| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 |  |  | 
| 51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | + |  | 
| 53 | + | // In a parallel computation, row and colum scans must visit all | 
| 54 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | + | // are used when the processor can see all pairs) | 
| 56 | + | #ifdef IS_MPI | 
| 57 | + | cellOffsets_.clear(); | 
| 58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | + | #endif | 
| 86 | + | } | 
| 87 | + |  | 
| 88 | + |  | 
| 89 |  | /** | 
| 90 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  | * SimulationSetup | 
| 92 |  | */ | 
| 54 | – |  | 
| 93 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 102 | + | regions = info_->getRegions(); | 
| 103 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 104 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 105 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 110 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 111 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 112 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 113 | < |  | 
| 113 | > |  | 
| 114 | > | if (needVelocities_) | 
| 115 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 116 | > | DataStorage::dslVelocity); | 
| 117 | > | else | 
| 118 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 119 | > |  | 
| 120 |  | #ifdef IS_MPI | 
| 121 |  |  | 
| 122 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 123 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 122 | > | MPI_Comm row = rowComm.getComm(); | 
| 123 | > | MPI_Comm col = colComm.getComm(); | 
| 124 |  |  | 
| 125 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 126 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 127 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 128 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 129 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 125 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 126 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 127 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 128 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 129 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 130 |  |  | 
| 131 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 132 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 133 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 134 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 131 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 132 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 133 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 134 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 135 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 136 |  |  | 
| 137 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 138 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 139 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 140 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 137 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 138 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 139 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 140 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 141 |  |  | 
| 142 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 143 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 144 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 145 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 146 | + |  | 
| 147 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 148 |  | atomRowData.resize(nAtomsInRow_); | 
| 149 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 152 |  | cgRowData.resize(nGroupsInRow_); | 
| 153 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 154 |  | cgColData.resize(nGroupsInCol_); | 
| 155 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 156 | < |  | 
| 155 | > | if (needVelocities_) | 
| 156 | > | // we only need column velocities if we need them. | 
| 157 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 158 | > | DataStorage::dslVelocity); | 
| 159 | > | else | 
| 160 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 161 | > |  | 
| 162 |  | identsRow.resize(nAtomsInRow_); | 
| 163 |  | identsCol.resize(nAtomsInCol_); | 
| 164 |  |  | 
| 165 | < | AtomCommIntRow->gather(idents, identsRow); | 
| 166 | < | AtomCommIntColumn->gather(idents, identsCol); | 
| 165 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 166 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 167 | > |  | 
| 168 | > | regionsRow.resize(nAtomsInRow_); | 
| 169 | > | regionsCol.resize(nAtomsInCol_); | 
| 170 |  |  | 
| 171 | < | vector<int>::iterator it; | 
| 172 | < | for (it = AtomLocalToGlobal.begin(); it != AtomLocalToGlobal.end(); ++it) { | 
| 117 | < | cerr << "my AtomLocalToGlobal = " << (*it) << "\n"; | 
| 118 | < | } | 
| 119 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 120 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 171 | > | AtomPlanIntRow->gather(regions, regionsRow); | 
| 172 | > | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 173 |  |  | 
| 174 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 175 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 174 | > | // allocate memory for the parallel objects | 
| 175 | > | atypesRow.resize(nAtomsInRow_); | 
| 176 | > | atypesCol.resize(nAtomsInCol_); | 
| 177 |  |  | 
| 178 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 179 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 178 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 179 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 180 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 181 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 182 | > |  | 
| 183 | > | pot_row.resize(nAtomsInRow_); | 
| 184 | > | pot_col.resize(nAtomsInCol_); | 
| 185 |  |  | 
| 186 | + | expot_row.resize(nAtomsInRow_); | 
| 187 | + | expot_col.resize(nAtomsInCol_); | 
| 188 | + |  | 
| 189 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 190 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 191 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 192 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 193 | + |  | 
| 194 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 195 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 196 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 197 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 198 | + |  | 
| 199 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 200 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 201 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 202 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 203 | + |  | 
| 204 |  | groupListRow_.clear(); | 
| 205 |  | groupListRow_.resize(nGroupsInRow_); | 
| 206 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 255 |  | } | 
| 256 |  | } | 
| 257 |  |  | 
| 258 | < | #endif | 
| 183 | < |  | 
| 184 | < | groupList_.clear(); | 
| 185 | < | groupList_.resize(nGroups_); | 
| 186 | < | for (int i = 0; i < nGroups_; i++) { | 
| 187 | < | int gid = cgLocalToGlobal[i]; | 
| 188 | < | for (int j = 0; j < nLocal_; j++) { | 
| 189 | < | int aid = AtomLocalToGlobal[j]; | 
| 190 | < | if (globalGroupMembership[aid] == gid) { | 
| 191 | < | groupList_[i].push_back(j); | 
| 192 | < | } | 
| 193 | < | } | 
| 194 | < | } | 
| 195 | < |  | 
| 258 | > | #else | 
| 259 |  | excludesForAtom.clear(); | 
| 260 |  | excludesForAtom.resize(nLocal_); | 
| 261 |  | toposForAtom.clear(); | 
| 288 |  | } | 
| 289 |  | } | 
| 290 |  | } | 
| 291 | < |  | 
| 291 | > | #endif | 
| 292 | > |  | 
| 293 | > | // allocate memory for the parallel objects | 
| 294 | > | atypesLocal.resize(nLocal_); | 
| 295 | > |  | 
| 296 | > | for (int i = 0; i < nLocal_; i++) | 
| 297 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 298 | > |  | 
| 299 | > | groupList_.clear(); | 
| 300 | > | groupList_.resize(nGroups_); | 
| 301 | > | for (int i = 0; i < nGroups_; i++) { | 
| 302 | > | int gid = cgLocalToGlobal[i]; | 
| 303 | > | for (int j = 0; j < nLocal_; j++) { | 
| 304 | > | int aid = AtomLocalToGlobal[j]; | 
| 305 | > | if (globalGroupMembership[aid] == gid) { | 
| 306 | > | groupList_[i].push_back(j); | 
| 307 | > | } | 
| 308 | > | } | 
| 309 | > | } | 
| 310 | > |  | 
| 311 | > |  | 
| 312 |  | createGtypeCutoffMap(); | 
| 313 |  |  | 
| 314 |  | } | 
| 315 |  |  | 
| 316 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 317 |  |  | 
| 318 | + | GrCut.clear(); | 
| 319 | + | GrCutSq.clear(); | 
| 320 | + | GrlistSq.clear(); | 
| 321 | + |  | 
| 322 |  | RealType tol = 1e-6; | 
| 323 | < | RealType rc; | 
| 323 | > | largestRcut_ = 0.0; | 
| 324 |  | int atid; | 
| 325 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 326 | + |  | 
| 327 |  | map<int, RealType> atypeCutoff; | 
| 328 |  |  | 
| 329 |  | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 331 |  | atid = (*at)->getIdent(); | 
| 332 |  | if (userChoseCutoff_) | 
| 333 |  | atypeCutoff[atid] = userCutoff_; | 
| 334 | < | else | 
| 334 | > | else | 
| 335 |  | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 336 |  | } | 
| 337 | < |  | 
| 337 | > |  | 
| 338 |  | vector<RealType> gTypeCutoffs; | 
| 339 |  | // first we do a single loop over the cutoff groups to find the | 
| 340 |  | // largest cutoff for any atypes present in this group. | 
| 394 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 395 |  | groupToGtype.resize(nGroups_); | 
| 396 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 309 | – |  | 
| 397 |  | groupCutoff[cg1] = 0.0; | 
| 398 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 312 | – |  | 
| 399 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 400 |  | ia != atomList.end(); ++ia) { | 
| 401 |  | int atom1 = (*ia); | 
| 402 |  | atid = idents[atom1]; | 
| 403 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 403 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 404 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 319 | – | } | 
| 405 |  | } | 
| 406 | < |  | 
| 406 | > |  | 
| 407 |  | bool gTypeFound = false; | 
| 408 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 408 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 409 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 410 |  | groupToGtype[cg1] = gt; | 
| 411 |  | gTypeFound = true; | 
| 412 |  | } | 
| 413 |  | } | 
| 414 | < | if (!gTypeFound) { | 
| 414 | > | if (!gTypeFound) { | 
| 415 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 416 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 417 |  | } | 
| 420 |  |  | 
| 421 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 422 |  |  | 
| 423 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 423 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 424 | > | gTypeCutoffs.end()); | 
| 425 |  |  | 
| 426 |  | #ifdef IS_MPI | 
| 427 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 427 | > | MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE, | 
| 428 | > | MPI_MAX, MPI_COMM_WORLD); | 
| 429 |  | #endif | 
| 430 |  |  | 
| 431 |  | RealType tradRcut = groupMax; | 
| 432 |  |  | 
| 433 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 434 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 433 | > | GrCut.resize( gTypeCutoffs.size() ); | 
| 434 | > | GrCutSq.resize( gTypeCutoffs.size() ); | 
| 435 | > | GrlistSq.resize( gTypeCutoffs.size() ); | 
| 436 | > |  | 
| 437 | > |  | 
| 438 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 439 | > | GrCut[i].resize( gTypeCutoffs.size() , 0.0); | 
| 440 | > | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 441 | > | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 442 | > |  | 
| 443 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 444 |  | RealType thisRcut; | 
| 445 |  | switch(cutoffPolicy_) { | 
| 446 |  | case TRADITIONAL: | 
| 462 |  | break; | 
| 463 |  | } | 
| 464 |  |  | 
| 465 | < | pair<int,int> key = make_pair(i,j); | 
| 370 | < | gTypeCutoffMap[key].first = thisRcut; | 
| 371 | < |  | 
| 465 | > | GrCut[i][j] = thisRcut; | 
| 466 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 467 | + | GrCutSq[i][j] = thisRcut * thisRcut; | 
| 468 | + | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); | 
| 469 |  |  | 
| 470 | < | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 471 | < |  | 
| 472 | < | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 377 | < |  | 
| 470 | > | // pair<int,int> key = make_pair(i,j); | 
| 471 | > | // gTypeCutoffMap[key].first = thisRcut; | 
| 472 | > | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 473 |  | // sanity check | 
| 474 |  |  | 
| 475 |  | if (userChoseCutoff_) { | 
| 476 | < | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 476 | > | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { | 
| 477 |  | sprintf(painCave.errMsg, | 
| 478 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 479 |  | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 486 |  | } | 
| 487 |  | } | 
| 488 |  |  | 
| 489 | < |  | 
| 395 | < | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 489 | > | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { | 
| 490 |  | int i, j; | 
| 491 |  | #ifdef IS_MPI | 
| 492 |  | i = groupRowToGtype[cg1]; | 
| 495 |  | i = groupToGtype[cg1]; | 
| 496 |  | j = groupToGtype[cg2]; | 
| 497 |  | #endif | 
| 498 | < | return gTypeCutoffMap[make_pair(i,j)]; | 
| 498 | > | rcut = GrCut[i][j]; | 
| 499 | > | rcutsq = GrCutSq[i][j]; | 
| 500 | > | rlistsq = GrlistSq[i][j]; | 
| 501 | > | return; | 
| 502 | > | //return gTypeCutoffMap[make_pair(i,j)]; | 
| 503 |  | } | 
| 504 |  |  | 
| 505 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 506 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 506 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 507 |  | if (toposForAtom[atom1][j] == atom2) | 
| 508 |  | return topoDist[atom1][j]; | 
| 509 | < | } | 
| 509 | > | } | 
| 510 |  | return 0; | 
| 511 |  | } | 
| 512 |  |  | 
| 513 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 514 |  | pairwisePot = 0.0; | 
| 515 |  | embeddingPot = 0.0; | 
| 516 | + | excludedPot = 0.0; | 
| 517 | + | excludedSelfPot = 0.0; | 
| 518 |  |  | 
| 519 |  | #ifdef IS_MPI | 
| 520 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 533 |  | fill(pot_col.begin(), pot_col.end(), | 
| 534 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 535 |  |  | 
| 536 | + | fill(expot_row.begin(), expot_row.end(), | 
| 537 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 538 | + |  | 
| 539 | + | fill(expot_col.begin(), expot_col.end(), | 
| 540 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 541 | + |  | 
| 542 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 543 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 544 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 543 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 544 | > | 0.0); | 
| 545 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 546 | > | 0.0); | 
| 547 |  | } | 
| 548 |  |  | 
| 549 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 552 |  | } | 
| 553 |  |  | 
| 554 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 555 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 556 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 555 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 556 | > | 0.0); | 
| 557 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 558 | > | 0.0); | 
| 559 |  | } | 
| 560 |  |  | 
| 561 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 572 |  | atomColData.skippedCharge.end(), 0.0); | 
| 573 |  | } | 
| 574 |  |  | 
| 575 | < | #else | 
| 576 | < |  | 
| 575 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 576 | > | fill(atomRowData.flucQFrc.begin(), | 
| 577 | > | atomRowData.flucQFrc.end(), 0.0); | 
| 578 | > | fill(atomColData.flucQFrc.begin(), | 
| 579 | > | atomColData.flucQFrc.end(), 0.0); | 
| 580 | > | } | 
| 581 | > |  | 
| 582 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 583 | > | fill(atomRowData.electricField.begin(), | 
| 584 | > | atomRowData.electricField.end(), V3Zero); | 
| 585 | > | fill(atomColData.electricField.begin(), | 
| 586 | > | atomColData.electricField.end(), V3Zero); | 
| 587 | > | } | 
| 588 | > |  | 
| 589 | > | #endif | 
| 590 | > | // even in parallel, we need to zero out the local arrays: | 
| 591 | > |  | 
| 592 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 593 |  | fill(snap_->atomData.particlePot.begin(), | 
| 594 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 598 |  | fill(snap_->atomData.density.begin(), | 
| 599 |  | snap_->atomData.density.end(), 0.0); | 
| 600 |  | } | 
| 601 | + |  | 
| 602 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 603 |  | fill(snap_->atomData.functional.begin(), | 
| 604 |  | snap_->atomData.functional.end(), 0.0); | 
| 605 |  | } | 
| 606 | + |  | 
| 607 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 608 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 609 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 610 |  | } | 
| 611 | + |  | 
| 612 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 613 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 614 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 615 |  | } | 
| 616 | < | #endif | 
| 617 | < |  | 
| 616 | > |  | 
| 617 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 618 | > | fill(snap_->atomData.electricField.begin(), | 
| 619 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 620 | > | } | 
| 621 |  | } | 
| 622 |  |  | 
| 623 |  |  | 
| 627 |  | #ifdef IS_MPI | 
| 628 |  |  | 
| 629 |  | // gather up the atomic positions | 
| 630 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 630 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 631 |  | atomRowData.position); | 
| 632 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 632 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 633 |  | atomColData.position); | 
| 634 |  |  | 
| 635 |  | // gather up the cutoff group positions | 
| 636 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 636 | > |  | 
| 637 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 638 |  | cgRowData.position); | 
| 639 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 639 | > |  | 
| 640 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 641 |  | cgColData.position); | 
| 642 | + |  | 
| 643 | + |  | 
| 644 | + |  | 
| 645 | + | if (needVelocities_) { | 
| 646 | + | // gather up the atomic velocities | 
| 647 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 648 | + | atomColData.velocity); | 
| 649 | + |  | 
| 650 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 651 | + | cgColData.velocity); | 
| 652 | + | } | 
| 653 | + |  | 
| 654 |  |  | 
| 655 |  | // if needed, gather the atomic rotation matrices | 
| 656 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 657 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 657 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 658 |  | atomRowData.aMat); | 
| 659 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 659 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 660 |  | atomColData.aMat); | 
| 661 |  | } | 
| 662 | < |  | 
| 663 | < | // if needed, gather the atomic eletrostatic frames | 
| 664 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 665 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 666 | < | atomRowData.electroFrame); | 
| 667 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 668 | < | atomColData.electroFrame); | 
| 662 | > |  | 
| 663 | > | // if needed, gather the atomic eletrostatic information | 
| 664 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 665 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 666 | > | atomRowData.dipole); | 
| 667 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 668 | > | atomColData.dipole); | 
| 669 |  | } | 
| 670 | + |  | 
| 671 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 672 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 673 | + | atomRowData.quadrupole); | 
| 674 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 675 | + | atomColData.quadrupole); | 
| 676 | + | } | 
| 677 | + |  | 
| 678 | + | // if needed, gather the atomic fluctuating charge values | 
| 679 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 680 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 681 | + | atomRowData.flucQPos); | 
| 682 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 683 | + | atomColData.flucQPos); | 
| 684 | + | } | 
| 685 | + |  | 
| 686 |  | #endif | 
| 687 |  | } | 
| 688 |  |  | 
| 696 |  |  | 
| 697 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 698 |  |  | 
| 699 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 699 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 700 |  | snap_->atomData.density); | 
| 701 |  |  | 
| 702 |  | int n = snap_->atomData.density.size(); | 
| 703 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 704 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 704 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 705 |  | for (int i = 0; i < n; i++) | 
| 706 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 707 | + | } | 
| 708 | + |  | 
| 709 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 710 | + | // we'll leave it here for now. | 
| 711 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 712 | + |  | 
| 713 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 714 | + | snap_->atomData.electricField); | 
| 715 | + |  | 
| 716 | + | int n = snap_->atomData.electricField.size(); | 
| 717 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 718 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 719 | + | field_tmp); | 
| 720 | + | for (int i = 0; i < n; i++) | 
| 721 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 722 |  | } | 
| 723 |  | #endif | 
| 724 |  | } | 
| 732 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 733 |  | #ifdef IS_MPI | 
| 734 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 735 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 735 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 736 |  | atomRowData.functional); | 
| 737 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 737 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 738 |  | atomColData.functional); | 
| 739 |  | } | 
| 740 |  |  | 
| 741 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 742 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 742 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 743 |  | atomRowData.functionalDerivative); | 
| 744 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 744 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 745 |  | atomColData.functionalDerivative); | 
| 746 |  | } | 
| 747 |  | #endif | 
| 755 |  | int n = snap_->atomData.force.size(); | 
| 756 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 757 |  |  | 
| 758 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 758 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 759 |  | for (int i = 0; i < n; i++) { | 
| 760 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 761 |  | frc_tmp[i] = 0.0; | 
| 762 |  | } | 
| 763 |  |  | 
| 764 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 765 | < | for (int i = 0; i < n; i++) | 
| 764 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 765 | > | for (int i = 0; i < n; i++) { | 
| 766 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 767 | < |  | 
| 768 | < |  | 
| 767 | > | } | 
| 768 | > |  | 
| 769 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 770 |  |  | 
| 771 |  | int nt = snap_->atomData.torque.size(); | 
| 772 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 773 |  |  | 
| 774 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 774 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 775 |  | for (int i = 0; i < nt; i++) { | 
| 776 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 777 |  | trq_tmp[i] = 0.0; | 
| 778 |  | } | 
| 779 |  |  | 
| 780 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 780 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 781 |  | for (int i = 0; i < nt; i++) | 
| 782 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 783 |  | } | 
| 787 |  | int ns = snap_->atomData.skippedCharge.size(); | 
| 788 |  | vector<RealType> skch_tmp(ns, 0.0); | 
| 789 |  |  | 
| 790 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 790 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 791 |  | for (int i = 0; i < ns; i++) { | 
| 792 | < | snap_->atomData.skippedCharge[i] = skch_tmp[i]; | 
| 792 | > | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 793 |  | skch_tmp[i] = 0.0; | 
| 794 |  | } | 
| 795 |  |  | 
| 796 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 797 | < | for (int i = 0; i < ns; i++) | 
| 796 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 797 | > | for (int i = 0; i < ns; i++) | 
| 798 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 799 | + |  | 
| 800 |  | } | 
| 801 |  |  | 
| 802 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 803 | + |  | 
| 804 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 805 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 806 | + |  | 
| 807 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 808 | + | for (int i = 0; i < nq; i++) { | 
| 809 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 810 | + | fqfrc_tmp[i] = 0.0; | 
| 811 | + | } | 
| 812 | + |  | 
| 813 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 814 | + | for (int i = 0; i < nq; i++) | 
| 815 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 816 | + |  | 
| 817 | + | } | 
| 818 | + |  | 
| 819 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 820 | + |  | 
| 821 | + | int nef = snap_->atomData.electricField.size(); | 
| 822 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 823 | + |  | 
| 824 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 825 | + | for (int i = 0; i < nef; i++) { | 
| 826 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 827 | + | efield_tmp[i] = 0.0; | 
| 828 | + | } | 
| 829 | + |  | 
| 830 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 831 | + | for (int i = 0; i < nef; i++) | 
| 832 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 833 | + | } | 
| 834 | + |  | 
| 835 | + |  | 
| 836 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 837 |  |  | 
| 838 |  | vector<potVec> pot_temp(nLocal_, | 
| 839 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 840 | + | vector<potVec> expot_temp(nLocal_, | 
| 841 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 842 |  |  | 
| 843 |  | // scatter/gather pot_row into the members of my column | 
| 844 |  |  | 
| 845 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 845 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 846 | > | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 847 |  |  | 
| 848 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 848 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 849 |  | pairwisePot += pot_temp[ii]; | 
| 850 | < |  | 
| 850 | > |  | 
| 851 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 852 | > | excludedPot += expot_temp[ii]; | 
| 853 | > |  | 
| 854 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 855 | > | // This is the pairwise contribution to the particle pot.  The | 
| 856 | > | // embedding contribution is added in each of the low level | 
| 857 | > | // non-bonded routines.  In single processor, this is done in | 
| 858 | > | // unpackInteractionData, not in collectData. | 
| 859 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 860 | > | for (int i = 0; i < nLocal_; i++) { | 
| 861 | > | // factor of two is because the total potential terms are divided | 
| 862 | > | // by 2 in parallel due to row/ column scatter | 
| 863 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 864 | > | } | 
| 865 | > | } | 
| 866 | > | } | 
| 867 | > |  | 
| 868 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 869 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 870 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 871 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 872 |  |  | 
| 873 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 873 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 874 | > | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 875 |  |  | 
| 876 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 877 |  | pairwisePot += pot_temp[ii]; | 
| 878 | + |  | 
| 879 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 880 | + | excludedPot += expot_temp[ii]; | 
| 881 | + |  | 
| 882 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 883 | + | // This is the pairwise contribution to the particle pot.  The | 
| 884 | + | // embedding contribution is added in each of the low level | 
| 885 | + | // non-bonded routines.  In single processor, this is done in | 
| 886 | + | // unpackInteractionData, not in collectData. | 
| 887 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 888 | + | for (int i = 0; i < nLocal_; i++) { | 
| 889 | + | // factor of two is because the total potential terms are divided | 
| 890 | + | // by 2 in parallel due to row/ column scatter | 
| 891 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 892 | + | } | 
| 893 | + | } | 
| 894 | + | } | 
| 895 | + |  | 
| 896 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 897 | + | int npp = snap_->atomData.particlePot.size(); | 
| 898 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 899 | + |  | 
| 900 | + | // This is the direct or embedding contribution to the particle | 
| 901 | + | // pot. | 
| 902 | + |  | 
| 903 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 904 | + | for (int i = 0; i < npp; i++) { | 
| 905 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 906 | + | } | 
| 907 | + |  | 
| 908 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 909 | + |  | 
| 910 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 911 | + | for (int i = 0; i < npp; i++) { | 
| 912 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 913 | + | } | 
| 914 | + | } | 
| 915 | + |  | 
| 916 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 917 | + | RealType ploc1 = pairwisePot[ii]; | 
| 918 | + | RealType ploc2 = 0.0; | 
| 919 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 920 | + | pairwisePot[ii] = ploc2; | 
| 921 | + | } | 
| 922 | + |  | 
| 923 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 924 | + | RealType ploc1 = excludedPot[ii]; | 
| 925 | + | RealType ploc2 = 0.0; | 
| 926 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 927 | + | excludedPot[ii] = ploc2; | 
| 928 | + | } | 
| 929 | + |  | 
| 930 | + | // Here be dragons. | 
| 931 | + | MPI_Comm col = colComm.getComm(); | 
| 932 | + |  | 
| 933 | + | MPI_Allreduce(MPI_IN_PLACE, | 
| 934 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 935 | + | MPI_REALTYPE, MPI_SUM, col); | 
| 936 | + |  | 
| 937 | + |  | 
| 938 |  | #endif | 
| 939 |  |  | 
| 940 |  | } | 
| 941 |  |  | 
| 942 | < | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 942 | > | /** | 
| 943 | > | * Collects information obtained during the post-pair (and embedding | 
| 944 | > | * functional) loops onto local data structures. | 
| 945 | > | */ | 
| 946 | > | void ForceMatrixDecomposition::collectSelfData() { | 
| 947 | > | snap_ = sman_->getCurrentSnapshot(); | 
| 948 | > | storageLayout_ = sman_->getStorageLayout(); | 
| 949 | > |  | 
| 950 |  | #ifdef IS_MPI | 
| 951 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 952 | + | RealType ploc1 = embeddingPot[ii]; | 
| 953 | + | RealType ploc2 = 0.0; | 
| 954 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 955 | + | embeddingPot[ii] = ploc2; | 
| 956 | + | } | 
| 957 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 958 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 959 | + | RealType ploc2 = 0.0; | 
| 960 | + | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 961 | + | excludedSelfPot[ii] = ploc2; | 
| 962 | + | } | 
| 963 | + | #endif | 
| 964 | + |  | 
| 965 | + | } | 
| 966 | + |  | 
| 967 | + |  | 
| 968 | + |  | 
| 969 | + | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 970 | + | #ifdef IS_MPI | 
| 971 |  | return nAtomsInRow_; | 
| 972 |  | #else | 
| 973 |  | return nLocal_; | 
| 977 |  | /** | 
| 978 |  | * returns the list of atoms belonging to this group. | 
| 979 |  | */ | 
| 980 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 980 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 981 |  | #ifdef IS_MPI | 
| 982 |  | return groupListRow_[cg1]; | 
| 983 |  | #else | 
| 985 |  | #endif | 
| 986 |  | } | 
| 987 |  |  | 
| 988 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 988 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 989 |  | #ifdef IS_MPI | 
| 990 |  | return groupListCol_[cg2]; | 
| 991 |  | #else | 
| 1002 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 1003 |  | #endif | 
| 1004 |  |  | 
| 1005 | < | snap_->wrapVector(d); | 
| 1005 | > | if (usePeriodicBoundaryConditions_) { | 
| 1006 | > | snap_->wrapVector(d); | 
| 1007 | > | } | 
| 1008 |  | return d; | 
| 1009 |  | } | 
| 1010 |  |  | 
| 1011 | + | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 1012 | + | #ifdef IS_MPI | 
| 1013 | + | return cgColData.velocity[cg2]; | 
| 1014 | + | #else | 
| 1015 | + | return snap_->cgData.velocity[cg2]; | 
| 1016 | + | #endif | 
| 1017 | + | } | 
| 1018 |  |  | 
| 1019 | + | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 1020 | + | #ifdef IS_MPI | 
| 1021 | + | return atomColData.velocity[atom2]; | 
| 1022 | + | #else | 
| 1023 | + | return snap_->atomData.velocity[atom2]; | 
| 1024 | + | #endif | 
| 1025 | + | } | 
| 1026 | + |  | 
| 1027 | + |  | 
| 1028 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1029 |  |  | 
| 1030 |  | Vector3d d; | 
| 1034 |  | #else | 
| 1035 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1036 |  | #endif | 
| 1037 | < |  | 
| 1038 | < | snap_->wrapVector(d); | 
| 1037 | > | if (usePeriodicBoundaryConditions_) { | 
| 1038 | > | snap_->wrapVector(d); | 
| 1039 | > | } | 
| 1040 |  | return d; | 
| 1041 |  | } | 
| 1042 |  |  | 
| 1048 |  | #else | 
| 1049 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1050 |  | #endif | 
| 1051 | < |  | 
| 1052 | < | snap_->wrapVector(d); | 
| 1051 | > | if (usePeriodicBoundaryConditions_) { | 
| 1052 | > | snap_->wrapVector(d); | 
| 1053 | > | } | 
| 1054 |  | return d; | 
| 1055 |  | } | 
| 1056 |  |  | 
| 1057 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1057 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1058 |  | #ifdef IS_MPI | 
| 1059 |  | return massFactorsRow[atom1]; | 
| 1060 |  | #else | 
| 1062 |  | #endif | 
| 1063 |  | } | 
| 1064 |  |  | 
| 1065 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1065 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1066 |  | #ifdef IS_MPI | 
| 1067 |  | return massFactorsCol[atom2]; | 
| 1068 |  | #else | 
| 1079 |  | #else | 
| 1080 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1081 |  | #endif | 
| 1082 | < |  | 
| 1083 | < | snap_->wrapVector(d); | 
| 1082 | > | if (usePeriodicBoundaryConditions_) { | 
| 1083 | > | snap_->wrapVector(d); | 
| 1084 | > | } | 
| 1085 |  | return d; | 
| 1086 |  | } | 
| 1087 |  |  | 
| 1088 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1088 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1089 |  | return excludesForAtom[atom1]; | 
| 1090 |  | } | 
| 1091 |  |  | 
| 1093 |  | * We need to exclude some overcounted interactions that result from | 
| 1094 |  | * the parallel decomposition. | 
| 1095 |  | */ | 
| 1096 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1096 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1097 |  | int unique_id_1, unique_id_2; | 
| 1098 | < |  | 
| 1098 | > |  | 
| 1099 |  | #ifdef IS_MPI | 
| 1100 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1101 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1102 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1103 | + | // group1 = cgRowToGlobal[cg1]; | 
| 1104 | + | // group2 = cgColToGlobal[cg2]; | 
| 1105 | + | #else | 
| 1106 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1107 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1108 | + | int group1 = cgLocalToGlobal[cg1]; | 
| 1109 | + | int group2 = cgLocalToGlobal[cg2]; | 
| 1110 | + | #endif | 
| 1111 |  |  | 
| 762 | – | // this situation should only arise in MPI simulations | 
| 1112 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1113 | < |  | 
| 1113 | > |  | 
| 1114 | > | #ifdef IS_MPI | 
| 1115 |  | // this prevents us from doing the pair on multiple processors | 
| 1116 |  | if (unique_id_1 < unique_id_2) { | 
| 1117 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1118 |  | } else { | 
| 1119 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1119 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1120 |  | } | 
| 1121 | + | #endif | 
| 1122 | + |  | 
| 1123 | + | #ifndef IS_MPI | 
| 1124 | + | if (group1 == group2) { | 
| 1125 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1126 | + | } | 
| 1127 |  | #endif | 
| 1128 | + |  | 
| 1129 |  | return false; | 
| 1130 |  | } | 
| 1131 |  |  | 
| 1139 |  | * field) must still be handled for these pairs. | 
| 1140 |  | */ | 
| 1141 |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1142 | < | int unique_id_2; | 
| 1142 | > |  | 
| 1143 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1144 | > | // version, and to use local IDs in the non-MPI version: | 
| 1145 |  |  | 
| 787 | – | #ifdef IS_MPI | 
| 788 | – | // in MPI, we have to look up the unique IDs for the row atom. | 
| 789 | – | unique_id_2 = AtomColToGlobal[atom2]; | 
| 790 | – | #else | 
| 791 | – | // in the normal loop, the atom numbers are unique | 
| 792 | – | unique_id_2 = atom2; | 
| 793 | – | #endif | 
| 794 | – |  | 
| 1146 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1147 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 1148 | < | if ( (*i) == unique_id_2 ) return true; | 
| 1148 | > | if ( (*i) == atom2 ) return true; | 
| 1149 |  | } | 
| 1150 |  |  | 
| 1151 |  | return false; | 
| 1175 |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1176 |  |  | 
| 1177 |  | #ifdef IS_MPI | 
| 1178 | < |  | 
| 1179 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1180 | < | ff_->getAtomType(identsCol[atom2]) ); | 
| 1181 | < |  | 
| 1178 | > | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1179 | > | idat.atid1 = identsRow[atom1]; | 
| 1180 | > | idat.atid2 = identsCol[atom2]; | 
| 1181 | > |  | 
| 1182 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1183 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1184 | > | } else { | 
| 1185 | > | idat.sameRegion = false; | 
| 1186 | > | } | 
| 1187 | > |  | 
| 1188 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1189 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1190 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1191 |  | } | 
| 1192 |  |  | 
| 836 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 837 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 838 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 839 | – | } | 
| 840 | – |  | 
| 1193 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1194 |  | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1195 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1196 |  | } | 
| 1197 |  |  | 
| 1198 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1199 | + | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1200 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1201 | + | } | 
| 1202 | + |  | 
| 1203 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1204 | + | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1205 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1206 | + | } | 
| 1207 | + |  | 
| 1208 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1209 |  | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1210 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1230 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1231 |  | } | 
| 1232 |  |  | 
| 1233 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1234 | + | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1235 | + | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1236 | + | } | 
| 1237 | + |  | 
| 1238 |  | #else | 
| 1239 | + |  | 
| 1240 | + | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1241 | + | idat.atid1 = idents[atom1]; | 
| 1242 | + | idat.atid2 = idents[atom2]; | 
| 1243 |  |  | 
| 1244 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 1245 | < | ff_->getAtomType(idents[atom2]) ); | 
| 1244 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1245 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1246 | > | } else { | 
| 1247 | > | idat.sameRegion = false; | 
| 1248 | > | } | 
| 1249 |  |  | 
| 1250 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1251 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1252 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1253 |  | } | 
| 1254 |  |  | 
| 881 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 882 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 883 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 884 | – | } | 
| 885 | – |  | 
| 1255 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1256 |  | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1257 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1258 | + | } | 
| 1259 | + |  | 
| 1260 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1261 | + | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1262 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1263 | + | } | 
| 1264 | + |  | 
| 1265 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1266 | + | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1267 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1268 |  | } | 
| 1269 |  |  | 
| 1270 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1291 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1292 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1293 |  | } | 
| 1294 | + |  | 
| 1295 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1296 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1297 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1298 | + | } | 
| 1299 | + |  | 
| 1300 |  | #endif | 
| 1301 |  | } | 
| 1302 |  |  | 
| 1303 |  |  | 
| 1304 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1305 |  | #ifdef IS_MPI | 
| 1306 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1307 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1306 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1307 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1308 | > | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1309 | > | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1310 |  |  | 
| 1311 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1312 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1313 | + |  | 
| 1314 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1315 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1316 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1317 | + | } | 
| 1318 | + |  | 
| 1319 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1320 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1321 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1322 | + | } | 
| 1323 | + |  | 
| 1324 |  | #else | 
| 1325 |  | pairwisePot += *(idat.pot); | 
| 1326 | + | excludedPot += *(idat.excludedPot); | 
| 1327 |  |  | 
| 1328 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1329 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1330 | + |  | 
| 1331 | + | if (idat.doParticlePot) { | 
| 1332 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1333 | + | // embedding contribution is added in each of the low level | 
| 1334 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1335 | + | // in collectData, not in unpackInteractionData. | 
| 1336 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1337 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1338 | + | } | 
| 1339 | + |  | 
| 1340 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1341 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1342 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1343 | + | } | 
| 1344 | + |  | 
| 1345 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1346 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1347 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1348 | + | } | 
| 1349 | + |  | 
| 1350 |  | #endif | 
| 1351 |  |  | 
| 1352 |  | } | 
| 1357 |  | * first element of pair is row-indexed CutoffGroup | 
| 1358 |  | * second element of pair is column-indexed CutoffGroup | 
| 1359 |  | */ | 
| 1360 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1361 | < |  | 
| 1362 | < | vector<pair<int, int> > neighborList; | 
| 1360 | > | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1361 | > |  | 
| 1362 | > | neighborList.clear(); | 
| 1363 |  | groupCutoffs cuts; | 
| 1364 |  | bool doAllPairs = false; | 
| 1365 |  |  | 
| 1366 | + | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1367 | + | RealType rcut, rcutsq, rlistsq; | 
| 1368 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1369 | + | Mat3x3d box; | 
| 1370 | + | Mat3x3d invBox; | 
| 1371 | + |  | 
| 1372 | + | Vector3d rs, scaled, dr; | 
| 1373 | + | Vector3i whichCell; | 
| 1374 | + | int cellIndex; | 
| 1375 | + |  | 
| 1376 |  | #ifdef IS_MPI | 
| 1377 |  | cellListRow_.clear(); | 
| 1378 |  | cellListCol_.clear(); | 
| 1379 |  | #else | 
| 1380 |  | cellList_.clear(); | 
| 1381 |  | #endif | 
| 1382 | < |  | 
| 1383 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1384 | < | RealType rl2 = rList_ * rList_; | 
| 1385 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1386 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1387 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1388 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1389 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1390 | < |  | 
| 1391 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1392 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1393 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1394 | < |  | 
| 1382 | > |  | 
| 1383 | > | if (!usePeriodicBoundaryConditions_) { | 
| 1384 | > | box = snap_->getBoundingBox(); | 
| 1385 | > | invBox = snap_->getInvBoundingBox(); | 
| 1386 | > | } else { | 
| 1387 | > | box = snap_->getHmat(); | 
| 1388 | > | invBox = snap_->getInvHmat(); | 
| 1389 | > | } | 
| 1390 | > |  | 
| 1391 | > | Vector3d boxX = box.getColumn(0); | 
| 1392 | > | Vector3d boxY = box.getColumn(1); | 
| 1393 | > | Vector3d boxZ = box.getColumn(2); | 
| 1394 | > |  | 
| 1395 | > | nCells_.x() = int( boxX.length() / rList_ ); | 
| 1396 | > | nCells_.y() = int( boxY.length() / rList_ ); | 
| 1397 | > | nCells_.z() = int( boxZ.length() / rList_ ); | 
| 1398 | > |  | 
| 1399 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1400 |  |  | 
| 1401 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1402 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1403 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1404 | < |  | 
| 972 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 973 | < | Vector3d rs, scaled, dr; | 
| 974 | < | Vector3i whichCell; | 
| 975 | < | int cellIndex; | 
| 1404 | > |  | 
| 1405 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1406 | < |  | 
| 1406 | > |  | 
| 1407 |  | #ifdef IS_MPI | 
| 1408 |  | cellListRow_.resize(nCtot); | 
| 1409 |  | cellListCol_.resize(nCtot); | 
| 1410 |  | #else | 
| 1411 |  | cellList_.resize(nCtot); | 
| 1412 |  | #endif | 
| 1413 | < |  | 
| 1413 | > |  | 
| 1414 |  | if (!doAllPairs) { | 
| 1415 |  | #ifdef IS_MPI | 
| 1416 | < |  | 
| 1416 | > |  | 
| 1417 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1418 |  | rs = cgRowData.position[i]; | 
| 1419 |  |  | 
| 1420 |  | // scaled positions relative to the box vectors | 
| 1421 | < | scaled = invHmat * rs; | 
| 1421 | > | scaled = invBox * rs; | 
| 1422 |  |  | 
| 1423 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1424 |  | // numbers | 
| 1425 |  | for (int j = 0; j < 3; j++) { | 
| 1426 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1427 |  | scaled[j] += 0.5; | 
| 1428 | + | // Handle the special case when an object is exactly on the | 
| 1429 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1430 | + | // scaled coordinate of 0.0) | 
| 1431 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1432 |  | } | 
| 1433 |  |  | 
| 1434 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1442 |  | // add this cutoff group to the list of groups in this cell; | 
| 1443 |  | cellListRow_[cellIndex].push_back(i); | 
| 1444 |  | } | 
| 1012 | – |  | 
| 1445 |  | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1446 |  | rs = cgColData.position[i]; | 
| 1447 |  |  | 
| 1448 |  | // scaled positions relative to the box vectors | 
| 1449 | < | scaled = invHmat * rs; | 
| 1449 | > | scaled = invBox * rs; | 
| 1450 |  |  | 
| 1451 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1452 |  | // numbers | 
| 1453 |  | for (int j = 0; j < 3; j++) { | 
| 1454 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1455 |  | scaled[j] += 0.5; | 
| 1456 | + | // Handle the special case when an object is exactly on the | 
| 1457 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1458 | + | // scaled coordinate of 0.0) | 
| 1459 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1460 |  | } | 
| 1461 |  |  | 
| 1462 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1470 |  | // add this cutoff group to the list of groups in this cell; | 
| 1471 |  | cellListCol_[cellIndex].push_back(i); | 
| 1472 |  | } | 
| 1473 | + |  | 
| 1474 |  | #else | 
| 1475 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1476 |  | rs = snap_->cgData.position[i]; | 
| 1477 |  |  | 
| 1478 |  | // scaled positions relative to the box vectors | 
| 1479 | < | scaled = invHmat * rs; | 
| 1479 | > | scaled = invBox * rs; | 
| 1480 |  |  | 
| 1481 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1482 |  | // numbers | 
| 1483 |  | for (int j = 0; j < 3; j++) { | 
| 1484 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1485 |  | scaled[j] += 0.5; | 
| 1486 | + | // Handle the special case when an object is exactly on the | 
| 1487 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1488 | + | // scaled coordinate of 0.0) | 
| 1489 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1490 |  | } | 
| 1491 |  |  | 
| 1492 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1493 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1494 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1495 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1493 | > | whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1494 | > | whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1495 | > | whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1496 |  |  | 
| 1497 |  | // find single index of this cell: | 
| 1498 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1498 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1499 |  |  | 
| 1500 |  | // add this cutoff group to the list of groups in this cell; | 
| 1501 |  | cellList_[cellIndex].push_back(i); | 
| 1502 |  | } | 
| 1503 | + |  | 
| 1504 |  | #endif | 
| 1505 |  |  | 
| 1506 |  | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1513 |  | os != cellOffsets_.end(); ++os) { | 
| 1514 |  |  | 
| 1515 |  | Vector3i m2v = m1v + (*os); | 
| 1516 | < |  | 
| 1516 | > |  | 
| 1517 | > |  | 
| 1518 |  | if (m2v.x() >= nCells_.x()) { | 
| 1519 |  | m2v.x() = 0; | 
| 1520 |  | } else if (m2v.x() < 0) { | 
| 1532 |  | } else if (m2v.z() < 0) { | 
| 1533 |  | m2v.z() = nCells_.z() - 1; | 
| 1534 |  | } | 
| 1535 | < |  | 
| 1535 | > |  | 
| 1536 |  | int m2 = Vlinear (m2v, nCells_); | 
| 1537 |  |  | 
| 1538 |  | #ifdef IS_MPI | 
| 1541 |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1542 |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1543 |  |  | 
| 1544 | < | // Always do this if we're in different cells or if | 
| 1545 | < | // we're in the same cell and the global index of the | 
| 1546 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1547 | < |  | 
| 1548 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1106 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1544 | > | // In parallel, we need to visit *all* pairs of row | 
| 1545 | > | // & column indicies and will divide labor in the | 
| 1546 | > | // force evaluation later. | 
| 1547 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1548 | > | if (usePeriodicBoundaryConditions_) { | 
| 1549 |  | snap_->wrapVector(dr); | 
| 1108 | – | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1109 | – | if (dr.lengthSquare() < cuts.third) { | 
| 1110 | – | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1111 | – | } | 
| 1550 |  | } | 
| 1551 | + | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1552 | + | if (dr.lengthSquare() < rlistsq) { | 
| 1553 | + | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1554 | + | } | 
| 1555 |  | } | 
| 1556 |  | } | 
| 1557 |  | #else | 
| 1116 | – |  | 
| 1558 |  | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1559 |  | j1 != cellList_[m1].end(); ++j1) { | 
| 1560 |  | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1561 |  | j2 != cellList_[m2].end(); ++j2) { | 
| 1562 | < |  | 
| 1562 | > |  | 
| 1563 |  | // Always do this if we're in different cells or if | 
| 1564 | < | // we're in the same cell and the global index of the | 
| 1565 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1566 | < |  | 
| 1567 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1564 | > | // we're in the same cell and the global index of | 
| 1565 | > | // the j2 cutoff group is greater than or equal to | 
| 1566 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1567 | > | // has a "less than" conditional here, but that | 
| 1568 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1569 | > | // allows atoms within a single cutoff group to | 
| 1570 | > | // interact with each other. | 
| 1571 | > |  | 
| 1572 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1573 | > |  | 
| 1574 |  | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1575 | < | snap_->wrapVector(dr); | 
| 1576 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1577 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1575 | > | if (usePeriodicBoundaryConditions_) { | 
| 1576 | > | snap_->wrapVector(dr); | 
| 1577 | > | } | 
| 1578 | > | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1579 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1580 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1581 |  | } | 
| 1582 |  | } | 
| 1591 |  | // branch to do all cutoff group pairs | 
| 1592 |  | #ifdef IS_MPI | 
| 1593 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1594 | < | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1594 | > | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1595 |  | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1596 | < | snap_->wrapVector(dr); | 
| 1597 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1598 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1596 | > | if (usePeriodicBoundaryConditions_) { | 
| 1597 | > | snap_->wrapVector(dr); | 
| 1598 | > | } | 
| 1599 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); | 
| 1600 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1601 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1602 |  | } | 
| 1603 |  | } | 
| 1604 | < | } | 
| 1604 | > | } | 
| 1605 |  | #else | 
| 1606 | < | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1607 | < | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1606 | > | // include all groups here. | 
| 1607 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1608 | > | // include self group interactions j2 == j1 | 
| 1609 | > | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1610 |  | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1611 | < | snap_->wrapVector(dr); | 
| 1612 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1613 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1611 | > | if (usePeriodicBoundaryConditions_) { | 
| 1612 | > | snap_->wrapVector(dr); | 
| 1613 | > | } | 
| 1614 | > | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); | 
| 1615 | > | if (dr.lengthSquare() < rlistsq) { | 
| 1616 |  | neighborList.push_back(make_pair(j1, j2)); | 
| 1617 |  | } | 
| 1618 | < | } | 
| 1619 | < | } | 
| 1618 | > | } | 
| 1619 | > | } | 
| 1620 |  | #endif | 
| 1621 |  | } | 
| 1622 |  |  | 
| 1625 |  | saved_CG_positions_.clear(); | 
| 1626 |  | for (int i = 0; i < nGroups_; i++) | 
| 1627 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1173 | – |  | 
| 1174 | – | return neighborList; | 
| 1628 |  | } | 
| 1629 |  | } //end namespace OpenMD |