| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 |  |  | 
| 51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | + |  | 
| 53 | + | // In a parallel computation, row and colum scans must visit all | 
| 54 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | + | // are used when the processor can see all pairs) | 
| 56 | + | #ifdef IS_MPI | 
| 57 | + | cellOffsets_.clear(); | 
| 58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | + | #endif | 
| 86 | + | } | 
| 87 | + |  | 
| 88 | + |  | 
| 89 |  | /** | 
| 90 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  | * SimulationSetup | 
| 92 |  | */ | 
| 54 | – |  | 
| 93 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 | < | identsLocal = info_->getIdentArray(); | 
| 101 | > | idents = info_->getIdentArray(); | 
| 102 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 103 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 104 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 67 | – | vector<RealType> massFactorsLocal = info_->getMassFactors(); | 
| 68 | – | PairList excludes = info_->getExcludedInteractions(); | 
| 69 | – | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 70 | – | PairList oneThree = info_->getOneThreeInteractions(); | 
| 71 | – | PairList oneFour = info_->getOneFourInteractions(); | 
| 105 |  |  | 
| 106 | + | massFactors = info_->getMassFactors(); | 
| 107 | + |  | 
| 108 | + | PairList* excludes = info_->getExcludedInteractions(); | 
| 109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 | + | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 | + | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | + |  | 
| 113 |  | #ifdef IS_MPI | 
| 114 |  |  | 
| 115 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 116 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 77 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 78 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 79 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 115 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 116 | > | MPI::Intracomm col = colComm.getComm(); | 
| 117 |  |  | 
| 118 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 119 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 120 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 121 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 122 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 118 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 119 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 120 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 121 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 122 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 123 |  |  | 
| 124 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 125 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 126 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 127 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 124 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 125 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 126 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 127 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 128 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 129 |  |  | 
| 130 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 131 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 132 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 133 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 130 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 131 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 132 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 133 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 134 |  |  | 
| 135 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 136 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 137 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 138 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 139 | + |  | 
| 140 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 141 |  | atomRowData.resize(nAtomsInRow_); | 
| 142 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 150 |  | identsRow.resize(nAtomsInRow_); | 
| 151 |  | identsCol.resize(nAtomsInCol_); | 
| 152 |  |  | 
| 153 | < | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 154 | < | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 153 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 154 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 155 |  |  | 
| 156 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 157 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 158 | < |  | 
| 116 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 117 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 156 | > | // allocate memory for the parallel objects | 
| 157 | > | atypesRow.resize(nAtomsInRow_); | 
| 158 | > | atypesCol.resize(nAtomsInCol_); | 
| 159 |  |  | 
| 160 | < | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); | 
| 161 | < | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); | 
| 160 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 161 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 162 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 163 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 164 |  |  | 
| 165 | + | pot_row.resize(nAtomsInRow_); | 
| 166 | + | pot_col.resize(nAtomsInCol_); | 
| 167 | + |  | 
| 168 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 169 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 170 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 171 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 172 | + |  | 
| 173 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 174 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 175 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 176 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 177 | + |  | 
| 178 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 179 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 180 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 181 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 182 | + |  | 
| 183 |  | groupListRow_.clear(); | 
| 184 |  | groupListRow_.resize(nGroupsInRow_); | 
| 185 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 202 |  | } | 
| 203 |  | } | 
| 204 |  |  | 
| 205 | < | skipsForRowAtom.clear(); | 
| 206 | < | skipsForRowAtom.resize(nAtomsInRow_); | 
| 205 | > | excludesForAtom.clear(); | 
| 206 | > | excludesForAtom.resize(nAtomsInRow_); | 
| 207 | > | toposForAtom.clear(); | 
| 208 | > | toposForAtom.resize(nAtomsInRow_); | 
| 209 | > | topoDist.clear(); | 
| 210 | > | topoDist.resize(nAtomsInRow_); | 
| 211 |  | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 212 |  | int iglob = AtomRowToGlobal[i]; | 
| 213 | + |  | 
| 214 |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 215 | < | int jglob = AtomColToGlobal[j]; | 
| 216 | < | if (excludes.hasPair(iglob, jglob)) | 
| 217 | < | skipsForRowAtom[i].push_back(j); | 
| 215 | > | int jglob = AtomColToGlobal[j]; | 
| 216 | > |  | 
| 217 | > | if (excludes->hasPair(iglob, jglob)) | 
| 218 | > | excludesForAtom[i].push_back(j); | 
| 219 | > |  | 
| 220 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 221 | > | toposForAtom[i].push_back(j); | 
| 222 | > | topoDist[i].push_back(1); | 
| 223 | > | } else { | 
| 224 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 225 | > | toposForAtom[i].push_back(j); | 
| 226 | > | topoDist[i].push_back(2); | 
| 227 | > | } else { | 
| 228 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 229 | > | toposForAtom[i].push_back(j); | 
| 230 | > | topoDist[i].push_back(3); | 
| 231 | > | } | 
| 232 | > | } | 
| 233 | > | } | 
| 234 |  | } | 
| 235 |  | } | 
| 236 |  |  | 
| 237 | < | toposForRowAtom.clear(); | 
| 238 | < | toposForRowAtom.resize(nAtomsInRow_); | 
| 239 | < | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 240 | < | int iglob = AtomRowToGlobal[i]; | 
| 241 | < | int nTopos = 0; | 
| 242 | < | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 243 | < | int jglob = AtomColToGlobal[j]; | 
| 244 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 245 | < | toposForRowAtom[i].push_back(j); | 
| 246 | < | topoDistRow[i][nTopos] = 1; | 
| 247 | < | nTopos++; | 
| 237 | > | #else | 
| 238 | > | excludesForAtom.clear(); | 
| 239 | > | excludesForAtom.resize(nLocal_); | 
| 240 | > | toposForAtom.clear(); | 
| 241 | > | toposForAtom.resize(nLocal_); | 
| 242 | > | topoDist.clear(); | 
| 243 | > | topoDist.resize(nLocal_); | 
| 244 | > |  | 
| 245 | > | for (int i = 0; i < nLocal_; i++) { | 
| 246 | > | int iglob = AtomLocalToGlobal[i]; | 
| 247 | > |  | 
| 248 | > | for (int j = 0; j < nLocal_; j++) { | 
| 249 | > | int jglob = AtomLocalToGlobal[j]; | 
| 250 | > |  | 
| 251 | > | if (excludes->hasPair(iglob, jglob)) | 
| 252 | > | excludesForAtom[i].push_back(j); | 
| 253 | > |  | 
| 254 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 255 | > | toposForAtom[i].push_back(j); | 
| 256 | > | topoDist[i].push_back(1); | 
| 257 | > | } else { | 
| 258 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 259 | > | toposForAtom[i].push_back(j); | 
| 260 | > | topoDist[i].push_back(2); | 
| 261 | > | } else { | 
| 262 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 263 | > | toposForAtom[i].push_back(j); | 
| 264 | > | topoDist[i].push_back(3); | 
| 265 | > | } | 
| 266 | > | } | 
| 267 |  | } | 
| 167 | – | if (oneThree.hasPair(iglob, jglob)) { | 
| 168 | – | toposForRowAtom[i].push_back(j); | 
| 169 | – | topoDistRow[i][nTopos] = 2; | 
| 170 | – | nTopos++; | 
| 171 | – | } | 
| 172 | – | if (oneFour.hasPair(iglob, jglob)) { | 
| 173 | – | toposForRowAtom[i].push_back(j); | 
| 174 | – | topoDistRow[i][nTopos] = 3; | 
| 175 | – | nTopos++; | 
| 176 | – | } | 
| 268 |  | } | 
| 269 |  | } | 
| 179 | – |  | 
| 270 |  | #endif | 
| 271 | + |  | 
| 272 | + | // allocate memory for the parallel objects | 
| 273 | + | atypesLocal.resize(nLocal_); | 
| 274 | + |  | 
| 275 | + | for (int i = 0; i < nLocal_; i++) | 
| 276 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 277 | + |  | 
| 278 |  | groupList_.clear(); | 
| 279 |  | groupList_.resize(nGroups_); | 
| 280 |  | for (int i = 0; i < nGroups_; i++) { | 
| 283 |  | int aid = AtomLocalToGlobal[j]; | 
| 284 |  | if (globalGroupMembership[aid] == gid) { | 
| 285 |  | groupList_[i].push_back(j); | 
| 189 | – |  | 
| 286 |  | } | 
| 287 |  | } | 
| 288 |  | } | 
| 289 |  |  | 
| 194 | – | skipsForLocalAtom.clear(); | 
| 195 | – | skipsForLocalAtom.resize(nLocal_); | 
| 290 |  |  | 
| 291 | < | for (int i = 0; i < nLocal_; i++) { | 
| 198 | < | int iglob = AtomLocalToGlobal[i]; | 
| 199 | < | for (int j = 0; j < nLocal_; j++) { | 
| 200 | < | int jglob = AtomLocalToGlobal[j]; | 
| 201 | < | if (excludes.hasPair(iglob, jglob)) | 
| 202 | < | skipsForLocalAtom[i].push_back(j); | 
| 203 | < | } | 
| 204 | < | } | 
| 205 | < | toposForLocalAtom.clear(); | 
| 206 | < | toposForLocalAtom.resize(nLocal_); | 
| 207 | < | for (int i = 0; i < nLocal_; i++) { | 
| 208 | < | int iglob = AtomLocalToGlobal[i]; | 
| 209 | < | int nTopos = 0; | 
| 210 | < | for (int j = 0; j < nLocal_; j++) { | 
| 211 | < | int jglob = AtomLocalToGlobal[j]; | 
| 212 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 213 | < | toposForLocalAtom[i].push_back(j); | 
| 214 | < | topoDistLocal[i][nTopos] = 1; | 
| 215 | < | nTopos++; | 
| 216 | < | } | 
| 217 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 218 | < | toposForLocalAtom[i].push_back(j); | 
| 219 | < | topoDistLocal[i][nTopos] = 2; | 
| 220 | < | nTopos++; | 
| 221 | < | } | 
| 222 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 223 | < | toposForLocalAtom[i].push_back(j); | 
| 224 | < | topoDistLocal[i][nTopos] = 3; | 
| 225 | < | nTopos++; | 
| 226 | < | } | 
| 227 | < | } | 
| 228 | < | } | 
| 291 | > | createGtypeCutoffMap(); | 
| 292 |  |  | 
| 293 |  | } | 
| 294 |  |  | 
| 295 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 296 | < |  | 
| 296 | > |  | 
| 297 |  | RealType tol = 1e-6; | 
| 298 | + | largestRcut_ = 0.0; | 
| 299 |  | RealType rc; | 
| 300 |  | int atid; | 
| 301 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 302 | < | vector<RealType> atypeCutoff; | 
| 303 | < | atypeCutoff.resize( atypes.size() ); | 
| 304 | < |  | 
| 305 | < | for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at){ | 
| 306 | < | rc = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 302 | > |  | 
| 303 | > | map<int, RealType> atypeCutoff; | 
| 304 | > |  | 
| 305 | > | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 306 | > | at != atypes.end(); ++at){ | 
| 307 |  | atid = (*at)->getIdent(); | 
| 308 | < | atypeCutoff[atid] = rc; | 
| 308 | > | if (userChoseCutoff_) | 
| 309 | > | atypeCutoff[atid] = userCutoff_; | 
| 310 | > | else | 
| 311 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 312 |  | } | 
| 313 | < |  | 
| 313 | > |  | 
| 314 |  | vector<RealType> gTypeCutoffs; | 
| 248 | – |  | 
| 315 |  | // first we do a single loop over the cutoff groups to find the | 
| 316 |  | // largest cutoff for any atypes present in this group. | 
| 317 |  | #ifdef IS_MPI | 
| 318 |  | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 319 | + | groupRowToGtype.resize(nGroupsInRow_); | 
| 320 |  | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 321 |  | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 322 |  | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 342 |  |  | 
| 343 |  | } | 
| 344 |  | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 345 | + | groupColToGtype.resize(nGroupsInCol_); | 
| 346 |  | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 347 |  | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 348 |  | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 366 |  | } | 
| 367 |  | } | 
| 368 |  | #else | 
| 369 | + |  | 
| 370 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 371 | + | groupToGtype.resize(nGroups_); | 
| 372 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 373 |  | groupCutoff[cg1] = 0.0; | 
| 374 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 375 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 376 |  | ia != atomList.end(); ++ia) { | 
| 377 |  | int atom1 = (*ia); | 
| 378 | < | atid = identsLocal[atom1]; | 
| 379 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 378 | > | atid = idents[atom1]; | 
| 379 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 380 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 311 | – | } | 
| 381 |  | } | 
| 382 | < |  | 
| 382 | > |  | 
| 383 |  | bool gTypeFound = false; | 
| 384 |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 385 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 387 |  | gTypeFound = true; | 
| 388 |  | } | 
| 389 |  | } | 
| 390 | < | if (!gTypeFound) { | 
| 390 | > | if (!gTypeFound) { | 
| 391 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 392 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 393 |  | } | 
| 396 |  |  | 
| 397 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 398 |  |  | 
| 399 | < | vector<RealType>::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 400 | < | RealType groupMax = *groupMaxLoc; | 
| 399 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 400 | > | gTypeCutoffs.end()); | 
| 401 |  |  | 
| 402 |  | #ifdef IS_MPI | 
| 403 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 403 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 404 | > | MPI::MAX); | 
| 405 |  | #endif | 
| 406 |  |  | 
| 407 |  | RealType tradRcut = groupMax; | 
| 408 |  |  | 
| 409 |  | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 410 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 341 | < |  | 
| 410 | > | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 411 |  | RealType thisRcut; | 
| 412 |  | switch(cutoffPolicy_) { | 
| 413 |  | case TRADITIONAL: | 
| 414 |  | thisRcut = tradRcut; | 
| 415 | + | break; | 
| 416 |  | case MIX: | 
| 417 |  | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 418 | + | break; | 
| 419 |  | case MAX: | 
| 420 |  | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 421 | + | break; | 
| 422 |  | default: | 
| 423 |  | sprintf(painCave.errMsg, | 
| 424 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 425 |  | "hit an unknown cutoff policy!\n"); | 
| 426 |  | painCave.severity = OPENMD_ERROR; | 
| 427 |  | painCave.isFatal = 1; | 
| 428 | < | simError(); | 
| 428 | > | simError(); | 
| 429 | > | break; | 
| 430 |  | } | 
| 431 |  |  | 
| 432 |  | pair<int,int> key = make_pair(i,j); | 
| 433 |  | gTypeCutoffMap[key].first = thisRcut; | 
| 361 | – |  | 
| 434 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 363 | – |  | 
| 435 |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 365 | – |  | 
| 436 |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 367 | – |  | 
| 437 |  | // sanity check | 
| 438 |  |  | 
| 439 |  | if (userChoseCutoff_) { | 
| 440 |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 441 |  | sprintf(painCave.errMsg, | 
| 442 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 443 | < | "user-specified rCut does not match computed group Cutoff\n"); | 
| 443 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 444 |  | painCave.severity = OPENMD_ERROR; | 
| 445 |  | painCave.isFatal = 1; | 
| 446 |  | simError(); | 
| 452 |  |  | 
| 453 |  |  | 
| 454 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 455 | < | int i, j; | 
| 387 | < |  | 
| 455 | > | int i, j; | 
| 456 |  | #ifdef IS_MPI | 
| 457 |  | i = groupRowToGtype[cg1]; | 
| 458 |  | j = groupColToGtype[cg2]; | 
| 459 |  | #else | 
| 460 |  | i = groupToGtype[cg1]; | 
| 461 |  | j = groupToGtype[cg2]; | 
| 462 | < | #endif | 
| 395 | < |  | 
| 462 | > | #endif | 
| 463 |  | return gTypeCutoffMap[make_pair(i,j)]; | 
| 464 |  | } | 
| 465 |  |  | 
| 466 | + | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 467 | + | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 468 | + | if (toposForAtom[atom1][j] == atom2) | 
| 469 | + | return topoDist[atom1][j]; | 
| 470 | + | } | 
| 471 | + | return 0; | 
| 472 | + | } | 
| 473 |  |  | 
| 474 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 475 | + | pairwisePot = 0.0; | 
| 476 | + | embeddingPot = 0.0; | 
| 477 |  |  | 
| 402 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { | 
| 403 | – | longRangePot_[j] = 0.0; | 
| 404 | – | } | 
| 405 | – |  | 
| 478 |  | #ifdef IS_MPI | 
| 479 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 480 |  | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 490 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 491 |  |  | 
| 492 |  | fill(pot_col.begin(), pot_col.end(), | 
| 493 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 422 | < |  | 
| 423 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); | 
| 493 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 494 |  |  | 
| 495 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 496 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 497 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 496 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 497 | > | 0.0); | 
| 498 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 499 | > | 0.0); | 
| 500 |  | } | 
| 501 |  |  | 
| 502 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 505 |  | } | 
| 506 |  |  | 
| 507 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 508 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 509 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 508 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 509 | > | 0.0); | 
| 510 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 511 | > | 0.0); | 
| 512 |  | } | 
| 513 |  |  | 
| 514 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 518 |  | atomColData.functionalDerivative.end(), 0.0); | 
| 519 |  | } | 
| 520 |  |  | 
| 521 | < | #else | 
| 522 | < |  | 
| 521 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 522 | > | fill(atomRowData.skippedCharge.begin(), | 
| 523 | > | atomRowData.skippedCharge.end(), 0.0); | 
| 524 | > | fill(atomColData.skippedCharge.begin(), | 
| 525 | > | atomColData.skippedCharge.end(), 0.0); | 
| 526 | > | } | 
| 527 | > |  | 
| 528 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 529 | > | fill(atomRowData.electricField.begin(), | 
| 530 | > | atomRowData.electricField.end(), V3Zero); | 
| 531 | > | fill(atomColData.electricField.begin(), | 
| 532 | > | atomColData.electricField.end(), V3Zero); | 
| 533 | > | } | 
| 534 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 535 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 536 | > | 0.0); | 
| 537 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 538 | > | 0.0); | 
| 539 | > | } | 
| 540 | > |  | 
| 541 | > | #endif | 
| 542 | > | // even in parallel, we need to zero out the local arrays: | 
| 543 | > |  | 
| 544 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 545 |  | fill(snap_->atomData.particlePot.begin(), | 
| 546 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 550 |  | fill(snap_->atomData.density.begin(), | 
| 551 |  | snap_->atomData.density.end(), 0.0); | 
| 552 |  | } | 
| 553 | + |  | 
| 554 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 555 |  | fill(snap_->atomData.functional.begin(), | 
| 556 |  | snap_->atomData.functional.end(), 0.0); | 
| 557 |  | } | 
| 558 | + |  | 
| 559 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 560 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 561 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 562 |  | } | 
| 563 | < | #endif | 
| 564 | < |  | 
| 563 | > |  | 
| 564 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 565 | > | fill(snap_->atomData.skippedCharge.begin(), | 
| 566 | > | snap_->atomData.skippedCharge.end(), 0.0); | 
| 567 | > | } | 
| 568 | > |  | 
| 569 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 570 | > | fill(snap_->atomData.electricField.begin(), | 
| 571 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 572 | > | } | 
| 573 |  | } | 
| 574 |  |  | 
| 575 |  |  | 
| 579 |  | #ifdef IS_MPI | 
| 580 |  |  | 
| 581 |  | // gather up the atomic positions | 
| 582 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 582 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 583 |  | atomRowData.position); | 
| 584 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 584 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 585 |  | atomColData.position); | 
| 586 |  |  | 
| 587 |  | // gather up the cutoff group positions | 
| 588 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 588 | > |  | 
| 589 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 590 |  | cgRowData.position); | 
| 591 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 591 | > |  | 
| 592 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 593 |  | cgColData.position); | 
| 594 | + |  | 
| 595 |  |  | 
| 596 |  | // if needed, gather the atomic rotation matrices | 
| 597 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 598 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 598 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 599 |  | atomRowData.aMat); | 
| 600 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 600 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 601 |  | atomColData.aMat); | 
| 602 |  | } | 
| 603 |  |  | 
| 604 |  | // if needed, gather the atomic eletrostatic frames | 
| 605 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 606 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 606 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 607 |  | atomRowData.electroFrame); | 
| 608 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 608 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 609 |  | atomColData.electroFrame); | 
| 610 |  | } | 
| 611 | + |  | 
| 612 | + | // if needed, gather the atomic fluctuating charge values | 
| 613 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 614 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 615 | + | atomRowData.flucQPos); | 
| 616 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 617 | + | atomColData.flucQPos); | 
| 618 | + | } | 
| 619 | + |  | 
| 620 |  | #endif | 
| 621 |  | } | 
| 622 |  |  | 
| 630 |  |  | 
| 631 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 632 |  |  | 
| 633 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 633 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 634 |  | snap_->atomData.density); | 
| 635 |  |  | 
| 636 |  | int n = snap_->atomData.density.size(); | 
| 637 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 638 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 638 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 639 |  | for (int i = 0; i < n; i++) | 
| 640 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 641 |  | } | 
| 642 | + |  | 
| 643 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 644 | + |  | 
| 645 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 646 | + | snap_->atomData.electricField); | 
| 647 | + |  | 
| 648 | + | int n = snap_->atomData.electricField.size(); | 
| 649 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 650 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 651 | + | for (int i = 0; i < n; i++) | 
| 652 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 653 | + | } | 
| 654 |  | #endif | 
| 655 |  | } | 
| 656 |  |  | 
| 663 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 664 |  | #ifdef IS_MPI | 
| 665 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 666 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 666 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 667 |  | atomRowData.functional); | 
| 668 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 668 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 669 |  | atomColData.functional); | 
| 670 |  | } | 
| 671 |  |  | 
| 672 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 673 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 673 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 674 |  | atomRowData.functionalDerivative); | 
| 675 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 675 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 676 |  | atomColData.functionalDerivative); | 
| 677 |  | } | 
| 678 |  | #endif | 
| 686 |  | int n = snap_->atomData.force.size(); | 
| 687 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 688 |  |  | 
| 689 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 689 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 690 |  | for (int i = 0; i < n; i++) { | 
| 691 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 692 |  | frc_tmp[i] = 0.0; | 
| 693 |  | } | 
| 694 |  |  | 
| 695 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 696 | < | for (int i = 0; i < n; i++) | 
| 695 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 696 | > | for (int i = 0; i < n; i++) { | 
| 697 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 698 | < |  | 
| 699 | < |  | 
| 698 | > | } | 
| 699 | > |  | 
| 700 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 701 |  |  | 
| 702 | < | int nt = snap_->atomData.force.size(); | 
| 702 | > | int nt = snap_->atomData.torque.size(); | 
| 703 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 704 |  |  | 
| 705 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 706 | < | for (int i = 0; i < n; i++) { | 
| 705 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 706 | > | for (int i = 0; i < nt; i++) { | 
| 707 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 708 |  | trq_tmp[i] = 0.0; | 
| 709 |  | } | 
| 710 |  |  | 
| 711 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 712 | < | for (int i = 0; i < n; i++) | 
| 711 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 712 | > | for (int i = 0; i < nt; i++) | 
| 713 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 714 |  | } | 
| 715 | + |  | 
| 716 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 717 | + |  | 
| 718 | + | int ns = snap_->atomData.skippedCharge.size(); | 
| 719 | + | vector<RealType> skch_tmp(ns, 0.0); | 
| 720 | + |  | 
| 721 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 722 | + | for (int i = 0; i < ns; i++) { | 
| 723 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 724 | + | skch_tmp[i] = 0.0; | 
| 725 | + | } | 
| 726 | + |  | 
| 727 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 728 | + | for (int i = 0; i < ns; i++) | 
| 729 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 730 | + |  | 
| 731 | + | } | 
| 732 |  |  | 
| 733 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 734 | + |  | 
| 735 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 736 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 737 | + |  | 
| 738 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 739 | + | for (int i = 0; i < nq; i++) { | 
| 740 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 741 | + | fqfrc_tmp[i] = 0.0; | 
| 742 | + | } | 
| 743 | + |  | 
| 744 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 745 | + | for (int i = 0; i < nq; i++) | 
| 746 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 747 | + |  | 
| 748 | + | } | 
| 749 | + |  | 
| 750 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 751 |  |  | 
| 752 |  | vector<potVec> pot_temp(nLocal_, | 
| 754 |  |  | 
| 755 |  | // scatter/gather pot_row into the members of my column | 
| 756 |  |  | 
| 757 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 757 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 758 |  |  | 
| 759 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 760 | < | pot_local += pot_temp[ii]; | 
| 760 | > | pairwisePot += pot_temp[ii]; | 
| 761 |  |  | 
| 762 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 763 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 764 |  |  | 
| 765 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 765 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 766 |  |  | 
| 767 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 768 | < | pot_local += pot_temp[ii]; | 
| 768 | > | pairwisePot += pot_temp[ii]; | 
| 769 |  |  | 
| 770 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 771 | + | RealType ploc1 = pairwisePot[ii]; | 
| 772 | + | RealType ploc2 = 0.0; | 
| 773 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 774 | + | pairwisePot[ii] = ploc2; | 
| 775 | + | } | 
| 776 | + |  | 
| 777 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 778 | + | RealType ploc1 = embeddingPot[ii]; | 
| 779 | + | RealType ploc2 = 0.0; | 
| 780 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 781 | + | embeddingPot[ii] = ploc2; | 
| 782 | + | } | 
| 783 | + |  | 
| 784 |  | #endif | 
| 785 | + |  | 
| 786 |  | } | 
| 787 |  |  | 
| 788 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 857 |  | #ifdef IS_MPI | 
| 858 |  | return massFactorsRow[atom1]; | 
| 859 |  | #else | 
| 860 | < | return massFactorsLocal[atom1]; | 
| 860 | > | return massFactors[atom1]; | 
| 861 |  | #endif | 
| 862 |  | } | 
| 863 |  |  | 
| 865 |  | #ifdef IS_MPI | 
| 866 |  | return massFactorsCol[atom2]; | 
| 867 |  | #else | 
| 868 | < | return massFactorsLocal[atom2]; | 
| 868 | > | return massFactors[atom2]; | 
| 869 |  | #endif | 
| 870 |  |  | 
| 871 |  | } | 
| 883 |  | return d; | 
| 884 |  | } | 
| 885 |  |  | 
| 886 | < | vector<int> ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { | 
| 887 | < | #ifdef IS_MPI | 
| 710 | < | return skipsForRowAtom[atom1]; | 
| 711 | < | #else | 
| 712 | < | return skipsForLocalAtom[atom1]; | 
| 713 | < | #endif | 
| 886 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 887 | > | return excludesForAtom[atom1]; | 
| 888 |  | } | 
| 889 |  |  | 
| 890 |  | /** | 
| 891 | < | * There are a number of reasons to skip a pair or a | 
| 718 | < | * particle. Mostly we do this to exclude atoms who are involved in | 
| 719 | < | * short range interactions (bonds, bends, torsions), but we also | 
| 720 | < | * need to exclude some overcounted interactions that result from | 
| 891 | > | * We need to exclude some overcounted interactions that result from | 
| 892 |  | * the parallel decomposition. | 
| 893 |  | */ | 
| 894 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 895 |  | int unique_id_1, unique_id_2; | 
| 896 | < |  | 
| 896 | > |  | 
| 897 |  | #ifdef IS_MPI | 
| 898 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 899 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 900 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 901 | + | #else | 
| 902 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 903 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 904 | + | #endif | 
| 905 |  |  | 
| 731 | – | // this situation should only arise in MPI simulations | 
| 906 |  | if (unique_id_1 == unique_id_2) return true; | 
| 907 | < |  | 
| 907 | > |  | 
| 908 | > | #ifdef IS_MPI | 
| 909 |  | // this prevents us from doing the pair on multiple processors | 
| 910 |  | if (unique_id_1 < unique_id_2) { | 
| 911 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 912 |  | } else { | 
| 913 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 913 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 914 |  | } | 
| 740 | – | #else | 
| 741 | – | // in the normal loop, the atom numbers are unique | 
| 742 | – | unique_id_1 = atom1; | 
| 743 | – | unique_id_2 = atom2; | 
| 915 |  | #endif | 
| 916 |  |  | 
| 917 | < | #ifdef IS_MPI | 
| 747 | < | for (vector<int>::iterator i = skipsForRowAtom[atom1].begin(); | 
| 748 | < | i != skipsForRowAtom[atom1].end(); ++i) { | 
| 749 | < | if ( (*i) == unique_id_2 ) return true; | 
| 750 | < | } | 
| 751 | < | #else | 
| 752 | < | for (vector<int>::iterator i = skipsForLocalAtom[atom1].begin(); | 
| 753 | < | i != skipsForLocalAtom[atom1].end(); ++i) { | 
| 754 | < | if ( (*i) == unique_id_2 ) return true; | 
| 755 | < | } | 
| 756 | < | #endif | 
| 917 | > | return false; | 
| 918 |  | } | 
| 919 |  |  | 
| 920 | < | int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { | 
| 920 | > | /** | 
| 921 | > | * We need to handle the interactions for atoms who are involved in | 
| 922 | > | * the same rigid body as well as some short range interactions | 
| 923 | > | * (bonds, bends, torsions) differently from other interactions. | 
| 924 | > | * We'll still visit the pairwise routines, but with a flag that | 
| 925 | > | * tells those routines to exclude the pair from direct long range | 
| 926 | > | * interactions.  Some indirect interactions (notably reaction | 
| 927 | > | * field) must still be handled for these pairs. | 
| 928 | > | */ | 
| 929 | > | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 930 | > |  | 
| 931 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 932 | > | // version, and to use local IDs in the non-MPI version: | 
| 933 |  |  | 
| 934 | < | #ifdef IS_MPI | 
| 935 | < | for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { | 
| 936 | < | if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; | 
| 934 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 935 | > | i != excludesForAtom[atom1].end(); ++i) { | 
| 936 | > | if ( (*i) == atom2 ) return true; | 
| 937 |  | } | 
| 765 | – | #else | 
| 766 | – | for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { | 
| 767 | – | if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; | 
| 768 | – | } | 
| 769 | – | #endif | 
| 938 |  |  | 
| 939 | < | // zero is default for unconnected (i.e. normal) pair interactions | 
| 772 | < | return 0; | 
| 939 | > | return false; | 
| 940 |  | } | 
| 941 |  |  | 
| 942 | + |  | 
| 943 |  | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 944 |  | #ifdef IS_MPI | 
| 945 |  | atomRowData.force[atom1] += fg; | 
| 957 |  | } | 
| 958 |  |  | 
| 959 |  | // filling interaction blocks with pointers | 
| 960 | < | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 961 | < | InteractionData idat; | 
| 960 | > | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 961 | > | int atom1, int atom2) { | 
| 962 |  |  | 
| 963 | + | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 964 | + |  | 
| 965 |  | #ifdef IS_MPI | 
| 966 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 967 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 968 | + | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 969 |  |  | 
| 797 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 798 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 799 | – |  | 
| 800 | – |  | 
| 970 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 971 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 972 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1002 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1003 |  | } | 
| 1004 |  |  | 
| 1005 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1006 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1007 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1008 | + | } | 
| 1009 | + |  | 
| 1010 |  | #else | 
| 1011 | + |  | 
| 1012 |  |  | 
| 1013 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 1014 | < | ff_->getAtomType(identsLocal[atom2]) ); | 
| 1013 | > | // cerr << "atoms = " << atom1 << " " << atom2 << "\n"; | 
| 1014 | > | // cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; | 
| 1015 | > | // cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; | 
| 1016 |  |  | 
| 1017 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1018 | + | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1019 | + | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1020 | + |  | 
| 1021 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1022 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1023 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1033 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1034 |  | } | 
| 1035 |  |  | 
| 1036 | < | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1036 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1037 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1038 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1039 |  | } | 
| 1053 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1054 |  | } | 
| 1055 |  |  | 
| 1056 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1057 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1058 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1059 | + | } | 
| 1060 |  | #endif | 
| 877 | – | return idat; | 
| 1061 |  | } | 
| 1062 |  |  | 
| 1063 |  |  | 
| 1064 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { | 
| 1064 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1065 |  | #ifdef IS_MPI | 
| 1066 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1067 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1066 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1067 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1068 |  |  | 
| 1069 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1070 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1071 | + |  | 
| 1072 | + | // should particle pot be done here also? | 
| 1073 |  | #else | 
| 1074 | < | longRangePot_ += *(idat.pot); | 
| 1075 | < |  | 
| 1074 | > | pairwisePot += *(idat.pot); | 
| 1075 | > |  | 
| 1076 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1077 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 893 | – | #endif | 
| 1078 |  |  | 
| 1079 | < | } | 
| 1080 | < |  | 
| 1081 | < |  | 
| 898 | < | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 899 | < |  | 
| 900 | < | InteractionData idat; | 
| 901 | < | #ifdef IS_MPI | 
| 902 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 903 | < | ff_->getAtomType(identsCol[atom2]) ); | 
| 904 | < |  | 
| 905 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 906 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 907 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1079 | > | if (idat.doParticlePot) { | 
| 1080 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1081 | > | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1082 |  | } | 
| 1083 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1084 | < | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1085 | < | idat.t2 = &(atomColData.torque[atom2]); | 
| 912 | < | } | 
| 913 | < | #else | 
| 914 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 915 | < | ff_->getAtomType(identsLocal[atom2]) ); | 
| 916 | < |  | 
| 917 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 918 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 919 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 920 | < | } | 
| 921 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 922 | < | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 923 | < | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 924 | < | } | 
| 925 | < | #endif | 
| 1083 | > |  | 
| 1084 | > | #endif | 
| 1085 | > |  | 
| 1086 |  | } | 
| 1087 |  |  | 
| 1088 |  | /* | 
| 1095 |  |  | 
| 1096 |  | vector<pair<int, int> > neighborList; | 
| 1097 |  | groupCutoffs cuts; | 
| 1098 | + | bool doAllPairs = false; | 
| 1099 | + |  | 
| 1100 |  | #ifdef IS_MPI | 
| 1101 |  | cellListRow_.clear(); | 
| 1102 |  | cellListCol_.clear(); | 
| 1116 |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1117 |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1118 |  |  | 
| 1119 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1120 | + |  | 
| 1121 | + | if (nCells_.x() < 3) doAllPairs = true; | 
| 1122 | + | if (nCells_.y() < 3) doAllPairs = true; | 
| 1123 | + | if (nCells_.z() < 3) doAllPairs = true; | 
| 1124 | + |  | 
| 1125 |  | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1126 |  | Vector3d rs, scaled, dr; | 
| 1127 |  | Vector3i whichCell; | 
| 1128 |  | int cellIndex; | 
| 1129 | + | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1130 |  |  | 
| 1131 |  | #ifdef IS_MPI | 
| 1132 | < | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1133 | < | rs = cgRowData.position[i]; | 
| 1134 | < | // scaled positions relative to the box vectors | 
| 1135 | < | scaled = invHmat * rs; | 
| 1136 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 968 | < | // numbers | 
| 969 | < | for (int j = 0; j < 3; j++) | 
| 970 | < | scaled[j] -= roundMe(scaled[j]); | 
| 971 | < |  | 
| 972 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 973 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 974 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 975 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1132 | > | cellListRow_.resize(nCtot); | 
| 1133 | > | cellListCol_.resize(nCtot); | 
| 1134 | > | #else | 
| 1135 | > | cellList_.resize(nCtot); | 
| 1136 | > | #endif | 
| 1137 |  |  | 
| 1138 | < | // find single index of this cell: | 
| 1139 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 979 | < | // add this cutoff group to the list of groups in this cell; | 
| 980 | < | cellListRow_[cellIndex].push_back(i); | 
| 981 | < | } | 
| 1138 | > | if (!doAllPairs) { | 
| 1139 | > | #ifdef IS_MPI | 
| 1140 |  |  | 
| 1141 | < | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1142 | < | rs = cgColData.position[i]; | 
| 1143 | < | // scaled positions relative to the box vectors | 
| 1144 | < | scaled = invHmat * rs; | 
| 1145 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1146 | < | // numbers | 
| 1147 | < | for (int j = 0; j < 3; j++) | 
| 1148 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1149 | < |  | 
| 1150 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 1151 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1152 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1153 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1154 | < |  | 
| 1155 | < | // find single index of this cell: | 
| 1156 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1157 | < | // add this cutoff group to the list of groups in this cell; | 
| 1158 | < | cellListCol_[cellIndex].push_back(i); | 
| 1159 | < | } | 
| 1141 | > | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1142 | > | rs = cgRowData.position[i]; | 
| 1143 | > |  | 
| 1144 | > | // scaled positions relative to the box vectors | 
| 1145 | > | scaled = invHmat * rs; | 
| 1146 | > |  | 
| 1147 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1148 | > | // numbers | 
| 1149 | > | for (int j = 0; j < 3; j++) { | 
| 1150 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1151 | > | scaled[j] += 0.5; | 
| 1152 | > | } | 
| 1153 | > |  | 
| 1154 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1155 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1156 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1157 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1158 | > |  | 
| 1159 | > | // find single index of this cell: | 
| 1160 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1161 | > |  | 
| 1162 | > | // add this cutoff group to the list of groups in this cell; | 
| 1163 | > | cellListRow_[cellIndex].push_back(i); | 
| 1164 | > | } | 
| 1165 | > | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1166 | > | rs = cgColData.position[i]; | 
| 1167 | > |  | 
| 1168 | > | // scaled positions relative to the box vectors | 
| 1169 | > | scaled = invHmat * rs; | 
| 1170 | > |  | 
| 1171 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1172 | > | // numbers | 
| 1173 | > | for (int j = 0; j < 3; j++) { | 
| 1174 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1175 | > | scaled[j] += 0.5; | 
| 1176 | > | } | 
| 1177 | > |  | 
| 1178 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1179 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1180 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1181 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1182 | > |  | 
| 1183 | > | // find single index of this cell: | 
| 1184 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1185 | > |  | 
| 1186 | > | // add this cutoff group to the list of groups in this cell; | 
| 1187 | > | cellListCol_[cellIndex].push_back(i); | 
| 1188 | > | } | 
| 1189 | > |  | 
| 1190 |  | #else | 
| 1191 | < | for (int i = 0; i < nGroups_; i++) { | 
| 1192 | < | rs = snap_->cgData.position[i]; | 
| 1193 | < | // scaled positions relative to the box vectors | 
| 1194 | < | scaled = invHmat * rs; | 
| 1195 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1196 | < | // numbers | 
| 1197 | < | for (int j = 0; j < 3; j++) | 
| 1198 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1191 | > | for (int i = 0; i < nGroups_; i++) { | 
| 1192 | > | rs = snap_->cgData.position[i]; | 
| 1193 | > |  | 
| 1194 | > | // scaled positions relative to the box vectors | 
| 1195 | > | scaled = invHmat * rs; | 
| 1196 | > |  | 
| 1197 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1198 | > | // numbers | 
| 1199 | > | for (int j = 0; j < 3; j++) { | 
| 1200 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1201 | > | scaled[j] += 0.5; | 
| 1202 | > | } | 
| 1203 | > |  | 
| 1204 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1205 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1206 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1207 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1208 | > |  | 
| 1209 | > | // find single index of this cell: | 
| 1210 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1211 | > |  | 
| 1212 | > | // add this cutoff group to the list of groups in this cell; | 
| 1213 | > | cellList_[cellIndex].push_back(i); | 
| 1214 | > | } | 
| 1215 |  |  | 
| 1012 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1013 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1014 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1015 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1016 | – |  | 
| 1017 | – | // find single index of this cell: | 
| 1018 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1019 | – | // add this cutoff group to the list of groups in this cell; | 
| 1020 | – | cellList_[cellIndex].push_back(i); | 
| 1021 | – | } | 
| 1216 |  | #endif | 
| 1217 |  |  | 
| 1218 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1219 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1220 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1221 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1222 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1029 | < |  | 
| 1030 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1031 | < | os != cellOffsets_.end(); ++os) { | 
| 1218 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1219 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1220 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1221 | > | Vector3i m1v(m1x, m1y, m1z); | 
| 1222 | > | int m1 = Vlinear(m1v, nCells_); | 
| 1223 |  |  | 
| 1224 | < | Vector3i m2v = m1v + (*os); | 
| 1225 | < |  | 
| 1226 | < | if (m2v.x() >= nCells_.x()) { | 
| 1227 | < | m2v.x() = 0; | 
| 1228 | < | } else if (m2v.x() < 0) { | 
| 1038 | < | m2v.x() = nCells_.x() - 1; | 
| 1039 | < | } | 
| 1040 | < |  | 
| 1041 | < | if (m2v.y() >= nCells_.y()) { | 
| 1042 | < | m2v.y() = 0; | 
| 1043 | < | } else if (m2v.y() < 0) { | 
| 1044 | < | m2v.y() = nCells_.y() - 1; | 
| 1045 | < | } | 
| 1046 | < |  | 
| 1047 | < | if (m2v.z() >= nCells_.z()) { | 
| 1048 | < | m2v.z() = 0; | 
| 1049 | < | } else if (m2v.z() < 0) { | 
| 1050 | < | m2v.z() = nCells_.z() - 1; | 
| 1051 | < | } | 
| 1052 | < |  | 
| 1053 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1224 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1225 | > | os != cellOffsets_.end(); ++os) { | 
| 1226 | > |  | 
| 1227 | > | Vector3i m2v = m1v + (*os); | 
| 1228 | > |  | 
| 1229 |  |  | 
| 1230 | < | #ifdef IS_MPI | 
| 1231 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1232 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1233 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1234 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1235 | < |  | 
| 1236 | < | // Always do this if we're in different cells or if | 
| 1237 | < | // we're in the same cell and the global index of the | 
| 1238 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1230 | > | if (m2v.x() >= nCells_.x()) { | 
| 1231 | > | m2v.x() = 0; | 
| 1232 | > | } else if (m2v.x() < 0) { | 
| 1233 | > | m2v.x() = nCells_.x() - 1; | 
| 1234 | > | } | 
| 1235 | > |  | 
| 1236 | > | if (m2v.y() >= nCells_.y()) { | 
| 1237 | > | m2v.y() = 0; | 
| 1238 | > | } else if (m2v.y() < 0) { | 
| 1239 | > | m2v.y() = nCells_.y() - 1; | 
| 1240 | > | } | 
| 1241 | > |  | 
| 1242 | > | if (m2v.z() >= nCells_.z()) { | 
| 1243 | > | m2v.z() = 0; | 
| 1244 | > | } else if (m2v.z() < 0) { | 
| 1245 | > | m2v.z() = nCells_.z() - 1; | 
| 1246 | > | } | 
| 1247 |  |  | 
| 1248 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1248 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1249 | > |  | 
| 1250 | > | #ifdef IS_MPI | 
| 1251 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1252 | > | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1253 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1254 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1255 | > |  | 
| 1256 | > | // In parallel, we need to visit *all* pairs of row | 
| 1257 | > | // & column indicies and will divide labor in the | 
| 1258 | > | // force evaluation later. | 
| 1259 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1260 |  | snap_->wrapVector(dr); | 
| 1261 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1262 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1263 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1264 | < | } | 
| 1264 | > | } | 
| 1265 |  | } | 
| 1266 |  | } | 
| 1074 | – | } | 
| 1267 |  | #else | 
| 1268 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1269 | < | j1 != cellList_[m1].end(); ++j1) { | 
| 1270 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1271 | < | j2 != cellList_[m2].end(); ++j2) { | 
| 1272 | < |  | 
| 1273 | < | // Always do this if we're in different cells or if | 
| 1274 | < | // we're in the same cell and the global index of the | 
| 1275 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1268 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1269 | > | j1 != cellList_[m1].end(); ++j1) { | 
| 1270 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1271 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1272 | > |  | 
| 1273 | > | // Always do this if we're in different cells or if | 
| 1274 | > | // we're in the same cell and the global index of | 
| 1275 | > | // the j2 cutoff group is greater than or equal to | 
| 1276 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1277 | > | // has a "less than" conditional here, but that | 
| 1278 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1279 | > | // allows atoms within a single cutoff group to | 
| 1280 | > | // interact with each other. | 
| 1281 |  |  | 
| 1282 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1283 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1284 | < | snap_->wrapVector(dr); | 
| 1285 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1286 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1287 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1282 | > |  | 
| 1283 | > |  | 
| 1284 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1285 | > |  | 
| 1286 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1287 | > | snap_->wrapVector(dr); | 
| 1288 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1289 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1290 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1291 | > | } | 
| 1292 |  | } | 
| 1293 |  | } | 
| 1294 |  | } | 
| 1094 | – | } | 
| 1295 |  | #endif | 
| 1296 | + | } | 
| 1297 |  | } | 
| 1298 |  | } | 
| 1299 |  | } | 
| 1300 | + | } else { | 
| 1301 | + | // branch to do all cutoff group pairs | 
| 1302 | + | #ifdef IS_MPI | 
| 1303 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1304 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1305 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1306 | + | snap_->wrapVector(dr); | 
| 1307 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1308 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1309 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1310 | + | } | 
| 1311 | + | } | 
| 1312 | + | } | 
| 1313 | + | #else | 
| 1314 | + | // include all groups here. | 
| 1315 | + | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1316 | + | // include self group interactions j2 == j1 | 
| 1317 | + | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1318 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1319 | + | snap_->wrapVector(dr); | 
| 1320 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1321 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1322 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1323 | + | } | 
| 1324 | + | } | 
| 1325 | + | } | 
| 1326 | + | #endif | 
| 1327 |  | } | 
| 1328 | < |  | 
| 1328 | > |  | 
| 1329 |  | // save the local cutoff group positions for the check that is | 
| 1330 |  | // done on each loop: | 
| 1331 |  | saved_CG_positions_.clear(); | 
| 1332 |  | for (int i = 0; i < nGroups_; i++) | 
| 1333 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1334 | < |  | 
| 1334 | > |  | 
| 1335 |  | return neighborList; | 
| 1336 |  | } | 
| 1337 |  | } //end namespace OpenMD |