| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | #include "math/SquareMatrix3.hpp" | 
| 44 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 45 | #include "brains/SnapshotManager.hpp" | 
| 46 | #include "brains/PairList.hpp" | 
| 47 |  | 
| 48 | using namespace std; | 
| 49 | namespace OpenMD { | 
| 50 |  | 
| 51 | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  | 
| 53 | // In a parallel computation, row and colum scans must visit all | 
| 54 | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | // are used when the processor can see all pairs) | 
| 56 | #ifdef IS_MPI | 
| 57 | cellOffsets_.clear(); | 
| 58 | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | #endif | 
| 86 | } | 
| 87 |  | 
| 88 |  | 
| 89 | /** | 
| 90 | * distributeInitialData is essentially a copy of the older fortran | 
| 91 | * SimulationSetup | 
| 92 | */ | 
| 93 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 | snap_ = sman_->getCurrentSnapshot(); | 
| 95 | storageLayout_ = sman_->getStorageLayout(); | 
| 96 | ff_ = info_->getForceField(); | 
| 97 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 |  | 
| 99 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 | // gather the information for atomtype IDs (atids): | 
| 101 | idents = info_->getIdentArray(); | 
| 102 | regions = info_->getRegions(); | 
| 103 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 104 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 105 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 106 |  | 
| 107 | massFactors = info_->getMassFactors(); | 
| 108 |  | 
| 109 | PairList* excludes = info_->getExcludedInteractions(); | 
| 110 | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 111 | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 112 | PairList* oneFour = info_->getOneFourInteractions(); | 
| 113 |  | 
| 114 | if (needVelocities_) | 
| 115 | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 116 | DataStorage::dslVelocity); | 
| 117 | else | 
| 118 | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 119 |  | 
| 120 | #ifdef IS_MPI | 
| 121 |  | 
| 122 | MPI::Intracomm row = rowComm.getComm(); | 
| 123 | MPI::Intracomm col = colComm.getComm(); | 
| 124 |  | 
| 125 | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 126 | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 127 | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 128 | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 129 | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 130 |  | 
| 131 | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 132 | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 133 | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 134 | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 135 | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 136 |  | 
| 137 | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 138 | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 139 | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 140 | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 141 |  | 
| 142 | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 143 | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 144 | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 145 | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 146 |  | 
| 147 | // Modify the data storage objects with the correct layouts and sizes: | 
| 148 | atomRowData.resize(nAtomsInRow_); | 
| 149 | atomRowData.setStorageLayout(storageLayout_); | 
| 150 | atomColData.resize(nAtomsInCol_); | 
| 151 | atomColData.setStorageLayout(storageLayout_); | 
| 152 | cgRowData.resize(nGroupsInRow_); | 
| 153 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 154 | cgColData.resize(nGroupsInCol_); | 
| 155 | if (needVelocities_) | 
| 156 | // we only need column velocities if we need them. | 
| 157 | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 158 | DataStorage::dslVelocity); | 
| 159 | else | 
| 160 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 161 |  | 
| 162 | identsRow.resize(nAtomsInRow_); | 
| 163 | identsCol.resize(nAtomsInCol_); | 
| 164 |  | 
| 165 | AtomPlanIntRow->gather(idents, identsRow); | 
| 166 | AtomPlanIntColumn->gather(idents, identsCol); | 
| 167 |  | 
| 168 | regionsRow.resize(nAtomsInRow_); | 
| 169 | regionsCol.resize(nAtomsInCol_); | 
| 170 |  | 
| 171 | AtomPlanIntRow->gather(regions, regionsRow); | 
| 172 | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 173 |  | 
| 174 | // allocate memory for the parallel objects | 
| 175 | atypesRow.resize(nAtomsInRow_); | 
| 176 | atypesCol.resize(nAtomsInCol_); | 
| 177 |  | 
| 178 | for (int i = 0; i < nAtomsInRow_; i++) | 
| 179 | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 180 | for (int i = 0; i < nAtomsInCol_; i++) | 
| 181 | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 182 |  | 
| 183 | pot_row.resize(nAtomsInRow_); | 
| 184 | pot_col.resize(nAtomsInCol_); | 
| 185 |  | 
| 186 | expot_row.resize(nAtomsInRow_); | 
| 187 | expot_col.resize(nAtomsInCol_); | 
| 188 |  | 
| 189 | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 190 | AtomColToGlobal.resize(nAtomsInCol_); | 
| 191 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 192 | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 193 |  | 
| 194 | cgRowToGlobal.resize(nGroupsInRow_); | 
| 195 | cgColToGlobal.resize(nGroupsInCol_); | 
| 196 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 197 | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 198 |  | 
| 199 | massFactorsRow.resize(nAtomsInRow_); | 
| 200 | massFactorsCol.resize(nAtomsInCol_); | 
| 201 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 202 | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 203 |  | 
| 204 | groupListRow_.clear(); | 
| 205 | groupListRow_.resize(nGroupsInRow_); | 
| 206 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 207 | int gid = cgRowToGlobal[i]; | 
| 208 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 209 | int aid = AtomRowToGlobal[j]; | 
| 210 | if (globalGroupMembership[aid] == gid) | 
| 211 | groupListRow_[i].push_back(j); | 
| 212 | } | 
| 213 | } | 
| 214 |  | 
| 215 | groupListCol_.clear(); | 
| 216 | groupListCol_.resize(nGroupsInCol_); | 
| 217 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 218 | int gid = cgColToGlobal[i]; | 
| 219 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 220 | int aid = AtomColToGlobal[j]; | 
| 221 | if (globalGroupMembership[aid] == gid) | 
| 222 | groupListCol_[i].push_back(j); | 
| 223 | } | 
| 224 | } | 
| 225 |  | 
| 226 | excludesForAtom.clear(); | 
| 227 | excludesForAtom.resize(nAtomsInRow_); | 
| 228 | toposForAtom.clear(); | 
| 229 | toposForAtom.resize(nAtomsInRow_); | 
| 230 | topoDist.clear(); | 
| 231 | topoDist.resize(nAtomsInRow_); | 
| 232 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 233 | int iglob = AtomRowToGlobal[i]; | 
| 234 |  | 
| 235 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 236 | int jglob = AtomColToGlobal[j]; | 
| 237 |  | 
| 238 | if (excludes->hasPair(iglob, jglob)) | 
| 239 | excludesForAtom[i].push_back(j); | 
| 240 |  | 
| 241 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 242 | toposForAtom[i].push_back(j); | 
| 243 | topoDist[i].push_back(1); | 
| 244 | } else { | 
| 245 | if (oneThree->hasPair(iglob, jglob)) { | 
| 246 | toposForAtom[i].push_back(j); | 
| 247 | topoDist[i].push_back(2); | 
| 248 | } else { | 
| 249 | if (oneFour->hasPair(iglob, jglob)) { | 
| 250 | toposForAtom[i].push_back(j); | 
| 251 | topoDist[i].push_back(3); | 
| 252 | } | 
| 253 | } | 
| 254 | } | 
| 255 | } | 
| 256 | } | 
| 257 |  | 
| 258 | #else | 
| 259 | excludesForAtom.clear(); | 
| 260 | excludesForAtom.resize(nLocal_); | 
| 261 | toposForAtom.clear(); | 
| 262 | toposForAtom.resize(nLocal_); | 
| 263 | topoDist.clear(); | 
| 264 | topoDist.resize(nLocal_); | 
| 265 |  | 
| 266 | for (int i = 0; i < nLocal_; i++) { | 
| 267 | int iglob = AtomLocalToGlobal[i]; | 
| 268 |  | 
| 269 | for (int j = 0; j < nLocal_; j++) { | 
| 270 | int jglob = AtomLocalToGlobal[j]; | 
| 271 |  | 
| 272 | if (excludes->hasPair(iglob, jglob)) | 
| 273 | excludesForAtom[i].push_back(j); | 
| 274 |  | 
| 275 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 276 | toposForAtom[i].push_back(j); | 
| 277 | topoDist[i].push_back(1); | 
| 278 | } else { | 
| 279 | if (oneThree->hasPair(iglob, jglob)) { | 
| 280 | toposForAtom[i].push_back(j); | 
| 281 | topoDist[i].push_back(2); | 
| 282 | } else { | 
| 283 | if (oneFour->hasPair(iglob, jglob)) { | 
| 284 | toposForAtom[i].push_back(j); | 
| 285 | topoDist[i].push_back(3); | 
| 286 | } | 
| 287 | } | 
| 288 | } | 
| 289 | } | 
| 290 | } | 
| 291 | #endif | 
| 292 |  | 
| 293 | // allocate memory for the parallel objects | 
| 294 | atypesLocal.resize(nLocal_); | 
| 295 |  | 
| 296 | for (int i = 0; i < nLocal_; i++) | 
| 297 | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 298 |  | 
| 299 | groupList_.clear(); | 
| 300 | groupList_.resize(nGroups_); | 
| 301 | for (int i = 0; i < nGroups_; i++) { | 
| 302 | int gid = cgLocalToGlobal[i]; | 
| 303 | for (int j = 0; j < nLocal_; j++) { | 
| 304 | int aid = AtomLocalToGlobal[j]; | 
| 305 | if (globalGroupMembership[aid] == gid) { | 
| 306 | groupList_[i].push_back(j); | 
| 307 | } | 
| 308 | } | 
| 309 | } | 
| 310 |  | 
| 311 |  | 
| 312 | createGtypeCutoffMap(); | 
| 313 |  | 
| 314 | } | 
| 315 |  | 
| 316 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 317 |  | 
| 318 | GrCut.clear(); | 
| 319 | GrCutSq.clear(); | 
| 320 | GrlistSq.clear(); | 
| 321 |  | 
| 322 | RealType tol = 1e-6; | 
| 323 | largestRcut_ = 0.0; | 
| 324 | int atid; | 
| 325 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 326 |  | 
| 327 | map<int, RealType> atypeCutoff; | 
| 328 |  | 
| 329 | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 330 | at != atypes.end(); ++at){ | 
| 331 | atid = (*at)->getIdent(); | 
| 332 | if (userChoseCutoff_) | 
| 333 | atypeCutoff[atid] = userCutoff_; | 
| 334 | else | 
| 335 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 336 | } | 
| 337 |  | 
| 338 | vector<RealType> gTypeCutoffs; | 
| 339 | // first we do a single loop over the cutoff groups to find the | 
| 340 | // largest cutoff for any atypes present in this group. | 
| 341 | #ifdef IS_MPI | 
| 342 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 343 | groupRowToGtype.resize(nGroupsInRow_); | 
| 344 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 345 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 346 | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 347 | ia != atomListRow.end(); ++ia) { | 
| 348 | int atom1 = (*ia); | 
| 349 | atid = identsRow[atom1]; | 
| 350 | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 351 | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 352 | } | 
| 353 | } | 
| 354 |  | 
| 355 | bool gTypeFound = false; | 
| 356 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 357 | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 358 | groupRowToGtype[cg1] = gt; | 
| 359 | gTypeFound = true; | 
| 360 | } | 
| 361 | } | 
| 362 | if (!gTypeFound) { | 
| 363 | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 364 | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 365 | } | 
| 366 |  | 
| 367 | } | 
| 368 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 369 | groupColToGtype.resize(nGroupsInCol_); | 
| 370 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 371 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 372 | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 373 | jb != atomListCol.end(); ++jb) { | 
| 374 | int atom2 = (*jb); | 
| 375 | atid = identsCol[atom2]; | 
| 376 | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 377 | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 378 | } | 
| 379 | } | 
| 380 | bool gTypeFound = false; | 
| 381 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 382 | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 383 | groupColToGtype[cg2] = gt; | 
| 384 | gTypeFound = true; | 
| 385 | } | 
| 386 | } | 
| 387 | if (!gTypeFound) { | 
| 388 | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 389 | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 390 | } | 
| 391 | } | 
| 392 | #else | 
| 393 |  | 
| 394 | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 395 | groupToGtype.resize(nGroups_); | 
| 396 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 397 | groupCutoff[cg1] = 0.0; | 
| 398 | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 399 | for (vector<int>::iterator ia = atomList.begin(); | 
| 400 | ia != atomList.end(); ++ia) { | 
| 401 | int atom1 = (*ia); | 
| 402 | atid = idents[atom1]; | 
| 403 | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 404 | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 405 | } | 
| 406 |  | 
| 407 | bool gTypeFound = false; | 
| 408 | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 409 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 410 | groupToGtype[cg1] = gt; | 
| 411 | gTypeFound = true; | 
| 412 | } | 
| 413 | } | 
| 414 | if (!gTypeFound) { | 
| 415 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 416 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 417 | } | 
| 418 | } | 
| 419 | #endif | 
| 420 |  | 
| 421 | // Now we find the maximum group cutoff value present in the simulation | 
| 422 |  | 
| 423 | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 424 | gTypeCutoffs.end()); | 
| 425 |  | 
| 426 | #ifdef IS_MPI | 
| 427 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 428 | MPI::MAX); | 
| 429 | #endif | 
| 430 |  | 
| 431 | RealType tradRcut = groupMax; | 
| 432 |  | 
| 433 | GrCut.resize( gTypeCutoffs.size() ); | 
| 434 | GrCutSq.resize( gTypeCutoffs.size() ); | 
| 435 | GrlistSq.resize( gTypeCutoffs.size() ); | 
| 436 |  | 
| 437 |  | 
| 438 | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 439 | GrCut[i].resize( gTypeCutoffs.size() , 0.0); | 
| 440 | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 441 | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 442 |  | 
| 443 | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 444 | RealType thisRcut; | 
| 445 | switch(cutoffPolicy_) { | 
| 446 | case TRADITIONAL: | 
| 447 | thisRcut = tradRcut; | 
| 448 | break; | 
| 449 | case MIX: | 
| 450 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 451 | break; | 
| 452 | case MAX: | 
| 453 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 454 | break; | 
| 455 | default: | 
| 456 | sprintf(painCave.errMsg, | 
| 457 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 458 | "hit an unknown cutoff policy!\n"); | 
| 459 | painCave.severity = OPENMD_ERROR; | 
| 460 | painCave.isFatal = 1; | 
| 461 | simError(); | 
| 462 | break; | 
| 463 | } | 
| 464 |  | 
| 465 | GrCut[i][j] = thisRcut; | 
| 466 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 467 | GrCutSq[i][j] = thisRcut * thisRcut; | 
| 468 | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); | 
| 469 |  | 
| 470 | // pair<int,int> key = make_pair(i,j); | 
| 471 | // gTypeCutoffMap[key].first = thisRcut; | 
| 472 | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 473 | // sanity check | 
| 474 |  | 
| 475 | if (userChoseCutoff_) { | 
| 476 | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { | 
| 477 | sprintf(painCave.errMsg, | 
| 478 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 479 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 480 | painCave.severity = OPENMD_ERROR; | 
| 481 | painCave.isFatal = 1; | 
| 482 | simError(); | 
| 483 | } | 
| 484 | } | 
| 485 | } | 
| 486 | } | 
| 487 | } | 
| 488 |  | 
| 489 | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { | 
| 490 | int i, j; | 
| 491 | #ifdef IS_MPI | 
| 492 | i = groupRowToGtype[cg1]; | 
| 493 | j = groupColToGtype[cg2]; | 
| 494 | #else | 
| 495 | i = groupToGtype[cg1]; | 
| 496 | j = groupToGtype[cg2]; | 
| 497 | #endif | 
| 498 | rcut = GrCut[i][j]; | 
| 499 | rcutsq = GrCutSq[i][j]; | 
| 500 | rlistsq = GrlistSq[i][j]; | 
| 501 | return; | 
| 502 | //return gTypeCutoffMap[make_pair(i,j)]; | 
| 503 | } | 
| 504 |  | 
| 505 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 506 | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 507 | if (toposForAtom[atom1][j] == atom2) | 
| 508 | return topoDist[atom1][j]; | 
| 509 | } | 
| 510 | return 0; | 
| 511 | } | 
| 512 |  | 
| 513 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 514 | pairwisePot = 0.0; | 
| 515 | embeddingPot = 0.0; | 
| 516 | excludedPot = 0.0; | 
| 517 | excludedSelfPot = 0.0; | 
| 518 |  | 
| 519 | #ifdef IS_MPI | 
| 520 | if (storageLayout_ & DataStorage::dslForce) { | 
| 521 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 522 | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 523 | } | 
| 524 |  | 
| 525 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 526 | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 527 | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 528 | } | 
| 529 |  | 
| 530 | fill(pot_row.begin(), pot_row.end(), | 
| 531 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 532 |  | 
| 533 | fill(pot_col.begin(), pot_col.end(), | 
| 534 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 535 |  | 
| 536 | fill(expot_row.begin(), expot_row.end(), | 
| 537 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 538 |  | 
| 539 | fill(expot_col.begin(), expot_col.end(), | 
| 540 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 541 |  | 
| 542 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 543 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 544 | 0.0); | 
| 545 | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 546 | 0.0); | 
| 547 | } | 
| 548 |  | 
| 549 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 550 | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 551 | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 552 | } | 
| 553 |  | 
| 554 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 555 | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 556 | 0.0); | 
| 557 | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 558 | 0.0); | 
| 559 | } | 
| 560 |  | 
| 561 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 562 | fill(atomRowData.functionalDerivative.begin(), | 
| 563 | atomRowData.functionalDerivative.end(), 0.0); | 
| 564 | fill(atomColData.functionalDerivative.begin(), | 
| 565 | atomColData.functionalDerivative.end(), 0.0); | 
| 566 | } | 
| 567 |  | 
| 568 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 569 | fill(atomRowData.skippedCharge.begin(), | 
| 570 | atomRowData.skippedCharge.end(), 0.0); | 
| 571 | fill(atomColData.skippedCharge.begin(), | 
| 572 | atomColData.skippedCharge.end(), 0.0); | 
| 573 | } | 
| 574 |  | 
| 575 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 576 | fill(atomRowData.flucQFrc.begin(), | 
| 577 | atomRowData.flucQFrc.end(), 0.0); | 
| 578 | fill(atomColData.flucQFrc.begin(), | 
| 579 | atomColData.flucQFrc.end(), 0.0); | 
| 580 | } | 
| 581 |  | 
| 582 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 583 | fill(atomRowData.electricField.begin(), | 
| 584 | atomRowData.electricField.end(), V3Zero); | 
| 585 | fill(atomColData.electricField.begin(), | 
| 586 | atomColData.electricField.end(), V3Zero); | 
| 587 | } | 
| 588 |  | 
| 589 | #endif | 
| 590 | // even in parallel, we need to zero out the local arrays: | 
| 591 |  | 
| 592 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 593 | fill(snap_->atomData.particlePot.begin(), | 
| 594 | snap_->atomData.particlePot.end(), 0.0); | 
| 595 | } | 
| 596 |  | 
| 597 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 598 | fill(snap_->atomData.density.begin(), | 
| 599 | snap_->atomData.density.end(), 0.0); | 
| 600 | } | 
| 601 |  | 
| 602 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 603 | fill(snap_->atomData.functional.begin(), | 
| 604 | snap_->atomData.functional.end(), 0.0); | 
| 605 | } | 
| 606 |  | 
| 607 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 608 | fill(snap_->atomData.functionalDerivative.begin(), | 
| 609 | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 610 | } | 
| 611 |  | 
| 612 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 613 | fill(snap_->atomData.skippedCharge.begin(), | 
| 614 | snap_->atomData.skippedCharge.end(), 0.0); | 
| 615 | } | 
| 616 |  | 
| 617 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 618 | fill(snap_->atomData.electricField.begin(), | 
| 619 | snap_->atomData.electricField.end(), V3Zero); | 
| 620 | } | 
| 621 | } | 
| 622 |  | 
| 623 |  | 
| 624 | void ForceMatrixDecomposition::distributeData()  { | 
| 625 | snap_ = sman_->getCurrentSnapshot(); | 
| 626 | storageLayout_ = sman_->getStorageLayout(); | 
| 627 | #ifdef IS_MPI | 
| 628 |  | 
| 629 | // gather up the atomic positions | 
| 630 | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 631 | atomRowData.position); | 
| 632 | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 633 | atomColData.position); | 
| 634 |  | 
| 635 | // gather up the cutoff group positions | 
| 636 |  | 
| 637 | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 638 | cgRowData.position); | 
| 639 |  | 
| 640 | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 641 | cgColData.position); | 
| 642 |  | 
| 643 |  | 
| 644 |  | 
| 645 | if (needVelocities_) { | 
| 646 | // gather up the atomic velocities | 
| 647 | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 648 | atomColData.velocity); | 
| 649 |  | 
| 650 | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 651 | cgColData.velocity); | 
| 652 | } | 
| 653 |  | 
| 654 |  | 
| 655 | // if needed, gather the atomic rotation matrices | 
| 656 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 657 | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 658 | atomRowData.aMat); | 
| 659 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 660 | atomColData.aMat); | 
| 661 | } | 
| 662 |  | 
| 663 | // if needed, gather the atomic eletrostatic information | 
| 664 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 665 | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 666 | atomRowData.dipole); | 
| 667 | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 668 | atomColData.dipole); | 
| 669 | } | 
| 670 |  | 
| 671 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 672 | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 673 | atomRowData.quadrupole); | 
| 674 | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 675 | atomColData.quadrupole); | 
| 676 | } | 
| 677 |  | 
| 678 | // if needed, gather the atomic fluctuating charge values | 
| 679 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 680 | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 681 | atomRowData.flucQPos); | 
| 682 | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 683 | atomColData.flucQPos); | 
| 684 | } | 
| 685 |  | 
| 686 | #endif | 
| 687 | } | 
| 688 |  | 
| 689 | /* collects information obtained during the pre-pair loop onto local | 
| 690 | * data structures. | 
| 691 | */ | 
| 692 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 693 | snap_ = sman_->getCurrentSnapshot(); | 
| 694 | storageLayout_ = sman_->getStorageLayout(); | 
| 695 | #ifdef IS_MPI | 
| 696 |  | 
| 697 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 698 |  | 
| 699 | AtomPlanRealRow->scatter(atomRowData.density, | 
| 700 | snap_->atomData.density); | 
| 701 |  | 
| 702 | int n = snap_->atomData.density.size(); | 
| 703 | vector<RealType> rho_tmp(n, 0.0); | 
| 704 | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 705 | for (int i = 0; i < n; i++) | 
| 706 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 707 | } | 
| 708 |  | 
| 709 | // this isn't necessary if we don't have polarizable atoms, but | 
| 710 | // we'll leave it here for now. | 
| 711 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 712 |  | 
| 713 | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 714 | snap_->atomData.electricField); | 
| 715 |  | 
| 716 | int n = snap_->atomData.electricField.size(); | 
| 717 | vector<Vector3d> field_tmp(n, V3Zero); | 
| 718 | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 719 | field_tmp); | 
| 720 | for (int i = 0; i < n; i++) | 
| 721 | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 722 | } | 
| 723 | #endif | 
| 724 | } | 
| 725 |  | 
| 726 | /* | 
| 727 | * redistributes information obtained during the pre-pair loop out to | 
| 728 | * row and column-indexed data structures | 
| 729 | */ | 
| 730 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 731 | snap_ = sman_->getCurrentSnapshot(); | 
| 732 | storageLayout_ = sman_->getStorageLayout(); | 
| 733 | #ifdef IS_MPI | 
| 734 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 735 | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 736 | atomRowData.functional); | 
| 737 | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 738 | atomColData.functional); | 
| 739 | } | 
| 740 |  | 
| 741 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 742 | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 743 | atomRowData.functionalDerivative); | 
| 744 | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 745 | atomColData.functionalDerivative); | 
| 746 | } | 
| 747 | #endif | 
| 748 | } | 
| 749 |  | 
| 750 |  | 
| 751 | void ForceMatrixDecomposition::collectData() { | 
| 752 | snap_ = sman_->getCurrentSnapshot(); | 
| 753 | storageLayout_ = sman_->getStorageLayout(); | 
| 754 | #ifdef IS_MPI | 
| 755 | int n = snap_->atomData.force.size(); | 
| 756 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 757 |  | 
| 758 | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 759 | for (int i = 0; i < n; i++) { | 
| 760 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 761 | frc_tmp[i] = 0.0; | 
| 762 | } | 
| 763 |  | 
| 764 | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 765 | for (int i = 0; i < n; i++) { | 
| 766 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 767 | } | 
| 768 |  | 
| 769 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 770 |  | 
| 771 | int nt = snap_->atomData.torque.size(); | 
| 772 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 773 |  | 
| 774 | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 775 | for (int i = 0; i < nt; i++) { | 
| 776 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 777 | trq_tmp[i] = 0.0; | 
| 778 | } | 
| 779 |  | 
| 780 | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 781 | for (int i = 0; i < nt; i++) | 
| 782 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 783 | } | 
| 784 |  | 
| 785 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 786 |  | 
| 787 | int ns = snap_->atomData.skippedCharge.size(); | 
| 788 | vector<RealType> skch_tmp(ns, 0.0); | 
| 789 |  | 
| 790 | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 791 | for (int i = 0; i < ns; i++) { | 
| 792 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 793 | skch_tmp[i] = 0.0; | 
| 794 | } | 
| 795 |  | 
| 796 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 797 | for (int i = 0; i < ns; i++) | 
| 798 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 799 |  | 
| 800 | } | 
| 801 |  | 
| 802 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 803 |  | 
| 804 | int nq = snap_->atomData.flucQFrc.size(); | 
| 805 | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 806 |  | 
| 807 | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 808 | for (int i = 0; i < nq; i++) { | 
| 809 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 810 | fqfrc_tmp[i] = 0.0; | 
| 811 | } | 
| 812 |  | 
| 813 | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 814 | for (int i = 0; i < nq; i++) | 
| 815 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 816 |  | 
| 817 | } | 
| 818 |  | 
| 819 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 820 |  | 
| 821 | int nef = snap_->atomData.electricField.size(); | 
| 822 | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 823 |  | 
| 824 | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 825 | for (int i = 0; i < nef; i++) { | 
| 826 | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 827 | efield_tmp[i] = 0.0; | 
| 828 | } | 
| 829 |  | 
| 830 | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 831 | for (int i = 0; i < nef; i++) | 
| 832 | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 833 | } | 
| 834 |  | 
| 835 |  | 
| 836 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 837 |  | 
| 838 | vector<potVec> pot_temp(nLocal_, | 
| 839 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 840 | vector<potVec> expot_temp(nLocal_, | 
| 841 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 842 |  | 
| 843 | // scatter/gather pot_row into the members of my column | 
| 844 |  | 
| 845 | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 846 | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 847 |  | 
| 848 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 849 | pairwisePot += pot_temp[ii]; | 
| 850 |  | 
| 851 | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 852 | excludedPot += expot_temp[ii]; | 
| 853 |  | 
| 854 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 855 | // This is the pairwise contribution to the particle pot.  The | 
| 856 | // embedding contribution is added in each of the low level | 
| 857 | // non-bonded routines.  In single processor, this is done in | 
| 858 | // unpackInteractionData, not in collectData. | 
| 859 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 860 | for (int i = 0; i < nLocal_; i++) { | 
| 861 | // factor of two is because the total potential terms are divided | 
| 862 | // by 2 in parallel due to row/ column scatter | 
| 863 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 864 | } | 
| 865 | } | 
| 866 | } | 
| 867 |  | 
| 868 | fill(pot_temp.begin(), pot_temp.end(), | 
| 869 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 870 | fill(expot_temp.begin(), expot_temp.end(), | 
| 871 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 872 |  | 
| 873 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 874 | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 875 |  | 
| 876 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 877 | pairwisePot += pot_temp[ii]; | 
| 878 |  | 
| 879 | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 880 | excludedPot += expot_temp[ii]; | 
| 881 |  | 
| 882 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 883 | // This is the pairwise contribution to the particle pot.  The | 
| 884 | // embedding contribution is added in each of the low level | 
| 885 | // non-bonded routines.  In single processor, this is done in | 
| 886 | // unpackInteractionData, not in collectData. | 
| 887 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 888 | for (int i = 0; i < nLocal_; i++) { | 
| 889 | // factor of two is because the total potential terms are divided | 
| 890 | // by 2 in parallel due to row/ column scatter | 
| 891 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 892 | } | 
| 893 | } | 
| 894 | } | 
| 895 |  | 
| 896 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 897 | int npp = snap_->atomData.particlePot.size(); | 
| 898 | vector<RealType> ppot_temp(npp, 0.0); | 
| 899 |  | 
| 900 | // This is the direct or embedding contribution to the particle | 
| 901 | // pot. | 
| 902 |  | 
| 903 | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 904 | for (int i = 0; i < npp; i++) { | 
| 905 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 906 | } | 
| 907 |  | 
| 908 | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 909 |  | 
| 910 | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 911 | for (int i = 0; i < npp; i++) { | 
| 912 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 913 | } | 
| 914 | } | 
| 915 |  | 
| 916 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 917 | RealType ploc1 = pairwisePot[ii]; | 
| 918 | RealType ploc2 = 0.0; | 
| 919 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 920 | pairwisePot[ii] = ploc2; | 
| 921 | } | 
| 922 |  | 
| 923 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 924 | RealType ploc1 = excludedPot[ii]; | 
| 925 | RealType ploc2 = 0.0; | 
| 926 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 927 | excludedPot[ii] = ploc2; | 
| 928 | } | 
| 929 |  | 
| 930 | // Here be dragons. | 
| 931 | MPI::Intracomm col = colComm.getComm(); | 
| 932 |  | 
| 933 | col.Allreduce(MPI::IN_PLACE, | 
| 934 | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 935 | MPI::REALTYPE, MPI::SUM); | 
| 936 |  | 
| 937 |  | 
| 938 | #endif | 
| 939 |  | 
| 940 | } | 
| 941 |  | 
| 942 | /** | 
| 943 | * Collects information obtained during the post-pair (and embedding | 
| 944 | * functional) loops onto local data structures. | 
| 945 | */ | 
| 946 | void ForceMatrixDecomposition::collectSelfData() { | 
| 947 | snap_ = sman_->getCurrentSnapshot(); | 
| 948 | storageLayout_ = sman_->getStorageLayout(); | 
| 949 |  | 
| 950 | #ifdef IS_MPI | 
| 951 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 952 | RealType ploc1 = embeddingPot[ii]; | 
| 953 | RealType ploc2 = 0.0; | 
| 954 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 955 | embeddingPot[ii] = ploc2; | 
| 956 | } | 
| 957 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 958 | RealType ploc1 = excludedSelfPot[ii]; | 
| 959 | RealType ploc2 = 0.0; | 
| 960 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 961 | excludedSelfPot[ii] = ploc2; | 
| 962 | } | 
| 963 | #endif | 
| 964 |  | 
| 965 | } | 
| 966 |  | 
| 967 |  | 
| 968 |  | 
| 969 | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 970 | #ifdef IS_MPI | 
| 971 | return nAtomsInRow_; | 
| 972 | #else | 
| 973 | return nLocal_; | 
| 974 | #endif | 
| 975 | } | 
| 976 |  | 
| 977 | /** | 
| 978 | * returns the list of atoms belonging to this group. | 
| 979 | */ | 
| 980 | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 981 | #ifdef IS_MPI | 
| 982 | return groupListRow_[cg1]; | 
| 983 | #else | 
| 984 | return groupList_[cg1]; | 
| 985 | #endif | 
| 986 | } | 
| 987 |  | 
| 988 | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 989 | #ifdef IS_MPI | 
| 990 | return groupListCol_[cg2]; | 
| 991 | #else | 
| 992 | return groupList_[cg2]; | 
| 993 | #endif | 
| 994 | } | 
| 995 |  | 
| 996 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 997 | Vector3d d; | 
| 998 |  | 
| 999 | #ifdef IS_MPI | 
| 1000 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 1001 | #else | 
| 1002 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 1003 | #endif | 
| 1004 |  | 
| 1005 | if (usePeriodicBoundaryConditions_) { | 
| 1006 | snap_->wrapVector(d); | 
| 1007 | } | 
| 1008 | return d; | 
| 1009 | } | 
| 1010 |  | 
| 1011 | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 1012 | #ifdef IS_MPI | 
| 1013 | return cgColData.velocity[cg2]; | 
| 1014 | #else | 
| 1015 | return snap_->cgData.velocity[cg2]; | 
| 1016 | #endif | 
| 1017 | } | 
| 1018 |  | 
| 1019 | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 1020 | #ifdef IS_MPI | 
| 1021 | return atomColData.velocity[atom2]; | 
| 1022 | #else | 
| 1023 | return snap_->atomData.velocity[atom2]; | 
| 1024 | #endif | 
| 1025 | } | 
| 1026 |  | 
| 1027 |  | 
| 1028 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 1029 |  | 
| 1030 | Vector3d d; | 
| 1031 |  | 
| 1032 | #ifdef IS_MPI | 
| 1033 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 1034 | #else | 
| 1035 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 1036 | #endif | 
| 1037 | if (usePeriodicBoundaryConditions_) { | 
| 1038 | snap_->wrapVector(d); | 
| 1039 | } | 
| 1040 | return d; | 
| 1041 | } | 
| 1042 |  | 
| 1043 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 1044 | Vector3d d; | 
| 1045 |  | 
| 1046 | #ifdef IS_MPI | 
| 1047 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 1048 | #else | 
| 1049 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 1050 | #endif | 
| 1051 | if (usePeriodicBoundaryConditions_) { | 
| 1052 | snap_->wrapVector(d); | 
| 1053 | } | 
| 1054 | return d; | 
| 1055 | } | 
| 1056 |  | 
| 1057 | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 1058 | #ifdef IS_MPI | 
| 1059 | return massFactorsRow[atom1]; | 
| 1060 | #else | 
| 1061 | return massFactors[atom1]; | 
| 1062 | #endif | 
| 1063 | } | 
| 1064 |  | 
| 1065 | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 1066 | #ifdef IS_MPI | 
| 1067 | return massFactorsCol[atom2]; | 
| 1068 | #else | 
| 1069 | return massFactors[atom2]; | 
| 1070 | #endif | 
| 1071 |  | 
| 1072 | } | 
| 1073 |  | 
| 1074 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 1075 | Vector3d d; | 
| 1076 |  | 
| 1077 | #ifdef IS_MPI | 
| 1078 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 1079 | #else | 
| 1080 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 1081 | #endif | 
| 1082 | if (usePeriodicBoundaryConditions_) { | 
| 1083 | snap_->wrapVector(d); | 
| 1084 | } | 
| 1085 | return d; | 
| 1086 | } | 
| 1087 |  | 
| 1088 | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1089 | return excludesForAtom[atom1]; | 
| 1090 | } | 
| 1091 |  | 
| 1092 | /** | 
| 1093 | * We need to exclude some overcounted interactions that result from | 
| 1094 | * the parallel decomposition. | 
| 1095 | */ | 
| 1096 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1097 | int unique_id_1, unique_id_2; | 
| 1098 |  | 
| 1099 | #ifdef IS_MPI | 
| 1100 | // in MPI, we have to look up the unique IDs for each atom | 
| 1101 | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1102 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1103 | // group1 = cgRowToGlobal[cg1]; | 
| 1104 | // group2 = cgColToGlobal[cg2]; | 
| 1105 | #else | 
| 1106 | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1107 | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1108 | int group1 = cgLocalToGlobal[cg1]; | 
| 1109 | int group2 = cgLocalToGlobal[cg2]; | 
| 1110 | #endif | 
| 1111 |  | 
| 1112 | if (unique_id_1 == unique_id_2) return true; | 
| 1113 |  | 
| 1114 | #ifdef IS_MPI | 
| 1115 | // this prevents us from doing the pair on multiple processors | 
| 1116 | if (unique_id_1 < unique_id_2) { | 
| 1117 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1118 | } else { | 
| 1119 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1120 | } | 
| 1121 | #endif | 
| 1122 |  | 
| 1123 | #ifndef IS_MPI | 
| 1124 | if (group1 == group2) { | 
| 1125 | if (unique_id_1 < unique_id_2) return true; | 
| 1126 | } | 
| 1127 | #endif | 
| 1128 |  | 
| 1129 | return false; | 
| 1130 | } | 
| 1131 |  | 
| 1132 | /** | 
| 1133 | * We need to handle the interactions for atoms who are involved in | 
| 1134 | * the same rigid body as well as some short range interactions | 
| 1135 | * (bonds, bends, torsions) differently from other interactions. | 
| 1136 | * We'll still visit the pairwise routines, but with a flag that | 
| 1137 | * tells those routines to exclude the pair from direct long range | 
| 1138 | * interactions.  Some indirect interactions (notably reaction | 
| 1139 | * field) must still be handled for these pairs. | 
| 1140 | */ | 
| 1141 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1142 |  | 
| 1143 | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1144 | // version, and to use local IDs in the non-MPI version: | 
| 1145 |  | 
| 1146 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1147 | i != excludesForAtom[atom1].end(); ++i) { | 
| 1148 | if ( (*i) == atom2 ) return true; | 
| 1149 | } | 
| 1150 |  | 
| 1151 | return false; | 
| 1152 | } | 
| 1153 |  | 
| 1154 |  | 
| 1155 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1156 | #ifdef IS_MPI | 
| 1157 | atomRowData.force[atom1] += fg; | 
| 1158 | #else | 
| 1159 | snap_->atomData.force[atom1] += fg; | 
| 1160 | #endif | 
| 1161 | } | 
| 1162 |  | 
| 1163 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 1164 | #ifdef IS_MPI | 
| 1165 | atomColData.force[atom2] += fg; | 
| 1166 | #else | 
| 1167 | snap_->atomData.force[atom2] += fg; | 
| 1168 | #endif | 
| 1169 | } | 
| 1170 |  | 
| 1171 | // filling interaction blocks with pointers | 
| 1172 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1173 | int atom1, int atom2) { | 
| 1174 |  | 
| 1175 | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1176 |  | 
| 1177 | #ifdef IS_MPI | 
| 1178 | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1179 | idat.atid1 = identsRow[atom1]; | 
| 1180 | idat.atid2 = identsCol[atom2]; | 
| 1181 |  | 
| 1182 | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1183 | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1184 | } else { | 
| 1185 | idat.sameRegion = false; | 
| 1186 | } | 
| 1187 |  | 
| 1188 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1189 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1190 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1191 | } | 
| 1192 |  | 
| 1193 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1194 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1195 | idat.t2 = &(atomColData.torque[atom2]); | 
| 1196 | } | 
| 1197 |  | 
| 1198 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1199 | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1200 | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1201 | } | 
| 1202 |  | 
| 1203 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1204 | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1205 | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1206 | } | 
| 1207 |  | 
| 1208 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1209 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1210 | idat.rho2 = &(atomColData.density[atom2]); | 
| 1211 | } | 
| 1212 |  | 
| 1213 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1214 | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1215 | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1216 | } | 
| 1217 |  | 
| 1218 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1219 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1220 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1221 | } | 
| 1222 |  | 
| 1223 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1224 | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1225 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1226 | } | 
| 1227 |  | 
| 1228 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1229 | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1230 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1231 | } | 
| 1232 |  | 
| 1233 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1234 | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1235 | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1236 | } | 
| 1237 |  | 
| 1238 | #else | 
| 1239 |  | 
| 1240 | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1241 | idat.atid1 = idents[atom1]; | 
| 1242 | idat.atid2 = idents[atom2]; | 
| 1243 |  | 
| 1244 | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1245 | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1246 | } else { | 
| 1247 | idat.sameRegion = false; | 
| 1248 | } | 
| 1249 |  | 
| 1250 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1251 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1252 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1253 | } | 
| 1254 |  | 
| 1255 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1256 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1257 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1258 | } | 
| 1259 |  | 
| 1260 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1261 | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1262 | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1263 | } | 
| 1264 |  | 
| 1265 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1266 | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1267 | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1268 | } | 
| 1269 |  | 
| 1270 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1271 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1272 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1273 | } | 
| 1274 |  | 
| 1275 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1276 | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1277 | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1278 | } | 
| 1279 |  | 
| 1280 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1281 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1282 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1283 | } | 
| 1284 |  | 
| 1285 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1286 | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1287 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1288 | } | 
| 1289 |  | 
| 1290 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1291 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1292 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1293 | } | 
| 1294 |  | 
| 1295 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1296 | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1297 | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1298 | } | 
| 1299 |  | 
| 1300 | #endif | 
| 1301 | } | 
| 1302 |  | 
| 1303 |  | 
| 1304 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1305 | #ifdef IS_MPI | 
| 1306 | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1307 | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1308 | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1309 | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1310 |  | 
| 1311 | atomRowData.force[atom1] += *(idat.f1); | 
| 1312 | atomColData.force[atom2] -= *(idat.f1); | 
| 1313 |  | 
| 1314 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1315 | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1316 | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1317 | } | 
| 1318 |  | 
| 1319 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1320 | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1321 | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1322 | } | 
| 1323 |  | 
| 1324 | #else | 
| 1325 | pairwisePot += *(idat.pot); | 
| 1326 | excludedPot += *(idat.excludedPot); | 
| 1327 |  | 
| 1328 | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1329 | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1330 |  | 
| 1331 | if (idat.doParticlePot) { | 
| 1332 | // This is the pairwise contribution to the particle pot.  The | 
| 1333 | // embedding contribution is added in each of the low level | 
| 1334 | // non-bonded routines.  In parallel, this calculation is done | 
| 1335 | // in collectData, not in unpackInteractionData. | 
| 1336 | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1337 | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1338 | } | 
| 1339 |  | 
| 1340 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1341 | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1342 | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1343 | } | 
| 1344 |  | 
| 1345 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1346 | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1347 | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1348 | } | 
| 1349 |  | 
| 1350 | #endif | 
| 1351 |  | 
| 1352 | } | 
| 1353 |  | 
| 1354 | /* | 
| 1355 | * buildNeighborList | 
| 1356 | * | 
| 1357 | * first element of pair is row-indexed CutoffGroup | 
| 1358 | * second element of pair is column-indexed CutoffGroup | 
| 1359 | */ | 
| 1360 | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1361 |  | 
| 1362 | neighborList.clear(); | 
| 1363 | groupCutoffs cuts; | 
| 1364 | bool doAllPairs = false; | 
| 1365 |  | 
| 1366 | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1367 | RealType rcut, rcutsq, rlistsq; | 
| 1368 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1369 | Mat3x3d box; | 
| 1370 | Mat3x3d invBox; | 
| 1371 |  | 
| 1372 | Vector3d rs, scaled, dr; | 
| 1373 | Vector3i whichCell; | 
| 1374 | int cellIndex; | 
| 1375 |  | 
| 1376 | #ifdef IS_MPI | 
| 1377 | cellListRow_.clear(); | 
| 1378 | cellListCol_.clear(); | 
| 1379 | #else | 
| 1380 | cellList_.clear(); | 
| 1381 | #endif | 
| 1382 |  | 
| 1383 | if (!usePeriodicBoundaryConditions_) { | 
| 1384 | box = snap_->getBoundingBox(); | 
| 1385 | invBox = snap_->getInvBoundingBox(); | 
| 1386 | } else { | 
| 1387 | box = snap_->getHmat(); | 
| 1388 | invBox = snap_->getInvHmat(); | 
| 1389 | } | 
| 1390 |  | 
| 1391 | Vector3d boxX = box.getColumn(0); | 
| 1392 | Vector3d boxY = box.getColumn(1); | 
| 1393 | Vector3d boxZ = box.getColumn(2); | 
| 1394 |  | 
| 1395 | nCells_.x() = int( boxX.length() / rList_ ); | 
| 1396 | nCells_.y() = int( boxY.length() / rList_ ); | 
| 1397 | nCells_.z() = int( boxZ.length() / rList_ ); | 
| 1398 |  | 
| 1399 | // handle small boxes where the cell offsets can end up repeating cells | 
| 1400 |  | 
| 1401 | if (nCells_.x() < 3) doAllPairs = true; | 
| 1402 | if (nCells_.y() < 3) doAllPairs = true; | 
| 1403 | if (nCells_.z() < 3) doAllPairs = true; | 
| 1404 |  | 
| 1405 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1406 |  | 
| 1407 | #ifdef IS_MPI | 
| 1408 | cellListRow_.resize(nCtot); | 
| 1409 | cellListCol_.resize(nCtot); | 
| 1410 | #else | 
| 1411 | cellList_.resize(nCtot); | 
| 1412 | #endif | 
| 1413 |  | 
| 1414 | if (!doAllPairs) { | 
| 1415 | #ifdef IS_MPI | 
| 1416 |  | 
| 1417 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1418 | rs = cgRowData.position[i]; | 
| 1419 |  | 
| 1420 | // scaled positions relative to the box vectors | 
| 1421 | scaled = invBox * rs; | 
| 1422 |  | 
| 1423 | // wrap the vector back into the unit box by subtracting integer box | 
| 1424 | // numbers | 
| 1425 | for (int j = 0; j < 3; j++) { | 
| 1426 | scaled[j] -= roundMe(scaled[j]); | 
| 1427 | scaled[j] += 0.5; | 
| 1428 | // Handle the special case when an object is exactly on the | 
| 1429 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1430 | // scaled coordinate of 0.0) | 
| 1431 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1432 | } | 
| 1433 |  | 
| 1434 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1435 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1436 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1437 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1438 |  | 
| 1439 | // find single index of this cell: | 
| 1440 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1441 |  | 
| 1442 | // add this cutoff group to the list of groups in this cell; | 
| 1443 | cellListRow_[cellIndex].push_back(i); | 
| 1444 | } | 
| 1445 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1446 | rs = cgColData.position[i]; | 
| 1447 |  | 
| 1448 | // scaled positions relative to the box vectors | 
| 1449 | scaled = invBox * rs; | 
| 1450 |  | 
| 1451 | // wrap the vector back into the unit box by subtracting integer box | 
| 1452 | // numbers | 
| 1453 | for (int j = 0; j < 3; j++) { | 
| 1454 | scaled[j] -= roundMe(scaled[j]); | 
| 1455 | scaled[j] += 0.5; | 
| 1456 | // Handle the special case when an object is exactly on the | 
| 1457 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1458 | // scaled coordinate of 0.0) | 
| 1459 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1460 | } | 
| 1461 |  | 
| 1462 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1463 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1464 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1465 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1466 |  | 
| 1467 | // find single index of this cell: | 
| 1468 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1469 |  | 
| 1470 | // add this cutoff group to the list of groups in this cell; | 
| 1471 | cellListCol_[cellIndex].push_back(i); | 
| 1472 | } | 
| 1473 |  | 
| 1474 | #else | 
| 1475 | for (int i = 0; i < nGroups_; i++) { | 
| 1476 | rs = snap_->cgData.position[i]; | 
| 1477 |  | 
| 1478 | // scaled positions relative to the box vectors | 
| 1479 | scaled = invBox * rs; | 
| 1480 |  | 
| 1481 | // wrap the vector back into the unit box by subtracting integer box | 
| 1482 | // numbers | 
| 1483 | for (int j = 0; j < 3; j++) { | 
| 1484 | scaled[j] -= roundMe(scaled[j]); | 
| 1485 | scaled[j] += 0.5; | 
| 1486 | // Handle the special case when an object is exactly on the | 
| 1487 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1488 | // scaled coordinate of 0.0) | 
| 1489 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1490 | } | 
| 1491 |  | 
| 1492 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1493 | whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1494 | whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1495 | whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1496 |  | 
| 1497 | // find single index of this cell: | 
| 1498 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1499 |  | 
| 1500 | // add this cutoff group to the list of groups in this cell; | 
| 1501 | cellList_[cellIndex].push_back(i); | 
| 1502 | } | 
| 1503 |  | 
| 1504 | #endif | 
| 1505 |  | 
| 1506 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1507 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1508 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1509 | Vector3i m1v(m1x, m1y, m1z); | 
| 1510 | int m1 = Vlinear(m1v, nCells_); | 
| 1511 |  | 
| 1512 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1513 | os != cellOffsets_.end(); ++os) { | 
| 1514 |  | 
| 1515 | Vector3i m2v = m1v + (*os); | 
| 1516 |  | 
| 1517 |  | 
| 1518 | if (m2v.x() >= nCells_.x()) { | 
| 1519 | m2v.x() = 0; | 
| 1520 | } else if (m2v.x() < 0) { | 
| 1521 | m2v.x() = nCells_.x() - 1; | 
| 1522 | } | 
| 1523 |  | 
| 1524 | if (m2v.y() >= nCells_.y()) { | 
| 1525 | m2v.y() = 0; | 
| 1526 | } else if (m2v.y() < 0) { | 
| 1527 | m2v.y() = nCells_.y() - 1; | 
| 1528 | } | 
| 1529 |  | 
| 1530 | if (m2v.z() >= nCells_.z()) { | 
| 1531 | m2v.z() = 0; | 
| 1532 | } else if (m2v.z() < 0) { | 
| 1533 | m2v.z() = nCells_.z() - 1; | 
| 1534 | } | 
| 1535 |  | 
| 1536 | int m2 = Vlinear (m2v, nCells_); | 
| 1537 |  | 
| 1538 | #ifdef IS_MPI | 
| 1539 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1540 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1541 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1542 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1543 |  | 
| 1544 | // In parallel, we need to visit *all* pairs of row | 
| 1545 | // & column indicies and will divide labor in the | 
| 1546 | // force evaluation later. | 
| 1547 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1548 | if (usePeriodicBoundaryConditions_) { | 
| 1549 | snap_->wrapVector(dr); | 
| 1550 | } | 
| 1551 | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1552 | if (dr.lengthSquare() < rlistsq) { | 
| 1553 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1554 | } | 
| 1555 | } | 
| 1556 | } | 
| 1557 | #else | 
| 1558 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1559 | j1 != cellList_[m1].end(); ++j1) { | 
| 1560 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1561 | j2 != cellList_[m2].end(); ++j2) { | 
| 1562 |  | 
| 1563 | // Always do this if we're in different cells or if | 
| 1564 | // we're in the same cell and the global index of | 
| 1565 | // the j2 cutoff group is greater than or equal to | 
| 1566 | // the j1 cutoff group.  Note that Rappaport's code | 
| 1567 | // has a "less than" conditional here, but that | 
| 1568 | // deals with atom-by-atom computation.  OpenMD | 
| 1569 | // allows atoms within a single cutoff group to | 
| 1570 | // interact with each other. | 
| 1571 |  | 
| 1572 | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1573 |  | 
| 1574 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1575 | if (usePeriodicBoundaryConditions_) { | 
| 1576 | snap_->wrapVector(dr); | 
| 1577 | } | 
| 1578 | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1579 | if (dr.lengthSquare() < rlistsq) { | 
| 1580 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1581 | } | 
| 1582 | } | 
| 1583 | } | 
| 1584 | } | 
| 1585 | #endif | 
| 1586 | } | 
| 1587 | } | 
| 1588 | } | 
| 1589 | } | 
| 1590 | } else { | 
| 1591 | // branch to do all cutoff group pairs | 
| 1592 | #ifdef IS_MPI | 
| 1593 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1594 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1595 | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1596 | if (usePeriodicBoundaryConditions_) { | 
| 1597 | snap_->wrapVector(dr); | 
| 1598 | } | 
| 1599 | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); | 
| 1600 | if (dr.lengthSquare() < rlistsq) { | 
| 1601 | neighborList.push_back(make_pair(j1, j2)); | 
| 1602 | } | 
| 1603 | } | 
| 1604 | } | 
| 1605 | #else | 
| 1606 | // include all groups here. | 
| 1607 | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1608 | // include self group interactions j2 == j1 | 
| 1609 | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1610 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1611 | if (usePeriodicBoundaryConditions_) { | 
| 1612 | snap_->wrapVector(dr); | 
| 1613 | } | 
| 1614 | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); | 
| 1615 | if (dr.lengthSquare() < rlistsq) { | 
| 1616 | neighborList.push_back(make_pair(j1, j2)); | 
| 1617 | } | 
| 1618 | } | 
| 1619 | } | 
| 1620 | #endif | 
| 1621 | } | 
| 1622 |  | 
| 1623 | // save the local cutoff group positions for the check that is | 
| 1624 | // done on each loop: | 
| 1625 | saved_CG_positions_.clear(); | 
| 1626 | for (int i = 0; i < nGroups_; i++) | 
| 1627 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1628 | } | 
| 1629 | } //end namespace OpenMD |