scaled = invHmat * rs; | 
| 1068 | < |  | 
| 1069 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1070 | < | // numbers | 
| 1071 | < | for (int j = 0; j < 3; j++) { | 
| 1072 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1073 | < | scaled[j] += 0.5; | 
| 1066 | > | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1067 | > | rs = cgRowData.position[i]; | 
| 1068 | > |  | 
| 1069 | > | // scaled positions relative to the box vectors | 
| 1070 | > | scaled = invHmat * rs; | 
| 1071 | > |  | 
| 1072 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1073 | > | // numbers | 
| 1074 | > | for (int j = 0; j < 3; j++) { | 
| 1075 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1076 | > | scaled[j] += 0.5; | 
| 1077 | > | } | 
| 1078 | > |  | 
| 1079 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1080 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1081 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1082 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1083 | > |  | 
| 1084 | > | // find single index of this cell: | 
| 1085 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1086 | > |  | 
| 1087 | > | // add this cutoff group to the list of groups in this cell; | 
| 1088 | > | cellListRow_[cellIndex].push_back(i); | 
| 1089 |  | } | 
| 1090 | < |  | 
| 1091 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 1092 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1093 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1094 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1095 | < |  | 
| 1096 | < | // find single index of this cell: | 
| 1097 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1098 | < |  | 
| 1099 | < | // add this cutoff group to the list of groups in this cell; | 
| 1100 | < | cellListRow_[cellIndex].push_back(i); | 
| 1101 | < | } | 
| 1102 | < |  | 
| 1103 | < | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1104 | < | rs = cgColData.position[i]; | 
| 1105 | < |  | 
| 1106 | < | // scaled positions relative to the box vectors | 
| 1107 | < | scaled = invHmat * rs; | 
| 1108 | < |  | 
| 1109 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1110 | < | // numbers | 
| 1111 | < | for (int j = 0; j < 3; j++) { | 
| 1112 | < | scaled[j] -= roundMe(scaled[j]); | 
| 989 | < | scaled[j] += 0.5; | 
| 1090 | > | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1091 | > | rs = cgColData.position[i]; | 
| 1092 | > |  | 
| 1093 | > | // scaled positions relative to the box vectors | 
| 1094 | > | scaled = invHmat * rs; | 
| 1095 | > |  | 
| 1096 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1097 | > | // numbers | 
| 1098 | > | for (int j = 0; j < 3; j++) { | 
| 1099 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1100 | > | scaled[j] += 0.5; | 
| 1101 | > | } | 
| 1102 | > |  | 
| 1103 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1104 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1105 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1106 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1107 | > |  | 
| 1108 | > | // find single index of this cell: | 
| 1109 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1110 | > |  | 
| 1111 | > | // add this cutoff group to the list of groups in this cell; | 
| 1112 | > | cellListCol_[cellIndex].push_back(i); | 
| 1113 |  | } | 
| 1114 | < |  | 
| 992 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 993 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 994 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 995 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 996 | < |  | 
| 997 | < | // find single index of this cell: | 
| 998 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 999 | < |  | 
| 1000 | < | // add this cutoff group to the list of groups in this cell; | 
| 1001 | < | cellListCol_[cellIndex].push_back(i); | 
| 1002 | < | } | 
| 1114 | > |  | 
| 1115 |  | #else | 
| 1116 | < | for (int i = 0; i < nGroups_; i++) { | 
| 1117 | < | rs = snap_->cgData.position[i]; | 
| 1118 | < |  | 
| 1119 | < | // scaled positions relative to the box vectors | 
| 1120 | < | scaled = invHmat * rs; | 
| 1121 | < |  | 
| 1122 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1123 | < | // numbers | 
| 1124 | < | for (int j = 0; j < 3; j++) { | 
| 1125 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1126 | < | scaled[j] += 0.5; | 
| 1116 | > | for (int i = 0; i < nGroups_; i++) { | 
| 1117 | > | rs = snap_->cgData.position[i]; | 
| 1118 | > |  | 
| 1119 | > | // scaled positions relative to the box vectors | 
| 1120 | > | scaled = invHmat * rs; | 
| 1121 | > |  | 
| 1122 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1123 | > | // numbers | 
| 1124 | > | for (int j = 0; j < 3; j++) { | 
| 1125 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1126 | > | scaled[j] += 0.5; | 
| 1127 | > | } | 
| 1128 | > |  | 
| 1129 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1130 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1131 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1132 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1133 | > |  | 
| 1134 | > | // find single index of this cell: | 
| 1135 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1136 | > |  | 
| 1137 | > | // add this cutoff group to the list of groups in this cell; | 
| 1138 | > | cellList_[cellIndex].push_back(i); | 
| 1139 |  | } | 
| 1140 |  |  | 
| 1017 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1018 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1019 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1020 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1021 | – |  | 
| 1022 | – | // find single index of this cell: | 
| 1023 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1024 | – |  | 
| 1025 | – | // add this cutoff group to the list of groups in this cell; | 
| 1026 | – | cellList_[cellIndex].push_back(i); | 
| 1027 | – | } | 
| 1141 |  | #endif | 
| 1142 |  |  | 
| 1143 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1144 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1145 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1146 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1147 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1035 | < |  | 
| 1036 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1037 | < | os != cellOffsets_.end(); ++os) { | 
| 1143 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1144 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1145 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1146 | > | Vector3i m1v(m1x, m1y, m1z); | 
| 1147 | > | int m1 = Vlinear(m1v, nCells_); | 
| 1148 |  |  | 
| 1149 | < | Vector3i m2v = m1v + (*os); | 
| 1150 | < |  | 
| 1151 | < | if (m2v.x() >= nCells_.x()) { | 
| 1152 | < | m2v.x() = 0; | 
| 1153 | < | } else if (m2v.x() < 0) { | 
| 1044 | < | m2v.x() = nCells_.x() - 1; | 
| 1045 | < | } | 
| 1046 | < |  | 
| 1047 | < | if (m2v.y() >= nCells_.y()) { | 
| 1048 | < | m2v.y() = 0; | 
| 1049 | < | } else if (m2v.y() < 0) { | 
| 1050 | < | m2v.y() = nCells_.y() - 1; | 
| 1051 | < | } | 
| 1052 | < |  | 
| 1053 | < | if (m2v.z() >= nCells_.z()) { | 
| 1054 | < | m2v.z() = 0; | 
| 1055 | < | } else if (m2v.z() < 0) { | 
| 1056 | < | m2v.z() = nCells_.z() - 1; | 
| 1057 | < | } | 
| 1058 | < |  | 
| 1059 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1149 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1150 | > | os != cellOffsets_.end(); ++os) { | 
| 1151 | > |  | 
| 1152 | > | Vector3i m2v = m1v + (*os); | 
| 1153 | > |  | 
| 1154 |  |  | 
| 1155 | < | #ifdef IS_MPI | 
| 1156 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1157 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1158 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1159 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1160 | < |  | 
| 1161 | < | // Always do this if we're in different cells or if | 
| 1162 | < | // we're in the same cell and the global index of the | 
| 1163 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1155 | > | if (m2v.x() >= nCells_.x()) { | 
| 1156 | > | m2v.x() = 0; | 
| 1157 | > | } else if (m2v.x() < 0) { | 
| 1158 | > | m2v.x() = nCells_.x() - 1; | 
| 1159 | > | } | 
| 1160 | > |  | 
| 1161 | > | if (m2v.y() >= nCells_.y()) { | 
| 1162 | > | m2v.y() = 0; | 
| 1163 | > | } else if (m2v.y() < 0) { | 
| 1164 | > | m2v.y() = nCells_.y() - 1; | 
| 1165 | > | } | 
| 1166 | > |  | 
| 1167 | > | if (m2v.z() >= nCells_.z()) { | 
| 1168 | > | m2v.z() = 0; | 
| 1169 | > | } else if (m2v.z() < 0) { | 
| 1170 | > | m2v.z() = nCells_.z() - 1; | 
| 1171 | > | } | 
| 1172 |  |  | 
| 1173 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1173 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1174 | > |  | 
| 1175 | > | #ifdef IS_MPI | 
| 1176 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1177 | > | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1178 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1179 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1180 | > |  | 
| 1181 | > | // In parallel, we need to visit *all* pairs of row | 
| 1182 | > | // & column indicies and will divide labor in the | 
| 1183 | > | // force evaluation later. | 
| 1184 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1185 |  | snap_->wrapVector(dr); | 
| 1186 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1187 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1188 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1189 | < | } | 
| 1189 | > | } | 
| 1190 |  | } | 
| 1191 |  | } | 
| 1080 | – | } | 
| 1192 |  | #else | 
| 1193 | < |  | 
| 1194 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1195 | < | j1 != cellList_[m1].end(); ++j1) { | 
| 1196 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1197 | < | j2 != cellList_[m2].end(); ++j2) { | 
| 1198 | < |  | 
| 1199 | < | // Always do this if we're in different cells or if | 
| 1200 | < | // we're in the same cell and the global index of the | 
| 1201 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1202 | < |  | 
| 1203 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1204 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1205 | < | snap_->wrapVector(dr); | 
| 1206 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1207 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1208 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1193 | > |  | 
| 1194 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1195 | > | j1 != cellList_[m1].end(); ++j1) { | 
| 1196 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1197 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1198 | > |  | 
| 1199 | > | // Always do this if we're in different cells or if | 
| 1200 | > | // we're in the same cell and the global index of the | 
| 1201 | > | // j2 cutoff group is less than the j1 cutoff group | 
| 1202 | > |  | 
| 1203 | > | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1204 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1205 | > | snap_->wrapVector(dr); | 
| 1206 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1207 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1208 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1209 | > | } | 
| 1210 |  | } | 
| 1211 |  | } | 
| 1212 |  | } | 
| 1101 | – | } | 
| 1213 |  | #endif | 
| 1214 | + | } | 
| 1215 |  | } | 
| 1216 |  | } | 
| 1217 |  | } | 
| 1218 | + | } else { | 
| 1219 | + | // branch to do all cutoff group pairs | 
| 1220 | + | #ifdef IS_MPI | 
| 1221 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1222 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1223 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1224 | + | snap_->wrapVector(dr); | 
| 1225 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1226 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1227 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1228 | + | } | 
| 1229 | + | } | 
| 1230 | + | } | 
| 1231 | + | #else | 
| 1232 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1233 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1234 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1235 | + | snap_->wrapVector(dr); | 
| 1236 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1237 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1238 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1239 | + | } | 
| 1240 | + | } | 
| 1241 | + | } | 
| 1242 | + | #endif | 
| 1243 |  | } | 
| 1244 | < |  | 
| 1244 | > |  | 
| 1245 |  | // save the local cutoff group positions for the check that is | 
| 1246 |  | // done on each loop: | 
| 1247 |  | saved_CG_positions_.clear(); |