| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 611 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 612 |  | cgColData.position); | 
| 613 |  |  | 
| 614 | + |  | 
| 615 | + |  | 
| 616 | + | if (needVelocities_) { | 
| 617 | + | // gather up the atomic velocities | 
| 618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 619 | + | atomColData.velocity); | 
| 620 | + |  | 
| 621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 622 | + | cgColData.velocity); | 
| 623 | + | } | 
| 624 | + |  | 
| 625 |  |  | 
| 626 |  | // if needed, gather the atomic rotation matrices | 
| 627 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 788 |  |  | 
| 789 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 790 |  | pairwisePot += pot_temp[ii]; | 
| 791 | < |  | 
| 791 | > |  | 
| 792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 793 | > | // This is the pairwise contribution to the particle pot.  The | 
| 794 | > | // embedding contribution is added in each of the low level | 
| 795 | > | // non-bonded routines.  In single processor, this is done in | 
| 796 | > | // unpackInteractionData, not in collectData. | 
| 797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 798 | > | for (int i = 0; i < nLocal_; i++) { | 
| 799 | > | // factor of two is because the total potential terms are divided | 
| 800 | > | // by 2 in parallel due to row/ column scatter | 
| 801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > | } | 
| 805 | > |  | 
| 806 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 807 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 808 |  |  | 
| 810 |  |  | 
| 811 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 812 |  | pairwisePot += pot_temp[ii]; | 
| 813 | + |  | 
| 814 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 815 | + | // This is the pairwise contribution to the particle pot.  The | 
| 816 | + | // embedding contribution is added in each of the low level | 
| 817 | + | // non-bonded routines.  In single processor, this is done in | 
| 818 | + | // unpackInteractionData, not in collectData. | 
| 819 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 820 | + | for (int i = 0; i < nLocal_; i++) { | 
| 821 | + | // factor of two is because the total potential terms are divided | 
| 822 | + | // by 2 in parallel due to row/ column scatter | 
| 823 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 824 | + | } | 
| 825 | + | } | 
| 826 | + | } | 
| 827 |  |  | 
| 828 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 829 | + | int npp = snap_->atomData.particlePot.size(); | 
| 830 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 831 | + |  | 
| 832 | + | // This is the direct or embedding contribution to the particle | 
| 833 | + | // pot. | 
| 834 | + |  | 
| 835 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 836 | + | for (int i = 0; i < npp; i++) { | 
| 837 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 838 | + | } | 
| 839 | + |  | 
| 840 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 841 | + |  | 
| 842 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 843 | + | for (int i = 0; i < npp; i++) { | 
| 844 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + |  | 
| 848 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 849 |  | RealType ploc1 = pairwisePot[ii]; | 
| 850 |  | RealType ploc2 = 0.0; | 
| 858 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 859 |  | embeddingPot[ii] = ploc2; | 
| 860 |  | } | 
| 861 | + |  | 
| 862 | + | // Here be dragons. | 
| 863 | + | MPI::Intracomm col = colComm.getComm(); | 
| 864 |  |  | 
| 865 | + | col.Allreduce(MPI::IN_PLACE, | 
| 866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 867 | + | MPI::REALTYPE, MPI::SUM); | 
| 868 | + |  | 
| 869 | + |  | 
| 870 |  | #endif | 
| 871 |  |  | 
| 872 |  | } | 
| 911 |  | return d; | 
| 912 |  | } | 
| 913 |  |  | 
| 914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 915 | + | #ifdef IS_MPI | 
| 916 | + | return cgColData.velocity[cg2]; | 
| 917 | + | #else | 
| 918 | + | return snap_->cgData.velocity[cg2]; | 
| 919 | + | #endif | 
| 920 | + | } | 
| 921 |  |  | 
| 922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | return atomColData.velocity[atom2]; | 
| 925 | + | #else | 
| 926 | + | return snap_->atomData.velocity[atom2]; | 
| 927 | + | #endif | 
| 928 | + | } | 
| 929 | + |  | 
| 930 | + |  | 
| 931 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 932 |  |  | 
| 933 |  | Vector3d d; | 
| 1192 |  | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1193 |  | } | 
| 1194 |  |  | 
| 1101 | – | // should particle pot be done here also? | 
| 1195 |  | #else | 
| 1196 |  | pairwisePot += *(idat.pot); | 
| 1197 |  |  | 
| 1199 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1200 |  |  | 
| 1201 |  | if (idat.doParticlePot) { | 
| 1202 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1203 | + | // embedding contribution is added in each of the low level | 
| 1204 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1205 | + | // in collectData, not in unpackInteractionData. | 
| 1206 |  | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1207 | < | snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); | 
| 1207 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1208 |  | } | 
| 1209 |  |  | 
| 1210 |  | if (storageLayout_ & DataStorage::dslFlucQForce) { |