| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 234 |  | } | 
| 235 |  | } | 
| 236 |  |  | 
| 237 | < | #endif | 
| 237 | < |  | 
| 238 | < | // allocate memory for the parallel objects | 
| 239 | < | atypesLocal.resize(nLocal_); | 
| 240 | < |  | 
| 241 | < | for (int i = 0; i < nLocal_; i++) | 
| 242 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 243 | < |  | 
| 244 | < | groupList_.clear(); | 
| 245 | < | groupList_.resize(nGroups_); | 
| 246 | < | for (int i = 0; i < nGroups_; i++) { | 
| 247 | < | int gid = cgLocalToGlobal[i]; | 
| 248 | < | for (int j = 0; j < nLocal_; j++) { | 
| 249 | < | int aid = AtomLocalToGlobal[j]; | 
| 250 | < | if (globalGroupMembership[aid] == gid) { | 
| 251 | < | groupList_[i].push_back(j); | 
| 252 | < | } | 
| 253 | < | } | 
| 254 | < | } | 
| 255 | < |  | 
| 237 | > | #else | 
| 238 |  | excludesForAtom.clear(); | 
| 239 |  | excludesForAtom.resize(nLocal_); | 
| 240 |  | toposForAtom.clear(); | 
| 267 |  | } | 
| 268 |  | } | 
| 269 |  | } | 
| 270 | < |  | 
| 270 | > | #endif | 
| 271 | > |  | 
| 272 | > | // allocate memory for the parallel objects | 
| 273 | > | atypesLocal.resize(nLocal_); | 
| 274 | > |  | 
| 275 | > | for (int i = 0; i < nLocal_; i++) | 
| 276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 277 | > |  | 
| 278 | > | groupList_.clear(); | 
| 279 | > | groupList_.resize(nGroups_); | 
| 280 | > | for (int i = 0; i < nGroups_; i++) { | 
| 281 | > | int gid = cgLocalToGlobal[i]; | 
| 282 | > | for (int j = 0; j < nLocal_; j++) { | 
| 283 | > | int aid = AtomLocalToGlobal[j]; | 
| 284 | > | if (globalGroupMembership[aid] == gid) { | 
| 285 | > | groupList_[i].push_back(j); | 
| 286 | > | } | 
| 287 | > | } | 
| 288 | > | } | 
| 289 | > |  | 
| 290 | > |  | 
| 291 |  | createGtypeCutoffMap(); | 
| 292 |  |  | 
| 293 |  | } | 
| 523 |  | atomRowData.skippedCharge.end(), 0.0); | 
| 524 |  | fill(atomColData.skippedCharge.begin(), | 
| 525 |  | atomColData.skippedCharge.end(), 0.0); | 
| 526 | + | } | 
| 527 | + |  | 
| 528 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 529 | + | fill(atomRowData.flucQFrc.begin(), | 
| 530 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 531 | + | fill(atomColData.flucQFrc.begin(), | 
| 532 | + | atomColData.flucQFrc.end(), 0.0); | 
| 533 | + | } | 
| 534 | + |  | 
| 535 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 536 | + | fill(atomRowData.electricField.begin(), | 
| 537 | + | atomRowData.electricField.end(), V3Zero); | 
| 538 | + | fill(atomColData.electricField.begin(), | 
| 539 | + | atomColData.electricField.end(), V3Zero); | 
| 540 |  | } | 
| 541 |  |  | 
| 542 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 543 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 544 | + | 0.0); | 
| 545 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 546 | + | 0.0); | 
| 547 | + | } | 
| 548 | + |  | 
| 549 |  | #endif | 
| 550 |  | // even in parallel, we need to zero out the local arrays: | 
| 551 |  |  | 
| 558 |  | fill(snap_->atomData.density.begin(), | 
| 559 |  | snap_->atomData.density.end(), 0.0); | 
| 560 |  | } | 
| 561 | + |  | 
| 562 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 563 |  | fill(snap_->atomData.functional.begin(), | 
| 564 |  | snap_->atomData.functional.end(), 0.0); | 
| 565 |  | } | 
| 566 | + |  | 
| 567 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 568 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 569 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 570 |  | } | 
| 571 | + |  | 
| 572 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 573 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 574 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 575 |  | } | 
| 576 | < |  | 
| 576 | > |  | 
| 577 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 578 | > | fill(snap_->atomData.electricField.begin(), | 
| 579 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 580 | > | } | 
| 581 |  | } | 
| 582 |  |  | 
| 583 |  |  | 
| 617 |  | atomColData.electroFrame); | 
| 618 |  | } | 
| 619 |  |  | 
| 620 | + | // if needed, gather the atomic fluctuating charge values | 
| 621 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 622 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 623 | + | atomRowData.flucQPos); | 
| 624 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 625 | + | atomColData.flucQPos); | 
| 626 | + | } | 
| 627 | + |  | 
| 628 |  | #endif | 
| 629 |  | } | 
| 630 |  |  | 
| 647 |  | for (int i = 0; i < n; i++) | 
| 648 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 649 |  | } | 
| 650 | + |  | 
| 651 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 652 | + |  | 
| 653 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 654 | + | snap_->atomData.electricField); | 
| 655 | + |  | 
| 656 | + | int n = snap_->atomData.electricField.size(); | 
| 657 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 658 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 659 | + | for (int i = 0; i < n; i++) | 
| 660 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 661 | + | } | 
| 662 |  | #endif | 
| 663 |  | } | 
| 664 |  |  | 
| 733 |  | } | 
| 734 |  |  | 
| 735 |  | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 736 | < | for (int i = 0; i < ns; i++) | 
| 736 | > | for (int i = 0; i < ns; i++) | 
| 737 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 738 | + |  | 
| 739 |  | } | 
| 740 |  |  | 
| 741 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 742 | + |  | 
| 743 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 744 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 745 | + |  | 
| 746 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 747 | + | for (int i = 0; i < nq; i++) { | 
| 748 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 749 | + | fqfrc_tmp[i] = 0.0; | 
| 750 | + | } | 
| 751 | + |  | 
| 752 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 753 | + | for (int i = 0; i < nq; i++) | 
| 754 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 755 | + |  | 
| 756 | + | } | 
| 757 | + |  | 
| 758 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 759 |  |  | 
| 760 |  | vector<potVec> pot_temp(nLocal_, | 
| 780 |  | RealType ploc2 = 0.0; | 
| 781 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 782 |  | pairwisePot[ii] = ploc2; | 
| 783 | + | } | 
| 784 | + |  | 
| 785 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 786 | + | RealType ploc1 = embeddingPot[ii]; | 
| 787 | + | RealType ploc2 = 0.0; | 
| 788 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 789 | + | embeddingPot[ii] = ploc2; | 
| 790 |  | } | 
| 791 |  |  | 
| 792 |  | #endif | 
| 901 |  | */ | 
| 902 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 903 |  | int unique_id_1, unique_id_2; | 
| 904 | < |  | 
| 904 | > |  | 
| 905 |  | #ifdef IS_MPI | 
| 906 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 907 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 908 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 909 | + | #else | 
| 910 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 911 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 912 | + | #endif | 
| 913 |  |  | 
| 835 | – | // this situation should only arise in MPI simulations | 
| 914 |  | if (unique_id_1 == unique_id_2) return true; | 
| 915 | < |  | 
| 915 | > |  | 
| 916 | > | #ifdef IS_MPI | 
| 917 |  | // this prevents us from doing the pair on multiple processors | 
| 918 |  | if (unique_id_1 < unique_id_2) { | 
| 919 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 920 |  | } else { | 
| 921 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 921 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 922 |  | } | 
| 923 |  | #endif | 
| 924 | + |  | 
| 925 |  | return false; | 
| 926 |  | } | 
| 927 |  |  | 
| 935 |  | * field) must still be handled for these pairs. | 
| 936 |  | */ | 
| 937 |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 938 | < | int unique_id_2; | 
| 939 | < | #ifdef IS_MPI | 
| 940 | < | // in MPI, we have to look up the unique IDs for the row atom. | 
| 861 | < | unique_id_2 = AtomColToGlobal[atom2]; | 
| 862 | < | #else | 
| 863 | < | // in the normal loop, the atom numbers are unique | 
| 864 | < | unique_id_2 = atom2; | 
| 865 | < | #endif | 
| 938 | > |  | 
| 939 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 940 | > | // version, and to use local IDs in the non-MPI version: | 
| 941 |  |  | 
| 942 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 943 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 944 | < | if ( (*i) == unique_id_2 ) return true; | 
| 944 | > | if ( (*i) == atom2 ) return true; | 
| 945 |  | } | 
| 946 |  |  | 
| 947 |  | return false; | 
| 1015 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1016 |  | } | 
| 1017 |  |  | 
| 1018 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1019 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1020 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1021 | + | } | 
| 1022 | + |  | 
| 1023 |  | #else | 
| 1024 | + |  | 
| 1025 |  |  | 
| 1026 | + | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1027 | + | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1028 | + | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1029 | + |  | 
| 1030 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1031 |  | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1032 |  | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1070 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1071 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1072 |  | } | 
| 1073 | + |  | 
| 1074 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1075 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1076 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1077 | + | } | 
| 1078 | + |  | 
| 1079 |  | #endif | 
| 1080 |  | } | 
| 1081 |  |  | 
| 1082 |  |  | 
| 1083 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1084 |  | #ifdef IS_MPI | 
| 1085 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1086 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1085 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1086 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1087 |  |  | 
| 1088 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1089 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1090 | + |  | 
| 1091 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1092 | + | atomRowData.flucQFrc[atom1] += *(idat.dVdFQ1); | 
| 1093 | + | atomColData.flucQFrc[atom2] += *(idat.dVdFQ2); | 
| 1094 | + | } | 
| 1095 | + |  | 
| 1096 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1097 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1098 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1099 | + | } | 
| 1100 | + |  | 
| 1101 | + | // should particle pot be done here also? | 
| 1102 |  | #else | 
| 1103 |  | pairwisePot += *(idat.pot); | 
| 1104 |  |  | 
| 1105 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1106 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1107 | + |  | 
| 1108 | + | if (idat.doParticlePot) { | 
| 1109 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1110 | + | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1111 | + | } | 
| 1112 | + |  | 
| 1113 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1114 | + | snap_->atomData.flucQFrc[atom1] += *(idat.dVdFQ1); | 
| 1115 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1116 | + | } | 
| 1117 | + |  | 
| 1118 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1119 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1120 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1121 | + | } | 
| 1122 | + |  | 
| 1123 |  | #endif | 
| 1124 |  |  | 
| 1125 |  | } | 
| 1304 |  | } | 
| 1305 |  | } | 
| 1306 |  | #else | 
| 1188 | – |  | 
| 1307 |  | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1308 |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1309 |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1310 |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1311 | < |  | 
| 1311 | > |  | 
| 1312 |  | // Always do this if we're in different cells or if | 
| 1313 | < | // we're in the same cell and the global index of the | 
| 1314 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1315 | < |  | 
| 1316 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1313 | > | // we're in the same cell and the global index of | 
| 1314 | > | // the j2 cutoff group is greater than or equal to | 
| 1315 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1316 | > | // has a "less than" conditional here, but that | 
| 1317 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1318 | > | // allows atoms within a single cutoff group to | 
| 1319 | > | // interact with each other. | 
| 1320 | > |  | 
| 1321 | > |  | 
| 1322 | > |  | 
| 1323 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1324 | > |  | 
| 1325 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1326 |  | snap_->wrapVector(dr); | 
| 1327 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1340 |  | // branch to do all cutoff group pairs | 
| 1341 |  | #ifdef IS_MPI | 
| 1342 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1343 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1343 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1344 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1345 |  | snap_->wrapVector(dr); | 
| 1346 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1348 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1349 |  | } | 
| 1350 |  | } | 
| 1351 | < | } | 
| 1351 | > | } | 
| 1352 |  | #else | 
| 1353 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1354 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1353 | > | // include all groups here. | 
| 1354 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1355 | > | // include self group interactions j2 == j1 | 
| 1356 | > | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1357 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1358 |  | snap_->wrapVector(dr); | 
| 1359 |  | cuts = getGroupCutoffs( j1, j2 ); | 
| 1360 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1361 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1362 |  | } | 
| 1363 | < | } | 
| 1364 | < | } | 
| 1363 | > | } | 
| 1364 | > | } | 
| 1365 |  | #endif | 
| 1366 |  | } | 
| 1367 |  |  |