| 47 |  | using namespace std; | 
| 48 |  | namespace OpenMD { | 
| 49 |  |  | 
| 50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 51 | + |  | 
| 52 | + | // In a parallel computation, row and colum scans must visit all | 
| 53 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 54 | + | // are used when the processor can see all pairs) | 
| 55 | + | #ifdef IS_MPI | 
| 56 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 57 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 58 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 69 | + | #endif | 
| 70 | + | } | 
| 71 | + |  | 
| 72 | + |  | 
| 73 |  | /** | 
| 74 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 75 |  | * SimulationSetup | 
| 76 |  | */ | 
| 54 | – |  | 
| 77 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 78 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 79 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 80 |  | ff_ = info_->getForceField(); | 
| 81 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 82 | < |  | 
| 82 | > |  | 
| 83 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 84 |  | // gather the information for atomtype IDs (atids): | 
| 85 |  | idents = info_->getIdentArray(); | 
| 89 |  |  | 
| 90 |  | massFactors = info_->getMassFactors(); | 
| 91 |  |  | 
| 92 | < | PairList excludes = info_->getExcludedInteractions(); | 
| 93 | < | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 94 | < | PairList oneThree = info_->getOneThreeInteractions(); | 
| 95 | < | PairList oneFour = info_->getOneFourInteractions(); | 
| 92 | > | PairList* excludes = info_->getExcludedInteractions(); | 
| 93 | > | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 94 | > | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 95 | > | PairList* oneFour = info_->getOneFourInteractions(); | 
| 96 |  |  | 
| 97 |  | #ifdef IS_MPI | 
| 98 |  |  | 
| 99 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 100 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 99 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 100 | > | MPI::Intracomm col = colComm.getComm(); | 
| 101 |  |  | 
| 102 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 103 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 104 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 105 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 106 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 102 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 103 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 104 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 105 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 106 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 107 |  |  | 
| 108 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 109 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 110 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 111 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 108 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 109 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 110 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 111 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 112 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 113 |  |  | 
| 114 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 115 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 116 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 117 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 114 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 115 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 116 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 117 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 118 |  |  | 
| 119 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 120 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 121 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 122 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 123 | + |  | 
| 124 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 125 |  | atomRowData.resize(nAtomsInRow_); | 
| 126 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 134 |  | identsRow.resize(nAtomsInRow_); | 
| 135 |  | identsCol.resize(nAtomsInCol_); | 
| 136 |  |  | 
| 137 | < | AtomCommIntRow->gather(idents, identsRow); | 
| 138 | < | AtomCommIntColumn->gather(idents, identsCol); | 
| 137 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 138 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 139 |  |  | 
| 140 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 141 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 142 | < |  | 
| 118 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 119 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 140 | > | // allocate memory for the parallel objects | 
| 141 | > | atypesRow.resize(nAtomsInRow_); | 
| 142 | > | atypesCol.resize(nAtomsInCol_); | 
| 143 |  |  | 
| 144 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 145 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 144 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 145 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 146 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 147 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 148 |  |  | 
| 149 | + | pot_row.resize(nAtomsInRow_); | 
| 150 | + | pot_col.resize(nAtomsInCol_); | 
| 151 | + |  | 
| 152 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 153 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 154 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 155 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 156 | + |  | 
| 157 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 158 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 159 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 160 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 161 | + |  | 
| 162 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 163 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 164 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 165 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 166 | + |  | 
| 167 |  | groupListRow_.clear(); | 
| 168 |  | groupListRow_.resize(nGroupsInRow_); | 
| 169 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 186 |  | } | 
| 187 |  | } | 
| 188 |  |  | 
| 189 | < | skipsForAtom.clear(); | 
| 190 | < | skipsForAtom.resize(nAtomsInRow_); | 
| 189 | > | excludesForAtom.clear(); | 
| 190 | > | excludesForAtom.resize(nAtomsInRow_); | 
| 191 |  | toposForAtom.clear(); | 
| 192 |  | toposForAtom.resize(nAtomsInRow_); | 
| 193 |  | topoDist.clear(); | 
| 198 |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 199 |  | int jglob = AtomColToGlobal[j]; | 
| 200 |  |  | 
| 201 | < | if (excludes.hasPair(iglob, jglob)) | 
| 202 | < | skipsForAtom[i].push_back(j); | 
| 201 | > | if (excludes->hasPair(iglob, jglob)) | 
| 202 | > | excludesForAtom[i].push_back(j); | 
| 203 |  |  | 
| 204 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 204 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 205 |  | toposForAtom[i].push_back(j); | 
| 206 |  | topoDist[i].push_back(1); | 
| 207 |  | } else { | 
| 208 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 208 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 209 |  | toposForAtom[i].push_back(j); | 
| 210 |  | topoDist[i].push_back(2); | 
| 211 |  | } else { | 
| 212 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 212 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 213 |  | toposForAtom[i].push_back(j); | 
| 214 |  | topoDist[i].push_back(3); | 
| 215 |  | } | 
| 220 |  |  | 
| 221 |  | #endif | 
| 222 |  |  | 
| 223 | + | // allocate memory for the parallel objects | 
| 224 | + | atypesLocal.resize(nLocal_); | 
| 225 | + |  | 
| 226 | + | for (int i = 0; i < nLocal_; i++) | 
| 227 | + | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 228 | + |  | 
| 229 |  | groupList_.clear(); | 
| 230 |  | groupList_.resize(nGroups_); | 
| 231 |  | for (int i = 0; i < nGroups_; i++) { | 
| 238 |  | } | 
| 239 |  | } | 
| 240 |  |  | 
| 241 | < | skipsForAtom.clear(); | 
| 242 | < | skipsForAtom.resize(nLocal_); | 
| 241 | > | excludesForAtom.clear(); | 
| 242 | > | excludesForAtom.resize(nLocal_); | 
| 243 |  | toposForAtom.clear(); | 
| 244 |  | toposForAtom.resize(nLocal_); | 
| 245 |  | topoDist.clear(); | 
| 251 |  | for (int j = 0; j < nLocal_; j++) { | 
| 252 |  | int jglob = AtomLocalToGlobal[j]; | 
| 253 |  |  | 
| 254 | < | if (excludes.hasPair(iglob, jglob)) | 
| 255 | < | skipsForAtom[i].push_back(j); | 
| 254 | > | if (excludes->hasPair(iglob, jglob)) | 
| 255 | > | excludesForAtom[i].push_back(j); | 
| 256 |  |  | 
| 257 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 257 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 258 |  | toposForAtom[i].push_back(j); | 
| 259 |  | topoDist[i].push_back(1); | 
| 260 |  | } else { | 
| 261 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 261 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 262 |  | toposForAtom[i].push_back(j); | 
| 263 |  | topoDist[i].push_back(2); | 
| 264 |  | } else { | 
| 265 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 265 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 266 |  | toposForAtom[i].push_back(j); | 
| 267 |  | topoDist[i].push_back(3); | 
| 268 |  | } | 
| 272 |  | } | 
| 273 |  |  | 
| 274 |  | createGtypeCutoffMap(); | 
| 275 | + |  | 
| 276 |  | } | 
| 277 |  |  | 
| 278 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 279 |  |  | 
| 280 |  | RealType tol = 1e-6; | 
| 281 | + | largestRcut_ = 0.0; | 
| 282 |  | RealType rc; | 
| 283 |  | int atid; | 
| 284 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 285 | < | vector<RealType> atypeCutoff; | 
| 286 | < | atypeCutoff.resize( atypes.size() ); | 
| 285 | > |  | 
| 286 | > | map<int, RealType> atypeCutoff; | 
| 287 |  |  | 
| 288 |  | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 289 |  | at != atypes.end(); ++at){ | 
| 290 |  | atid = (*at)->getIdent(); | 
| 291 | < |  | 
| 241 | < | if (userChoseCutoff_) | 
| 291 | > | if (userChoseCutoff_) | 
| 292 |  | atypeCutoff[atid] = userCutoff_; | 
| 293 |  | else | 
| 294 |  | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 295 |  | } | 
| 296 | < |  | 
| 296 | > |  | 
| 297 |  | vector<RealType> gTypeCutoffs; | 
| 248 | – |  | 
| 298 |  | // first we do a single loop over the cutoff groups to find the | 
| 299 |  | // largest cutoff for any atypes present in this group. | 
| 300 |  | #ifdef IS_MPI | 
| 352 |  |  | 
| 353 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 354 |  | groupToGtype.resize(nGroups_); | 
| 306 | – |  | 
| 355 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 308 | – |  | 
| 356 |  | groupCutoff[cg1] = 0.0; | 
| 357 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 311 | – |  | 
| 358 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 359 |  | ia != atomList.end(); ++ia) { | 
| 360 |  | int atom1 = (*ia); | 
| 361 |  | atid = idents[atom1]; | 
| 362 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 362 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 363 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 318 | – | } | 
| 364 |  | } | 
| 365 | < |  | 
| 365 | > |  | 
| 366 |  | bool gTypeFound = false; | 
| 367 |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 368 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 370 |  | gTypeFound = true; | 
| 371 |  | } | 
| 372 |  | } | 
| 373 | < | if (!gTypeFound) { | 
| 373 | > | if (!gTypeFound) { | 
| 374 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 375 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 376 |  | } | 
| 379 |  |  | 
| 380 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 381 |  |  | 
| 382 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 382 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 383 | > | gTypeCutoffs.end()); | 
| 384 |  |  | 
| 385 |  | #ifdef IS_MPI | 
| 386 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 386 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 387 | > | MPI::MAX); | 
| 388 |  | #endif | 
| 389 |  |  | 
| 390 |  | RealType tradRcut = groupMax; | 
| 414 |  |  | 
| 415 |  | pair<int,int> key = make_pair(i,j); | 
| 416 |  | gTypeCutoffMap[key].first = thisRcut; | 
| 370 | – |  | 
| 417 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 372 | – |  | 
| 418 |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 374 | – |  | 
| 419 |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 376 | – |  | 
| 420 |  | // sanity check | 
| 421 |  |  | 
| 422 |  | if (userChoseCutoff_) { | 
| 476 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 477 |  |  | 
| 478 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 479 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 480 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 479 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 480 | > | 0.0); | 
| 481 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 482 | > | 0.0); | 
| 483 |  | } | 
| 484 |  |  | 
| 485 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 488 |  | } | 
| 489 |  |  | 
| 490 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 491 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 492 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 491 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 492 | > | 0.0); | 
| 493 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 494 | > | 0.0); | 
| 495 |  | } | 
| 496 |  |  | 
| 497 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 502 |  | } | 
| 503 |  |  | 
| 504 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 505 | < | fill(atomRowData.skippedCharge.begin(), atomRowData.skippedCharge.end(), 0.0); | 
| 506 | < | fill(atomColData.skippedCharge.begin(), atomColData.skippedCharge.end(), 0.0); | 
| 505 | > | fill(atomRowData.skippedCharge.begin(), | 
| 506 | > | atomRowData.skippedCharge.end(), 0.0); | 
| 507 | > | fill(atomColData.skippedCharge.begin(), | 
| 508 | > | atomColData.skippedCharge.end(), 0.0); | 
| 509 |  | } | 
| 510 |  |  | 
| 511 | < | #else | 
| 512 | < |  | 
| 511 | > | #endif | 
| 512 | > | // even in parallel, we need to zero out the local arrays: | 
| 513 | > |  | 
| 514 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 515 |  | fill(snap_->atomData.particlePot.begin(), | 
| 516 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 532 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 533 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 534 |  | } | 
| 485 | – | #endif | 
| 535 |  |  | 
| 536 |  | } | 
| 537 |  |  | 
| 542 |  | #ifdef IS_MPI | 
| 543 |  |  | 
| 544 |  | // gather up the atomic positions | 
| 545 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 545 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 546 |  | atomRowData.position); | 
| 547 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 547 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 548 |  | atomColData.position); | 
| 549 |  |  | 
| 550 |  | // gather up the cutoff group positions | 
| 551 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 551 | > |  | 
| 552 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 553 |  | cgRowData.position); | 
| 554 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 554 | > |  | 
| 555 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 556 |  | cgColData.position); | 
| 557 | + |  | 
| 558 |  |  | 
| 559 |  | // if needed, gather the atomic rotation matrices | 
| 560 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 561 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 561 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 562 |  | atomRowData.aMat); | 
| 563 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 563 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 564 |  | atomColData.aMat); | 
| 565 |  | } | 
| 566 |  |  | 
| 567 |  | // if needed, gather the atomic eletrostatic frames | 
| 568 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 569 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 569 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 570 |  | atomRowData.electroFrame); | 
| 571 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 571 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 572 |  | atomColData.electroFrame); | 
| 573 |  | } | 
| 574 | + |  | 
| 575 |  | #endif | 
| 576 |  | } | 
| 577 |  |  | 
| 585 |  |  | 
| 586 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 587 |  |  | 
| 588 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 588 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 589 |  | snap_->atomData.density); | 
| 590 |  |  | 
| 591 |  | int n = snap_->atomData.density.size(); | 
| 592 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 593 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 593 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 594 |  | for (int i = 0; i < n; i++) | 
| 595 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 596 |  | } | 
| 606 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 607 |  | #ifdef IS_MPI | 
| 608 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 609 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 609 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 610 |  | atomRowData.functional); | 
| 611 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 611 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 612 |  | atomColData.functional); | 
| 613 |  | } | 
| 614 |  |  | 
| 615 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 616 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 616 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 617 |  | atomRowData.functionalDerivative); | 
| 618 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 618 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 619 |  | atomColData.functionalDerivative); | 
| 620 |  | } | 
| 621 |  | #endif | 
| 629 |  | int n = snap_->atomData.force.size(); | 
| 630 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 631 |  |  | 
| 632 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 632 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 633 |  | for (int i = 0; i < n; i++) { | 
| 634 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 635 |  | frc_tmp[i] = 0.0; | 
| 636 |  | } | 
| 637 |  |  | 
| 638 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 639 | < | for (int i = 0; i < n; i++) | 
| 638 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 639 | > | for (int i = 0; i < n; i++) { | 
| 640 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 641 | < |  | 
| 642 | < |  | 
| 641 | > | } | 
| 642 | > |  | 
| 643 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 644 |  |  | 
| 645 | < | int nt = snap_->atomData.force.size(); | 
| 645 | > | int nt = snap_->atomData.torque.size(); | 
| 646 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 647 |  |  | 
| 648 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 649 | < | for (int i = 0; i < n; i++) { | 
| 648 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 649 | > | for (int i = 0; i < nt; i++) { | 
| 650 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 651 |  | trq_tmp[i] = 0.0; | 
| 652 |  | } | 
| 653 |  |  | 
| 654 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 655 | < | for (int i = 0; i < n; i++) | 
| 654 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 655 | > | for (int i = 0; i < nt; i++) | 
| 656 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 657 |  | } | 
| 658 | + |  | 
| 659 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 660 | + |  | 
| 661 | + | int ns = snap_->atomData.skippedCharge.size(); | 
| 662 | + | vector<RealType> skch_tmp(ns, 0.0); | 
| 663 | + |  | 
| 664 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 665 | + | for (int i = 0; i < ns; i++) { | 
| 666 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 667 | + | skch_tmp[i] = 0.0; | 
| 668 | + | } | 
| 669 | + |  | 
| 670 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 671 | + | for (int i = 0; i < ns; i++) | 
| 672 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 673 | + | } | 
| 674 |  |  | 
| 675 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 676 |  |  | 
| 679 |  |  | 
| 680 |  | // scatter/gather pot_row into the members of my column | 
| 681 |  |  | 
| 682 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 682 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 683 |  |  | 
| 684 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 685 |  | pairwisePot += pot_temp[ii]; | 
| 687 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 688 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 689 |  |  | 
| 690 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 690 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 691 |  |  | 
| 692 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 693 |  | pairwisePot += pot_temp[ii]; | 
| 694 | + |  | 
| 695 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 696 | + | RealType ploc1 = pairwisePot[ii]; | 
| 697 | + | RealType ploc2 = 0.0; | 
| 698 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 699 | + | pairwisePot[ii] = ploc2; | 
| 700 | + | } | 
| 701 | + |  | 
| 702 |  | #endif | 
| 703 |  |  | 
| 704 |  | } | 
| 801 |  | return d; | 
| 802 |  | } | 
| 803 |  |  | 
| 804 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { | 
| 805 | < | return skipsForAtom[atom1]; | 
| 804 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 805 | > | return excludesForAtom[atom1]; | 
| 806 |  | } | 
| 807 |  |  | 
| 808 |  | /** | 
| 809 | < | * There are a number of reasons to skip a pair or a | 
| 733 | < | * particle. Mostly we do this to exclude atoms who are involved in | 
| 734 | < | * short range interactions (bonds, bends, torsions), but we also | 
| 735 | < | * need to exclude some overcounted interactions that result from | 
| 809 | > | * We need to exclude some overcounted interactions that result from | 
| 810 |  | * the parallel decomposition. | 
| 811 |  | */ | 
| 812 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 813 |  | int unique_id_1, unique_id_2; | 
| 814 | < |  | 
| 814 | > |  | 
| 815 |  | #ifdef IS_MPI | 
| 816 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 817 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 826 |  | } else { | 
| 827 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 828 |  | } | 
| 829 | + | #endif | 
| 830 | + | return false; | 
| 831 | + | } | 
| 832 | + |  | 
| 833 | + | /** | 
| 834 | + | * We need to handle the interactions for atoms who are involved in | 
| 835 | + | * the same rigid body as well as some short range interactions | 
| 836 | + | * (bonds, bends, torsions) differently from other interactions. | 
| 837 | + | * We'll still visit the pairwise routines, but with a flag that | 
| 838 | + | * tells those routines to exclude the pair from direct long range | 
| 839 | + | * interactions.  Some indirect interactions (notably reaction | 
| 840 | + | * field) must still be handled for these pairs. | 
| 841 | + | */ | 
| 842 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 843 | + | int unique_id_2; | 
| 844 | + | #ifdef IS_MPI | 
| 845 | + | // in MPI, we have to look up the unique IDs for the row atom. | 
| 846 | + | unique_id_2 = AtomColToGlobal[atom2]; | 
| 847 |  | #else | 
| 848 |  | // in the normal loop, the atom numbers are unique | 
| 757 | – | unique_id_1 = atom1; | 
| 849 |  | unique_id_2 = atom2; | 
| 850 |  | #endif | 
| 851 |  |  | 
| 852 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); | 
| 853 | < | i != skipsForAtom[atom1].end(); ++i) { | 
| 852 | > | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 853 | > | i != excludesForAtom[atom1].end(); ++i) { | 
| 854 |  | if ( (*i) == unique_id_2 ) return true; | 
| 855 |  | } | 
| 856 |  |  | 
| 876 |  |  | 
| 877 |  | // filling interaction blocks with pointers | 
| 878 |  | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 879 | < | int atom1, int atom2) { | 
| 879 | > | int atom1, int atom2) { | 
| 880 | > |  | 
| 881 | > | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 882 | > |  | 
| 883 |  | #ifdef IS_MPI | 
| 884 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 885 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 886 | + | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 887 |  |  | 
| 791 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 792 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 793 | – |  | 
| 888 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 889 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 890 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 920 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 921 |  | } | 
| 922 |  |  | 
| 923 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 924 | + | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 925 | + | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 926 | + | } | 
| 927 | + |  | 
| 928 |  | #else | 
| 929 |  |  | 
| 930 | < | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 931 | < | ff_->getAtomType(idents[atom2]) ); | 
| 930 | > | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 931 | > | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 932 | > | //                         ff_->getAtomType(idents[atom2]) ); | 
| 933 |  |  | 
| 934 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 935 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 966 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 967 |  | } | 
| 968 |  |  | 
| 969 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 970 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 971 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 972 | + | } | 
| 973 |  | #endif | 
| 974 |  | } | 
| 975 |  |  | 
| 990 |  |  | 
| 991 |  | } | 
| 992 |  |  | 
| 889 | – |  | 
| 890 | – | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, | 
| 891 | – | int atom1, int atom2) { | 
| 892 | – | #ifdef IS_MPI | 
| 893 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 894 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 895 | – |  | 
| 896 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 897 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 898 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 899 | – | } | 
| 900 | – |  | 
| 901 | – | if (storageLayout_ & DataStorage::dslTorque) { | 
| 902 | – | idat.t1 = &(atomRowData.torque[atom1]); | 
| 903 | – | idat.t2 = &(atomColData.torque[atom2]); | 
| 904 | – | } | 
| 905 | – |  | 
| 906 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 907 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 908 | – | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 909 | – | } | 
| 910 | – | #else | 
| 911 | – | idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 912 | – | ff_->getAtomType(idents[atom2]) ); | 
| 913 | – |  | 
| 914 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 915 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 916 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 917 | – | } | 
| 918 | – |  | 
| 919 | – | if (storageLayout_ & DataStorage::dslTorque) { | 
| 920 | – | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 921 | – | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 922 | – | } | 
| 923 | – |  | 
| 924 | – | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 925 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 926 | – | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 927 | – | } | 
| 928 | – | #endif | 
| 929 | – | } | 
| 930 | – |  | 
| 931 | – |  | 
| 932 | – | void ForceMatrixDecomposition::unpackSkipData(InteractionData &idat, int atom1, int atom2) { | 
| 933 | – | #ifdef IS_MPI | 
| 934 | – | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 935 | – | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 936 | – | #else | 
| 937 | – | pairwisePot += *(idat.pot); | 
| 938 | – | #endif | 
| 939 | – |  | 
| 940 | – | } | 
| 941 | – |  | 
| 942 | – |  | 
| 993 |  | /* | 
| 994 |  | * buildNeighborList | 
| 995 |  | * | 
| 1000 |  |  | 
| 1001 |  | vector<pair<int, int> > neighborList; | 
| 1002 |  | groupCutoffs cuts; | 
| 1003 | + | bool doAllPairs = false; | 
| 1004 | + |  | 
| 1005 |  | #ifdef IS_MPI | 
| 1006 |  | cellListRow_.clear(); | 
| 1007 |  | cellListCol_.clear(); | 
| 1021 |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1022 |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1023 |  |  | 
| 1024 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1025 | + |  | 
| 1026 | + | if (nCells_.x() < 3) doAllPairs = true; | 
| 1027 | + | if (nCells_.y() < 3) doAllPairs = true; | 
| 1028 | + | if (nCells_.z() < 3) doAllPairs = true; | 
| 1029 | + |  | 
| 1030 |  | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1031 |  | Vector3d rs, scaled, dr; | 
| 1032 |  | Vector3i whichCell; | 
| 1040 |  | cellList_.resize(nCtot); | 
| 1041 |  | #endif | 
| 1042 |  |  | 
| 1043 | + | if (!doAllPairs) { | 
| 1044 |  | #ifdef IS_MPI | 
| 986 | – | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 987 | – | rs = cgRowData.position[i]; | 
| 1045 |  |  | 
| 1046 | < | // scaled positions relative to the box vectors | 
| 1047 | < | scaled = invHmat * rs; | 
| 1048 | < |  | 
| 1049 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1050 | < | // numbers | 
| 1051 | < | for (int j = 0; j < 3; j++) { | 
| 1052 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1053 | < | scaled[j] += 0.5; | 
| 1046 | > | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1047 | > | rs = cgRowData.position[i]; | 
| 1048 | > |  | 
| 1049 | > | // scaled positions relative to the box vectors | 
| 1050 | > | scaled = invHmat * rs; | 
| 1051 | > |  | 
| 1052 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1053 | > | // numbers | 
| 1054 | > | for (int j = 0; j < 3; j++) { | 
| 1055 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1056 | > | scaled[j] += 0.5; | 
| 1057 | > | } | 
| 1058 | > |  | 
| 1059 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1060 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1061 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1062 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1063 | > |  | 
| 1064 | > | // find single index of this cell: | 
| 1065 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1066 | > |  | 
| 1067 | > | // add this cutoff group to the list of groups in this cell; | 
| 1068 | > | cellListRow_[cellIndex].push_back(i); | 
| 1069 |  | } | 
| 1070 | < |  | 
| 1071 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 1072 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1073 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1074 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1075 | < |  | 
| 1076 | < | // find single index of this cell: | 
| 1077 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1078 | < |  | 
| 1079 | < | // add this cutoff group to the list of groups in this cell; | 
| 1080 | < | cellListRow_[cellIndex].push_back(i); | 
| 1081 | < | } | 
| 1082 | < |  | 
| 1083 | < | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1084 | < | rs = cgColData.position[i]; | 
| 1085 | < |  | 
| 1086 | < | // scaled positions relative to the box vectors | 
| 1087 | < | scaled = invHmat * rs; | 
| 1088 | < |  | 
| 1089 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1090 | < | // numbers | 
| 1091 | < | for (int j = 0; j < 3; j++) { | 
| 1092 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1021 | < | scaled[j] += 0.5; | 
| 1070 | > | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1071 | > | rs = cgColData.position[i]; | 
| 1072 | > |  | 
| 1073 | > | // scaled positions relative to the box vectors | 
| 1074 | > | scaled = invHmat * rs; | 
| 1075 | > |  | 
| 1076 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1077 | > | // numbers | 
| 1078 | > | for (int j = 0; j < 3; j++) { | 
| 1079 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1080 | > | scaled[j] += 0.5; | 
| 1081 | > | } | 
| 1082 | > |  | 
| 1083 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1084 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1085 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1086 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1087 | > |  | 
| 1088 | > | // find single index of this cell: | 
| 1089 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1090 | > |  | 
| 1091 | > | // add this cutoff group to the list of groups in this cell; | 
| 1092 | > | cellListCol_[cellIndex].push_back(i); | 
| 1093 |  | } | 
| 1023 | – |  | 
| 1024 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1025 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1026 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1027 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1028 | – |  | 
| 1029 | – | // find single index of this cell: | 
| 1030 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1031 | – |  | 
| 1032 | – | // add this cutoff group to the list of groups in this cell; | 
| 1033 | – | cellListCol_[cellIndex].push_back(i); | 
| 1034 | – | } | 
| 1094 |  | #else | 
| 1095 | < | for (int i = 0; i < nGroups_; i++) { | 
| 1096 | < | rs = snap_->cgData.position[i]; | 
| 1097 | < |  | 
| 1098 | < | // scaled positions relative to the box vectors | 
| 1099 | < | scaled = invHmat * rs; | 
| 1100 | < |  | 
| 1101 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1102 | < | // numbers | 
| 1103 | < | for (int j = 0; j < 3; j++) { | 
| 1104 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1105 | < | scaled[j] += 0.5; | 
| 1095 | > | for (int i = 0; i < nGroups_; i++) { | 
| 1096 | > | rs = snap_->cgData.position[i]; | 
| 1097 | > |  | 
| 1098 | > | // scaled positions relative to the box vectors | 
| 1099 | > | scaled = invHmat * rs; | 
| 1100 | > |  | 
| 1101 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1102 | > | // numbers | 
| 1103 | > | for (int j = 0; j < 3; j++) { | 
| 1104 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1105 | > | scaled[j] += 0.5; | 
| 1106 | > | } | 
| 1107 | > |  | 
| 1108 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1109 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1110 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1111 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1112 | > |  | 
| 1113 | > | // find single index of this cell: | 
| 1114 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1115 | > |  | 
| 1116 | > | // add this cutoff group to the list of groups in this cell; | 
| 1117 | > | cellList_[cellIndex].push_back(i); | 
| 1118 |  | } | 
| 1048 | – |  | 
| 1049 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1050 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1051 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1052 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1053 | – |  | 
| 1054 | – | // find single index of this cell: | 
| 1055 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1056 | – |  | 
| 1057 | – | // add this cutoff group to the list of groups in this cell; | 
| 1058 | – | cellList_[cellIndex].push_back(i); | 
| 1059 | – | } | 
| 1119 |  | #endif | 
| 1120 |  |  | 
| 1121 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1122 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1123 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1124 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1125 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1067 | < |  | 
| 1068 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1069 | < | os != cellOffsets_.end(); ++os) { | 
| 1121 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1122 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1123 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1124 | > | Vector3i m1v(m1x, m1y, m1z); | 
| 1125 | > | int m1 = Vlinear(m1v, nCells_); | 
| 1126 |  |  | 
| 1127 | < | Vector3i m2v = m1v + (*os); | 
| 1128 | < |  | 
| 1129 | < | if (m2v.x() >= nCells_.x()) { | 
| 1130 | < | m2v.x() = 0; | 
| 1131 | < | } else if (m2v.x() < 0) { | 
| 1132 | < | m2v.x() = nCells_.x() - 1; | 
| 1133 | < | } | 
| 1134 | < |  | 
| 1135 | < | if (m2v.y() >= nCells_.y()) { | 
| 1136 | < | m2v.y() = 0; | 
| 1137 | < | } else if (m2v.y() < 0) { | 
| 1138 | < | m2v.y() = nCells_.y() - 1; | 
| 1139 | < | } | 
| 1140 | < |  | 
| 1141 | < | if (m2v.z() >= nCells_.z()) { | 
| 1142 | < | m2v.z() = 0; | 
| 1143 | < | } else if (m2v.z() < 0) { | 
| 1144 | < | m2v.z() = nCells_.z() - 1; | 
| 1145 | < | } | 
| 1146 | < |  | 
| 1147 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1148 | < |  | 
| 1127 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1128 | > | os != cellOffsets_.end(); ++os) { | 
| 1129 | > |  | 
| 1130 | > | Vector3i m2v = m1v + (*os); | 
| 1131 | > |  | 
| 1132 | > | if (m2v.x() >= nCells_.x()) { | 
| 1133 | > | m2v.x() = 0; | 
| 1134 | > | } else if (m2v.x() < 0) { | 
| 1135 | > | m2v.x() = nCells_.x() - 1; | 
| 1136 | > | } | 
| 1137 | > |  | 
| 1138 | > | if (m2v.y() >= nCells_.y()) { | 
| 1139 | > | m2v.y() = 0; | 
| 1140 | > | } else if (m2v.y() < 0) { | 
| 1141 | > | m2v.y() = nCells_.y() - 1; | 
| 1142 | > | } | 
| 1143 | > |  | 
| 1144 | > | if (m2v.z() >= nCells_.z()) { | 
| 1145 | > | m2v.z() = 0; | 
| 1146 | > | } else if (m2v.z() < 0) { | 
| 1147 | > | m2v.z() = nCells_.z() - 1; | 
| 1148 | > | } | 
| 1149 | > |  | 
| 1150 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1151 | > |  | 
| 1152 |  | #ifdef IS_MPI | 
| 1153 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1154 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1155 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1156 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1157 | < |  | 
| 1158 | < | // Always do this if we're in different cells or if | 
| 1159 | < | // we're in the same cell and the global index of the | 
| 1101 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1102 | < |  | 
| 1103 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1153 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1154 | > | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1155 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1156 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1157 | > |  | 
| 1158 | > | // In parallel, we need to visit *all* pairs of row & | 
| 1159 | > | // column indicies and will truncate later on. | 
| 1160 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1161 |  | snap_->wrapVector(dr); | 
| 1162 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1163 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1164 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1165 | < | } | 
| 1165 | > | } | 
| 1166 |  | } | 
| 1167 |  | } | 
| 1112 | – | } | 
| 1168 |  | #else | 
| 1169 | < |  | 
| 1170 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1171 | < | j1 != cellList_[m1].end(); ++j1) { | 
| 1172 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1173 | < | j2 != cellList_[m2].end(); ++j2) { | 
| 1174 | < |  | 
| 1175 | < | // Always do this if we're in different cells or if | 
| 1176 | < | // we're in the same cell and the global index of the | 
| 1177 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1178 | < |  | 
| 1179 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1180 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1181 | < | snap_->wrapVector(dr); | 
| 1182 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1183 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1184 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1169 | > |  | 
| 1170 | > | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1171 | > | j1 != cellList_[m1].end(); ++j1) { | 
| 1172 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1173 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1174 | > |  | 
| 1175 | > | // Always do this if we're in different cells or if | 
| 1176 | > | // we're in the same cell and the global index of the | 
| 1177 | > | // j2 cutoff group is less than the j1 cutoff group | 
| 1178 | > |  | 
| 1179 | > | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1180 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1181 | > | snap_->wrapVector(dr); | 
| 1182 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1183 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1184 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1185 | > | } | 
| 1186 |  | } | 
| 1187 |  | } | 
| 1188 |  | } | 
| 1133 | – | } | 
| 1189 |  | #endif | 
| 1190 | + | } | 
| 1191 |  | } | 
| 1192 |  | } | 
| 1193 |  | } | 
| 1194 | + | } else { | 
| 1195 | + | // branch to do all cutoff group pairs | 
| 1196 | + | #ifdef IS_MPI | 
| 1197 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1198 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1199 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1200 | + | snap_->wrapVector(dr); | 
| 1201 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1202 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1203 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1204 | + | } | 
| 1205 | + | } | 
| 1206 | + | } | 
| 1207 | + | #else | 
| 1208 | + | for (int j1 = 0; j1 < nGroups_ - 1; j1++) { | 
| 1209 | + | for (int j2 = j1 + 1; j2 < nGroups_; j2++) { | 
| 1210 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1211 | + | snap_->wrapVector(dr); | 
| 1212 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1213 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1214 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1215 | + | } | 
| 1216 | + | } | 
| 1217 | + | } | 
| 1218 | + | #endif | 
| 1219 |  | } | 
| 1220 | < |  | 
| 1220 | > |  | 
| 1221 |  | // save the local cutoff group positions for the check that is | 
| 1222 |  | // done on each loop: | 
| 1223 |  | saved_CG_positions_.clear(); | 
| 1224 |  | for (int i = 0; i < nGroups_; i++) | 
| 1225 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1226 | < |  | 
| 1226 | > |  | 
| 1227 |  | return neighborList; | 
| 1228 |  | } | 
| 1229 |  | } //end namespace OpenMD |