| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | #include "math/SquareMatrix3.hpp" | 
| 43 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 | #include "brains/SnapshotManager.hpp" | 
| 45 | #include "brains/PairList.hpp" | 
| 46 |  | 
| 47 | using namespace std; | 
| 48 | namespace OpenMD { | 
| 49 |  | 
| 50 | /** | 
| 51 | * distributeInitialData is essentially a copy of the older fortran | 
| 52 | * SimulationSetup | 
| 53 | */ | 
| 54 |  | 
| 55 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 56 | snap_ = sman_->getCurrentSnapshot(); | 
| 57 | storageLayout_ = sman_->getStorageLayout(); | 
| 58 | ff_ = info_->getForceField(); | 
| 59 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 60 |  | 
| 61 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 62 | // gather the information for atomtype IDs (atids): | 
| 63 | idents = info_->getIdentArray(); | 
| 64 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 65 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 66 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 67 |  | 
| 68 | massFactors = info_->getMassFactors(); | 
| 69 |  | 
| 70 | PairList* excludes = info_->getExcludedInteractions(); | 
| 71 | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 72 | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 73 | PairList* oneFour = info_->getOneFourInteractions(); | 
| 74 |  | 
| 75 | #ifdef IS_MPI | 
| 76 |  | 
| 77 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 78 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 82 |  | 
| 83 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 84 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 85 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 86 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 87 | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 88 |  | 
| 89 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 90 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 91 | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 92 | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 93 |  | 
| 94 | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 95 | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 96 | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 97 | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 98 |  | 
| 99 | // Modify the data storage objects with the correct layouts and sizes: | 
| 100 | atomRowData.resize(nAtomsInRow_); | 
| 101 | atomRowData.setStorageLayout(storageLayout_); | 
| 102 | atomColData.resize(nAtomsInCol_); | 
| 103 | atomColData.setStorageLayout(storageLayout_); | 
| 104 | cgRowData.resize(nGroupsInRow_); | 
| 105 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 106 | cgColData.resize(nGroupsInCol_); | 
| 107 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 108 |  | 
| 109 | identsRow.resize(nAtomsInRow_); | 
| 110 | identsCol.resize(nAtomsInCol_); | 
| 111 |  | 
| 112 | AtomCommIntRow->gather(idents, identsRow); | 
| 113 | AtomCommIntColumn->gather(idents, identsCol); | 
| 114 |  | 
| 115 | vector<int>::iterator it; | 
| 116 | for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { | 
| 117 | cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; | 
| 118 | } | 
| 119 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 120 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 121 |  | 
| 122 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 123 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 124 |  | 
| 125 | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 126 | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 127 |  | 
| 128 | groupListRow_.clear(); | 
| 129 | groupListRow_.resize(nGroupsInRow_); | 
| 130 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 131 | int gid = cgRowToGlobal[i]; | 
| 132 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 133 | int aid = AtomRowToGlobal[j]; | 
| 134 | if (globalGroupMembership[aid] == gid) | 
| 135 | groupListRow_[i].push_back(j); | 
| 136 | } | 
| 137 | } | 
| 138 |  | 
| 139 | groupListCol_.clear(); | 
| 140 | groupListCol_.resize(nGroupsInCol_); | 
| 141 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 142 | int gid = cgColToGlobal[i]; | 
| 143 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 144 | int aid = AtomColToGlobal[j]; | 
| 145 | if (globalGroupMembership[aid] == gid) | 
| 146 | groupListCol_[i].push_back(j); | 
| 147 | } | 
| 148 | } | 
| 149 |  | 
| 150 | excludesForAtom.clear(); | 
| 151 | excludesForAtom.resize(nAtomsInRow_); | 
| 152 | toposForAtom.clear(); | 
| 153 | toposForAtom.resize(nAtomsInRow_); | 
| 154 | topoDist.clear(); | 
| 155 | topoDist.resize(nAtomsInRow_); | 
| 156 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 157 | int iglob = AtomRowToGlobal[i]; | 
| 158 |  | 
| 159 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 160 | int jglob = AtomColToGlobal[j]; | 
| 161 |  | 
| 162 | if (excludes->hasPair(iglob, jglob)) | 
| 163 | excludesForAtom[i].push_back(j); | 
| 164 |  | 
| 165 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 166 | toposForAtom[i].push_back(j); | 
| 167 | topoDist[i].push_back(1); | 
| 168 | } else { | 
| 169 | if (oneThree->hasPair(iglob, jglob)) { | 
| 170 | toposForAtom[i].push_back(j); | 
| 171 | topoDist[i].push_back(2); | 
| 172 | } else { | 
| 173 | if (oneFour->hasPair(iglob, jglob)) { | 
| 174 | toposForAtom[i].push_back(j); | 
| 175 | topoDist[i].push_back(3); | 
| 176 | } | 
| 177 | } | 
| 178 | } | 
| 179 | } | 
| 180 | } | 
| 181 |  | 
| 182 | #endif | 
| 183 |  | 
| 184 | groupList_.clear(); | 
| 185 | groupList_.resize(nGroups_); | 
| 186 | for (int i = 0; i < nGroups_; i++) { | 
| 187 | int gid = cgLocalToGlobal[i]; | 
| 188 | for (int j = 0; j < nLocal_; j++) { | 
| 189 | int aid = AtomLocalToGlobal[j]; | 
| 190 | if (globalGroupMembership[aid] == gid) { | 
| 191 | groupList_[i].push_back(j); | 
| 192 | } | 
| 193 | } | 
| 194 | } | 
| 195 |  | 
| 196 | excludesForAtom.clear(); | 
| 197 | excludesForAtom.resize(nLocal_); | 
| 198 | toposForAtom.clear(); | 
| 199 | toposForAtom.resize(nLocal_); | 
| 200 | topoDist.clear(); | 
| 201 | topoDist.resize(nLocal_); | 
| 202 |  | 
| 203 | for (int i = 0; i < nLocal_; i++) { | 
| 204 | int iglob = AtomLocalToGlobal[i]; | 
| 205 |  | 
| 206 | for (int j = 0; j < nLocal_; j++) { | 
| 207 | int jglob = AtomLocalToGlobal[j]; | 
| 208 |  | 
| 209 | if (excludes->hasPair(iglob, jglob)) | 
| 210 | excludesForAtom[i].push_back(j); | 
| 211 |  | 
| 212 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 213 | toposForAtom[i].push_back(j); | 
| 214 | topoDist[i].push_back(1); | 
| 215 | } else { | 
| 216 | if (oneThree->hasPair(iglob, jglob)) { | 
| 217 | toposForAtom[i].push_back(j); | 
| 218 | topoDist[i].push_back(2); | 
| 219 | } else { | 
| 220 | if (oneFour->hasPair(iglob, jglob)) { | 
| 221 | toposForAtom[i].push_back(j); | 
| 222 | topoDist[i].push_back(3); | 
| 223 | } | 
| 224 | } | 
| 225 | } | 
| 226 | } | 
| 227 | } | 
| 228 |  | 
| 229 | createGtypeCutoffMap(); | 
| 230 |  | 
| 231 | } | 
| 232 |  | 
| 233 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 234 |  | 
| 235 | RealType tol = 1e-6; | 
| 236 | RealType rc; | 
| 237 | int atid; | 
| 238 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 239 | map<int, RealType> atypeCutoff; | 
| 240 |  | 
| 241 | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 242 | at != atypes.end(); ++at){ | 
| 243 | atid = (*at)->getIdent(); | 
| 244 | if (userChoseCutoff_) | 
| 245 | atypeCutoff[atid] = userCutoff_; | 
| 246 | else | 
| 247 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 248 | } | 
| 249 |  | 
| 250 | vector<RealType> gTypeCutoffs; | 
| 251 | // first we do a single loop over the cutoff groups to find the | 
| 252 | // largest cutoff for any atypes present in this group. | 
| 253 | #ifdef IS_MPI | 
| 254 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 255 | groupRowToGtype.resize(nGroupsInRow_); | 
| 256 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 257 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 258 | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 259 | ia != atomListRow.end(); ++ia) { | 
| 260 | int atom1 = (*ia); | 
| 261 | atid = identsRow[atom1]; | 
| 262 | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 263 | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 264 | } | 
| 265 | } | 
| 266 |  | 
| 267 | bool gTypeFound = false; | 
| 268 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 269 | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 270 | groupRowToGtype[cg1] = gt; | 
| 271 | gTypeFound = true; | 
| 272 | } | 
| 273 | } | 
| 274 | if (!gTypeFound) { | 
| 275 | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 276 | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 277 | } | 
| 278 |  | 
| 279 | } | 
| 280 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 281 | groupColToGtype.resize(nGroupsInCol_); | 
| 282 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 283 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 284 | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 285 | jb != atomListCol.end(); ++jb) { | 
| 286 | int atom2 = (*jb); | 
| 287 | atid = identsCol[atom2]; | 
| 288 | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 289 | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 290 | } | 
| 291 | } | 
| 292 | bool gTypeFound = false; | 
| 293 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 294 | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 295 | groupColToGtype[cg2] = gt; | 
| 296 | gTypeFound = true; | 
| 297 | } | 
| 298 | } | 
| 299 | if (!gTypeFound) { | 
| 300 | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 301 | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 302 | } | 
| 303 | } | 
| 304 | #else | 
| 305 |  | 
| 306 | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 307 | groupToGtype.resize(nGroups_); | 
| 308 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 309 |  | 
| 310 | groupCutoff[cg1] = 0.0; | 
| 311 | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 312 |  | 
| 313 | for (vector<int>::iterator ia = atomList.begin(); | 
| 314 | ia != atomList.end(); ++ia) { | 
| 315 | int atom1 = (*ia); | 
| 316 | atid = idents[atom1]; | 
| 317 | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 318 | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 319 | } | 
| 320 | } | 
| 321 |  | 
| 322 | bool gTypeFound = false; | 
| 323 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 324 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 325 | groupToGtype[cg1] = gt; | 
| 326 | gTypeFound = true; | 
| 327 | } | 
| 328 | } | 
| 329 | if (!gTypeFound) { | 
| 330 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 331 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 332 | } | 
| 333 | } | 
| 334 | #endif | 
| 335 |  | 
| 336 | // Now we find the maximum group cutoff value present in the simulation | 
| 337 |  | 
| 338 | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 339 |  | 
| 340 | #ifdef IS_MPI | 
| 341 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 342 | #endif | 
| 343 |  | 
| 344 | RealType tradRcut = groupMax; | 
| 345 |  | 
| 346 | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 347 | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 348 | RealType thisRcut; | 
| 349 | switch(cutoffPolicy_) { | 
| 350 | case TRADITIONAL: | 
| 351 | thisRcut = tradRcut; | 
| 352 | break; | 
| 353 | case MIX: | 
| 354 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 355 | break; | 
| 356 | case MAX: | 
| 357 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 358 | break; | 
| 359 | default: | 
| 360 | sprintf(painCave.errMsg, | 
| 361 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 362 | "hit an unknown cutoff policy!\n"); | 
| 363 | painCave.severity = OPENMD_ERROR; | 
| 364 | painCave.isFatal = 1; | 
| 365 | simError(); | 
| 366 | break; | 
| 367 | } | 
| 368 |  | 
| 369 | pair<int,int> key = make_pair(i,j); | 
| 370 | gTypeCutoffMap[key].first = thisRcut; | 
| 371 |  | 
| 372 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 373 |  | 
| 374 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 375 |  | 
| 376 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 377 |  | 
| 378 | // sanity check | 
| 379 |  | 
| 380 | if (userChoseCutoff_) { | 
| 381 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 382 | sprintf(painCave.errMsg, | 
| 383 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 384 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 385 | painCave.severity = OPENMD_ERROR; | 
| 386 | painCave.isFatal = 1; | 
| 387 | simError(); | 
| 388 | } | 
| 389 | } | 
| 390 | } | 
| 391 | } | 
| 392 | } | 
| 393 |  | 
| 394 |  | 
| 395 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 396 | int i, j; | 
| 397 | #ifdef IS_MPI | 
| 398 | i = groupRowToGtype[cg1]; | 
| 399 | j = groupColToGtype[cg2]; | 
| 400 | #else | 
| 401 | i = groupToGtype[cg1]; | 
| 402 | j = groupToGtype[cg2]; | 
| 403 | #endif | 
| 404 | return gTypeCutoffMap[make_pair(i,j)]; | 
| 405 | } | 
| 406 |  | 
| 407 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 408 | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 409 | if (toposForAtom[atom1][j] == atom2) | 
| 410 | return topoDist[atom1][j]; | 
| 411 | } | 
| 412 | return 0; | 
| 413 | } | 
| 414 |  | 
| 415 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 416 | pairwisePot = 0.0; | 
| 417 | embeddingPot = 0.0; | 
| 418 |  | 
| 419 | #ifdef IS_MPI | 
| 420 | if (storageLayout_ & DataStorage::dslForce) { | 
| 421 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 422 | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 423 | } | 
| 424 |  | 
| 425 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 426 | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 427 | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 428 | } | 
| 429 |  | 
| 430 | fill(pot_row.begin(), pot_row.end(), | 
| 431 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 432 |  | 
| 433 | fill(pot_col.begin(), pot_col.end(), | 
| 434 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 435 |  | 
| 436 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 437 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 438 | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 439 | } | 
| 440 |  | 
| 441 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 442 | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 443 | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 444 | } | 
| 445 |  | 
| 446 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 447 | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 448 | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 449 | } | 
| 450 |  | 
| 451 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 452 | fill(atomRowData.functionalDerivative.begin(), | 
| 453 | atomRowData.functionalDerivative.end(), 0.0); | 
| 454 | fill(atomColData.functionalDerivative.begin(), | 
| 455 | atomColData.functionalDerivative.end(), 0.0); | 
| 456 | } | 
| 457 |  | 
| 458 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 459 | fill(atomRowData.skippedCharge.begin(), | 
| 460 | atomRowData.skippedCharge.end(), 0.0); | 
| 461 | fill(atomColData.skippedCharge.begin(), | 
| 462 | atomColData.skippedCharge.end(), 0.0); | 
| 463 | } | 
| 464 |  | 
| 465 | #else | 
| 466 |  | 
| 467 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 468 | fill(snap_->atomData.particlePot.begin(), | 
| 469 | snap_->atomData.particlePot.end(), 0.0); | 
| 470 | } | 
| 471 |  | 
| 472 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 473 | fill(snap_->atomData.density.begin(), | 
| 474 | snap_->atomData.density.end(), 0.0); | 
| 475 | } | 
| 476 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 477 | fill(snap_->atomData.functional.begin(), | 
| 478 | snap_->atomData.functional.end(), 0.0); | 
| 479 | } | 
| 480 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 481 | fill(snap_->atomData.functionalDerivative.begin(), | 
| 482 | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 483 | } | 
| 484 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 485 | fill(snap_->atomData.skippedCharge.begin(), | 
| 486 | snap_->atomData.skippedCharge.end(), 0.0); | 
| 487 | } | 
| 488 | #endif | 
| 489 |  | 
| 490 | } | 
| 491 |  | 
| 492 |  | 
| 493 | void ForceMatrixDecomposition::distributeData()  { | 
| 494 | snap_ = sman_->getCurrentSnapshot(); | 
| 495 | storageLayout_ = sman_->getStorageLayout(); | 
| 496 | #ifdef IS_MPI | 
| 497 |  | 
| 498 | // gather up the atomic positions | 
| 499 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 500 | atomRowData.position); | 
| 501 | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 502 | atomColData.position); | 
| 503 |  | 
| 504 | // gather up the cutoff group positions | 
| 505 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 506 | cgRowData.position); | 
| 507 | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 508 | cgColData.position); | 
| 509 |  | 
| 510 | // if needed, gather the atomic rotation matrices | 
| 511 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 512 | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 513 | atomRowData.aMat); | 
| 514 | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 515 | atomColData.aMat); | 
| 516 | } | 
| 517 |  | 
| 518 | // if needed, gather the atomic eletrostatic frames | 
| 519 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 520 | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 521 | atomRowData.electroFrame); | 
| 522 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 523 | atomColData.electroFrame); | 
| 524 | } | 
| 525 | #endif | 
| 526 | } | 
| 527 |  | 
| 528 | /* collects information obtained during the pre-pair loop onto local | 
| 529 | * data structures. | 
| 530 | */ | 
| 531 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 532 | snap_ = sman_->getCurrentSnapshot(); | 
| 533 | storageLayout_ = sman_->getStorageLayout(); | 
| 534 | #ifdef IS_MPI | 
| 535 |  | 
| 536 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 537 |  | 
| 538 | AtomCommRealRow->scatter(atomRowData.density, | 
| 539 | snap_->atomData.density); | 
| 540 |  | 
| 541 | int n = snap_->atomData.density.size(); | 
| 542 | vector<RealType> rho_tmp(n, 0.0); | 
| 543 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 544 | for (int i = 0; i < n; i++) | 
| 545 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 546 | } | 
| 547 | #endif | 
| 548 | } | 
| 549 |  | 
| 550 | /* | 
| 551 | * redistributes information obtained during the pre-pair loop out to | 
| 552 | * row and column-indexed data structures | 
| 553 | */ | 
| 554 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 555 | snap_ = sman_->getCurrentSnapshot(); | 
| 556 | storageLayout_ = sman_->getStorageLayout(); | 
| 557 | #ifdef IS_MPI | 
| 558 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 559 | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 560 | atomRowData.functional); | 
| 561 | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 562 | atomColData.functional); | 
| 563 | } | 
| 564 |  | 
| 565 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 566 | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 567 | atomRowData.functionalDerivative); | 
| 568 | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 569 | atomColData.functionalDerivative); | 
| 570 | } | 
| 571 | #endif | 
| 572 | } | 
| 573 |  | 
| 574 |  | 
| 575 | void ForceMatrixDecomposition::collectData() { | 
| 576 | snap_ = sman_->getCurrentSnapshot(); | 
| 577 | storageLayout_ = sman_->getStorageLayout(); | 
| 578 | #ifdef IS_MPI | 
| 579 | int n = snap_->atomData.force.size(); | 
| 580 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 581 |  | 
| 582 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 583 | for (int i = 0; i < n; i++) { | 
| 584 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 585 | frc_tmp[i] = 0.0; | 
| 586 | } | 
| 587 |  | 
| 588 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 589 | for (int i = 0; i < n; i++) | 
| 590 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 591 |  | 
| 592 |  | 
| 593 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 594 |  | 
| 595 | int nt = snap_->atomData.torque.size(); | 
| 596 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 597 |  | 
| 598 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 599 | for (int i = 0; i < nt; i++) { | 
| 600 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 601 | trq_tmp[i] = 0.0; | 
| 602 | } | 
| 603 |  | 
| 604 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 605 | for (int i = 0; i < nt; i++) | 
| 606 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 607 | } | 
| 608 |  | 
| 609 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 610 |  | 
| 611 | int ns = snap_->atomData.skippedCharge.size(); | 
| 612 | vector<RealType> skch_tmp(ns, 0.0); | 
| 613 |  | 
| 614 | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 615 | for (int i = 0; i < ns; i++) { | 
| 616 | snap_->atomData.skippedCharge[i] = skch_tmp[i]; | 
| 617 | skch_tmp[i] = 0.0; | 
| 618 | } | 
| 619 |  | 
| 620 | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 621 | for (int i = 0; i < ns; i++) | 
| 622 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 623 | } | 
| 624 |  | 
| 625 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 626 |  | 
| 627 | vector<potVec> pot_temp(nLocal_, | 
| 628 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 629 |  | 
| 630 | // scatter/gather pot_row into the members of my column | 
| 631 |  | 
| 632 | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 633 |  | 
| 634 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 635 | pairwisePot += pot_temp[ii]; | 
| 636 |  | 
| 637 | fill(pot_temp.begin(), pot_temp.end(), | 
| 638 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 639 |  | 
| 640 | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 641 |  | 
| 642 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 643 | pairwisePot += pot_temp[ii]; | 
| 644 | #endif | 
| 645 |  | 
| 646 | } | 
| 647 |  | 
| 648 | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 649 | #ifdef IS_MPI | 
| 650 | return nAtomsInRow_; | 
| 651 | #else | 
| 652 | return nLocal_; | 
| 653 | #endif | 
| 654 | } | 
| 655 |  | 
| 656 | /** | 
| 657 | * returns the list of atoms belonging to this group. | 
| 658 | */ | 
| 659 | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 660 | #ifdef IS_MPI | 
| 661 | return groupListRow_[cg1]; | 
| 662 | #else | 
| 663 | return groupList_[cg1]; | 
| 664 | #endif | 
| 665 | } | 
| 666 |  | 
| 667 | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 668 | #ifdef IS_MPI | 
| 669 | return groupListCol_[cg2]; | 
| 670 | #else | 
| 671 | return groupList_[cg2]; | 
| 672 | #endif | 
| 673 | } | 
| 674 |  | 
| 675 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 676 | Vector3d d; | 
| 677 |  | 
| 678 | #ifdef IS_MPI | 
| 679 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 680 | #else | 
| 681 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 682 | #endif | 
| 683 |  | 
| 684 | snap_->wrapVector(d); | 
| 685 | return d; | 
| 686 | } | 
| 687 |  | 
| 688 |  | 
| 689 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 690 |  | 
| 691 | Vector3d d; | 
| 692 |  | 
| 693 | #ifdef IS_MPI | 
| 694 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 695 | #else | 
| 696 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 697 | #endif | 
| 698 |  | 
| 699 | snap_->wrapVector(d); | 
| 700 | return d; | 
| 701 | } | 
| 702 |  | 
| 703 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 704 | Vector3d d; | 
| 705 |  | 
| 706 | #ifdef IS_MPI | 
| 707 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 708 | #else | 
| 709 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 710 | #endif | 
| 711 |  | 
| 712 | snap_->wrapVector(d); | 
| 713 | return d; | 
| 714 | } | 
| 715 |  | 
| 716 | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 717 | #ifdef IS_MPI | 
| 718 | return massFactorsRow[atom1]; | 
| 719 | #else | 
| 720 | return massFactors[atom1]; | 
| 721 | #endif | 
| 722 | } | 
| 723 |  | 
| 724 | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 725 | #ifdef IS_MPI | 
| 726 | return massFactorsCol[atom2]; | 
| 727 | #else | 
| 728 | return massFactors[atom2]; | 
| 729 | #endif | 
| 730 |  | 
| 731 | } | 
| 732 |  | 
| 733 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 734 | Vector3d d; | 
| 735 |  | 
| 736 | #ifdef IS_MPI | 
| 737 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 738 | #else | 
| 739 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 740 | #endif | 
| 741 |  | 
| 742 | snap_->wrapVector(d); | 
| 743 | return d; | 
| 744 | } | 
| 745 |  | 
| 746 | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 747 | return excludesForAtom[atom1]; | 
| 748 | } | 
| 749 |  | 
| 750 | /** | 
| 751 | * We need to exclude some overcounted interactions that result from | 
| 752 | * the parallel decomposition. | 
| 753 | */ | 
| 754 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 755 | int unique_id_1, unique_id_2; | 
| 756 |  | 
| 757 | #ifdef IS_MPI | 
| 758 | // in MPI, we have to look up the unique IDs for each atom | 
| 759 | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 760 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 761 |  | 
| 762 | // this situation should only arise in MPI simulations | 
| 763 | if (unique_id_1 == unique_id_2) return true; | 
| 764 |  | 
| 765 | // this prevents us from doing the pair on multiple processors | 
| 766 | if (unique_id_1 < unique_id_2) { | 
| 767 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 768 | } else { | 
| 769 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 770 | } | 
| 771 | #endif | 
| 772 | return false; | 
| 773 | } | 
| 774 |  | 
| 775 | /** | 
| 776 | * We need to handle the interactions for atoms who are involved in | 
| 777 | * the same rigid body as well as some short range interactions | 
| 778 | * (bonds, bends, torsions) differently from other interactions. | 
| 779 | * We'll still visit the pairwise routines, but with a flag that | 
| 780 | * tells those routines to exclude the pair from direct long range | 
| 781 | * interactions.  Some indirect interactions (notably reaction | 
| 782 | * field) must still be handled for these pairs. | 
| 783 | */ | 
| 784 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 785 | int unique_id_2; | 
| 786 |  | 
| 787 | #ifdef IS_MPI | 
| 788 | // in MPI, we have to look up the unique IDs for the row atom. | 
| 789 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 790 | #else | 
| 791 | // in the normal loop, the atom numbers are unique | 
| 792 | unique_id_2 = atom2; | 
| 793 | #endif | 
| 794 |  | 
| 795 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 796 | i != excludesForAtom[atom1].end(); ++i) { | 
| 797 | if ( (*i) == unique_id_2 ) return true; | 
| 798 | } | 
| 799 |  | 
| 800 | return false; | 
| 801 | } | 
| 802 |  | 
| 803 |  | 
| 804 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 805 | #ifdef IS_MPI | 
| 806 | atomRowData.force[atom1] += fg; | 
| 807 | #else | 
| 808 | snap_->atomData.force[atom1] += fg; | 
| 809 | #endif | 
| 810 | } | 
| 811 |  | 
| 812 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 813 | #ifdef IS_MPI | 
| 814 | atomColData.force[atom2] += fg; | 
| 815 | #else | 
| 816 | snap_->atomData.force[atom2] += fg; | 
| 817 | #endif | 
| 818 | } | 
| 819 |  | 
| 820 | // filling interaction blocks with pointers | 
| 821 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 822 | int atom1, int atom2) { | 
| 823 |  | 
| 824 | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 825 |  | 
| 826 | #ifdef IS_MPI | 
| 827 |  | 
| 828 | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 829 | ff_->getAtomType(identsCol[atom2]) ); | 
| 830 |  | 
| 831 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 832 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 833 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 834 | } | 
| 835 |  | 
| 836 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 837 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 838 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 839 | } | 
| 840 |  | 
| 841 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 842 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 843 | idat.t2 = &(atomColData.torque[atom2]); | 
| 844 | } | 
| 845 |  | 
| 846 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 847 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 848 | idat.rho2 = &(atomColData.density[atom2]); | 
| 849 | } | 
| 850 |  | 
| 851 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 852 | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 853 | idat.frho2 = &(atomColData.functional[atom2]); | 
| 854 | } | 
| 855 |  | 
| 856 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 857 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 858 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 859 | } | 
| 860 |  | 
| 861 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 862 | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 863 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 864 | } | 
| 865 |  | 
| 866 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 867 | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 868 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 869 | } | 
| 870 |  | 
| 871 | #else | 
| 872 |  | 
| 873 | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 874 | ff_->getAtomType(idents[atom2]) ); | 
| 875 |  | 
| 876 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 877 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 878 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 879 | } | 
| 880 |  | 
| 881 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 882 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 883 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 884 | } | 
| 885 |  | 
| 886 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 887 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 888 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 889 | } | 
| 890 |  | 
| 891 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 892 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 893 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 894 | } | 
| 895 |  | 
| 896 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 897 | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 898 | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 899 | } | 
| 900 |  | 
| 901 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 902 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 903 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 904 | } | 
| 905 |  | 
| 906 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 907 | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 908 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 909 | } | 
| 910 |  | 
| 911 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 912 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 913 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 914 | } | 
| 915 | #endif | 
| 916 | } | 
| 917 |  | 
| 918 |  | 
| 919 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 920 | #ifdef IS_MPI | 
| 921 | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 922 | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 923 |  | 
| 924 | atomRowData.force[atom1] += *(idat.f1); | 
| 925 | atomColData.force[atom2] -= *(idat.f1); | 
| 926 | #else | 
| 927 | pairwisePot += *(idat.pot); | 
| 928 |  | 
| 929 | snap_->atomData.force[atom1] += *(idat.f1); | 
| 930 | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 931 | #endif | 
| 932 |  | 
| 933 | } | 
| 934 |  | 
| 935 | /* | 
| 936 | * buildNeighborList | 
| 937 | * | 
| 938 | * first element of pair is row-indexed CutoffGroup | 
| 939 | * second element of pair is column-indexed CutoffGroup | 
| 940 | */ | 
| 941 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 942 |  | 
| 943 | vector<pair<int, int> > neighborList; | 
| 944 | groupCutoffs cuts; | 
| 945 | bool doAllPairs = false; | 
| 946 |  | 
| 947 | #ifdef IS_MPI | 
| 948 | cellListRow_.clear(); | 
| 949 | cellListCol_.clear(); | 
| 950 | #else | 
| 951 | cellList_.clear(); | 
| 952 | #endif | 
| 953 |  | 
| 954 | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 955 | RealType rl2 = rList_ * rList_; | 
| 956 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 957 | Mat3x3d Hmat = snap_->getHmat(); | 
| 958 | Vector3d Hx = Hmat.getColumn(0); | 
| 959 | Vector3d Hy = Hmat.getColumn(1); | 
| 960 | Vector3d Hz = Hmat.getColumn(2); | 
| 961 |  | 
| 962 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 963 | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 964 | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 965 |  | 
| 966 | // handle small boxes where the cell offsets can end up repeating cells | 
| 967 |  | 
| 968 | if (nCells_.x() < 3) doAllPairs = true; | 
| 969 | if (nCells_.y() < 3) doAllPairs = true; | 
| 970 | if (nCells_.z() < 3) doAllPairs = true; | 
| 971 |  | 
| 972 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 973 | Vector3d rs, scaled, dr; | 
| 974 | Vector3i whichCell; | 
| 975 | int cellIndex; | 
| 976 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 977 |  | 
| 978 | #ifdef IS_MPI | 
| 979 | cellListRow_.resize(nCtot); | 
| 980 | cellListCol_.resize(nCtot); | 
| 981 | #else | 
| 982 | cellList_.resize(nCtot); | 
| 983 | #endif | 
| 984 |  | 
| 985 | if (!doAllPairs) { | 
| 986 | #ifdef IS_MPI | 
| 987 |  | 
| 988 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 989 | rs = cgRowData.position[i]; | 
| 990 |  | 
| 991 | // scaled positions relative to the box vectors | 
| 992 | scaled = invHmat * rs; | 
| 993 |  | 
| 994 | // wrap the vector back into the unit box by subtracting integer box | 
| 995 | // numbers | 
| 996 | for (int j = 0; j < 3; j++) { | 
| 997 | scaled[j] -= roundMe(scaled[j]); | 
| 998 | scaled[j] += 0.5; | 
| 999 | } | 
| 1000 |  | 
| 1001 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1002 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1003 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1004 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1005 |  | 
| 1006 | // find single index of this cell: | 
| 1007 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1008 |  | 
| 1009 | // add this cutoff group to the list of groups in this cell; | 
| 1010 | cellListRow_[cellIndex].push_back(i); | 
| 1011 | } | 
| 1012 |  | 
| 1013 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1014 | rs = cgColData.position[i]; | 
| 1015 |  | 
| 1016 | // scaled positions relative to the box vectors | 
| 1017 | scaled = invHmat * rs; | 
| 1018 |  | 
| 1019 | // wrap the vector back into the unit box by subtracting integer box | 
| 1020 | // numbers | 
| 1021 | for (int j = 0; j < 3; j++) { | 
| 1022 | scaled[j] -= roundMe(scaled[j]); | 
| 1023 | scaled[j] += 0.5; | 
| 1024 | } | 
| 1025 |  | 
| 1026 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1027 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1028 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1029 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1030 |  | 
| 1031 | // find single index of this cell: | 
| 1032 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1033 |  | 
| 1034 | // add this cutoff group to the list of groups in this cell; | 
| 1035 | cellListCol_[cellIndex].push_back(i); | 
| 1036 | } | 
| 1037 | #else | 
| 1038 | for (int i = 0; i < nGroups_; i++) { | 
| 1039 | rs = snap_->cgData.position[i]; | 
| 1040 |  | 
| 1041 | // scaled positions relative to the box vectors | 
| 1042 | scaled = invHmat * rs; | 
| 1043 |  | 
| 1044 | // wrap the vector back into the unit box by subtracting integer box | 
| 1045 | // numbers | 
| 1046 | for (int j = 0; j < 3; j++) { | 
| 1047 | scaled[j] -= roundMe(scaled[j]); | 
| 1048 | scaled[j] += 0.5; | 
| 1049 | } | 
| 1050 |  | 
| 1051 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1052 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1053 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1054 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1055 |  | 
| 1056 | // find single index of this cell: | 
| 1057 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1058 |  | 
| 1059 | // add this cutoff group to the list of groups in this cell; | 
| 1060 | cellList_[cellIndex].push_back(i); | 
| 1061 | } | 
| 1062 | #endif | 
| 1063 |  | 
| 1064 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1065 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1066 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1067 | Vector3i m1v(m1x, m1y, m1z); | 
| 1068 | int m1 = Vlinear(m1v, nCells_); | 
| 1069 |  | 
| 1070 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1071 | os != cellOffsets_.end(); ++os) { | 
| 1072 |  | 
| 1073 | Vector3i m2v = m1v + (*os); | 
| 1074 |  | 
| 1075 | if (m2v.x() >= nCells_.x()) { | 
| 1076 | m2v.x() = 0; | 
| 1077 | } else if (m2v.x() < 0) { | 
| 1078 | m2v.x() = nCells_.x() - 1; | 
| 1079 | } | 
| 1080 |  | 
| 1081 | if (m2v.y() >= nCells_.y()) { | 
| 1082 | m2v.y() = 0; | 
| 1083 | } else if (m2v.y() < 0) { | 
| 1084 | m2v.y() = nCells_.y() - 1; | 
| 1085 | } | 
| 1086 |  | 
| 1087 | if (m2v.z() >= nCells_.z()) { | 
| 1088 | m2v.z() = 0; | 
| 1089 | } else if (m2v.z() < 0) { | 
| 1090 | m2v.z() = nCells_.z() - 1; | 
| 1091 | } | 
| 1092 |  | 
| 1093 | int m2 = Vlinear (m2v, nCells_); | 
| 1094 |  | 
| 1095 | #ifdef IS_MPI | 
| 1096 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1097 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1098 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1099 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1100 |  | 
| 1101 | // Always do this if we're in different cells or if | 
| 1102 | // we're in the same cell and the global index of the | 
| 1103 | // j2 cutoff group is less than the j1 cutoff group | 
| 1104 |  | 
| 1105 | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1106 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1107 | snap_->wrapVector(dr); | 
| 1108 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1109 | if (dr.lengthSquare() < cuts.third) { | 
| 1110 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1111 | } | 
| 1112 | } | 
| 1113 | } | 
| 1114 | } | 
| 1115 | #else | 
| 1116 |  | 
| 1117 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1118 | j1 != cellList_[m1].end(); ++j1) { | 
| 1119 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1120 | j2 != cellList_[m2].end(); ++j2) { | 
| 1121 |  | 
| 1122 | // Always do this if we're in different cells or if | 
| 1123 | // we're in the same cell and the global index of the | 
| 1124 | // j2 cutoff group is less than the j1 cutoff group | 
| 1125 |  | 
| 1126 | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1127 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1128 | snap_->wrapVector(dr); | 
| 1129 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1130 | if (dr.lengthSquare() < cuts.third) { | 
| 1131 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1132 | } | 
| 1133 | } | 
| 1134 | } | 
| 1135 | } | 
| 1136 | #endif | 
| 1137 | } | 
| 1138 | } | 
| 1139 | } | 
| 1140 | } | 
| 1141 | } else { | 
| 1142 | // branch to do all cutoff group pairs | 
| 1143 | #ifdef IS_MPI | 
| 1144 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1145 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1146 | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1147 | snap_->wrapVector(dr); | 
| 1148 | cuts = getGroupCutoffs( j1, j2 ); | 
| 1149 | if (dr.lengthSquare() < cuts.third) { | 
| 1150 | neighborList.push_back(make_pair(j1, j2)); | 
| 1151 | } | 
| 1152 | } | 
| 1153 | } | 
| 1154 | #else | 
| 1155 | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1156 | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1157 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1158 | snap_->wrapVector(dr); | 
| 1159 | cuts = getGroupCutoffs( j1, j2 ); | 
| 1160 | if (dr.lengthSquare() < cuts.third) { | 
| 1161 | neighborList.push_back(make_pair(j1, j2)); | 
| 1162 | } | 
| 1163 | } | 
| 1164 | } | 
| 1165 | #endif | 
| 1166 | } | 
| 1167 |  | 
| 1168 | // save the local cutoff group positions for the check that is | 
| 1169 | // done on each loop: | 
| 1170 | saved_CG_positions_.clear(); | 
| 1171 | for (int i = 0; i < nGroups_; i++) | 
| 1172 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1173 |  | 
| 1174 | return neighborList; | 
| 1175 | } | 
| 1176 | } //end namespace OpenMD |