| 47 |  | using namespace std; | 
| 48 |  | namespace OpenMD { | 
| 49 |  |  | 
| 50 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 51 | + |  | 
| 52 | + | // In a parallel computation, row and colum scans must visit all | 
| 53 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 54 | + | // are used when the processor can see all pairs) | 
| 55 | + | #ifdef IS_MPI | 
| 56 | + | cellOffsets_.clear(); | 
| 57 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 58 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 84 | + | #endif | 
| 85 | + | } | 
| 86 | + |  | 
| 87 | + |  | 
| 88 |  | /** | 
| 89 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 90 |  | * SimulationSetup | 
| 91 |  | */ | 
| 54 | – |  | 
| 92 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 93 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 94 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 111 |  |  | 
| 112 |  | #ifdef IS_MPI | 
| 113 |  |  | 
| 114 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 115 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 79 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 80 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 81 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 114 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 115 | > | MPI::Intracomm col = colComm.getComm(); | 
| 116 |  |  | 
| 117 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 118 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 119 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 120 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 121 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 117 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 118 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 119 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 120 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 121 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 122 |  |  | 
| 123 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 124 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 125 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 126 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 123 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 124 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 125 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 126 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 127 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 128 |  |  | 
| 129 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 130 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 131 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 132 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 129 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 130 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 131 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 132 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 133 |  |  | 
| 134 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 135 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 136 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 137 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 138 | + |  | 
| 139 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 140 |  | atomRowData.resize(nAtomsInRow_); | 
| 141 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 149 |  | identsRow.resize(nAtomsInRow_); | 
| 150 |  | identsCol.resize(nAtomsInCol_); | 
| 151 |  |  | 
| 152 | < | AtomCommIntRow->gather(idents, identsRow); | 
| 153 | < | AtomCommIntColumn->gather(idents, identsCol); | 
| 152 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 153 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 154 |  |  | 
| 155 |  | // allocate memory for the parallel objects | 
| 156 |  | atypesRow.resize(nAtomsInRow_); | 
| 166 |  |  | 
| 167 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 168 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 169 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 170 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 171 | < |  | 
| 169 | > | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 170 | > | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 171 | > |  | 
| 172 |  | cgRowToGlobal.resize(nGroupsInRow_); | 
| 173 |  | cgColToGlobal.resize(nGroupsInCol_); | 
| 174 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 175 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 174 | > | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 175 | > | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 176 |  |  | 
| 177 |  | massFactorsRow.resize(nAtomsInRow_); | 
| 178 |  | massFactorsCol.resize(nAtomsInCol_); | 
| 179 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 180 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 179 | > | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 180 | > | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 181 |  |  | 
| 182 |  | groupListRow_.clear(); | 
| 183 |  | groupListRow_.resize(nGroupsInRow_); | 
| 233 |  | } | 
| 234 |  | } | 
| 235 |  |  | 
| 236 | < | #endif | 
| 197 | < |  | 
| 198 | < | // allocate memory for the parallel objects | 
| 199 | < | atypesLocal.resize(nLocal_); | 
| 200 | < |  | 
| 201 | < | for (int i = 0; i < nLocal_; i++) | 
| 202 | < | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 203 | < |  | 
| 204 | < | groupList_.clear(); | 
| 205 | < | groupList_.resize(nGroups_); | 
| 206 | < | for (int i = 0; i < nGroups_; i++) { | 
| 207 | < | int gid = cgLocalToGlobal[i]; | 
| 208 | < | for (int j = 0; j < nLocal_; j++) { | 
| 209 | < | int aid = AtomLocalToGlobal[j]; | 
| 210 | < | if (globalGroupMembership[aid] == gid) { | 
| 211 | < | groupList_[i].push_back(j); | 
| 212 | < | } | 
| 213 | < | } | 
| 214 | < | } | 
| 215 | < |  | 
| 236 | > | #else | 
| 237 |  | excludesForAtom.clear(); | 
| 238 |  | excludesForAtom.resize(nLocal_); | 
| 239 |  | toposForAtom.clear(); | 
| 247 |  | for (int j = 0; j < nLocal_; j++) { | 
| 248 |  | int jglob = AtomLocalToGlobal[j]; | 
| 249 |  |  | 
| 250 | < | if (excludes->hasPair(iglob, jglob)) | 
| 250 | > | if (excludes->hasPair(iglob, jglob)) | 
| 251 |  | excludesForAtom[i].push_back(j); | 
| 252 |  |  | 
| 253 | + |  | 
| 254 |  | if (oneTwo->hasPair(iglob, jglob)) { | 
| 255 |  | toposForAtom[i].push_back(j); | 
| 256 |  | topoDist[i].push_back(1); | 
| 267 |  | } | 
| 268 |  | } | 
| 269 |  | } | 
| 270 | < |  | 
| 270 | > | #endif | 
| 271 | > |  | 
| 272 | > | // allocate memory for the parallel objects | 
| 273 | > | atypesLocal.resize(nLocal_); | 
| 274 | > |  | 
| 275 | > | for (int i = 0; i < nLocal_; i++) | 
| 276 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 277 | > |  | 
| 278 | > | groupList_.clear(); | 
| 279 | > | groupList_.resize(nGroups_); | 
| 280 | > | for (int i = 0; i < nGroups_; i++) { | 
| 281 | > | int gid = cgLocalToGlobal[i]; | 
| 282 | > | for (int j = 0; j < nLocal_; j++) { | 
| 283 | > | int aid = AtomLocalToGlobal[j]; | 
| 284 | > | if (globalGroupMembership[aid] == gid) { | 
| 285 | > | groupList_[i].push_back(j); | 
| 286 | > | } | 
| 287 | > | } | 
| 288 | > | } | 
| 289 | > |  | 
| 290 | > |  | 
| 291 |  | createGtypeCutoffMap(); | 
| 292 |  |  | 
| 293 |  | } | 
| 559 |  | #ifdef IS_MPI | 
| 560 |  |  | 
| 561 |  | // gather up the atomic positions | 
| 562 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 562 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 563 |  | atomRowData.position); | 
| 564 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 564 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 565 |  | atomColData.position); | 
| 566 |  |  | 
| 567 |  | // gather up the cutoff group positions | 
| 568 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 568 | > |  | 
| 569 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 570 |  | cgRowData.position); | 
| 571 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 571 | > |  | 
| 572 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 573 |  | cgColData.position); | 
| 574 | + |  | 
| 575 |  |  | 
| 576 |  | // if needed, gather the atomic rotation matrices | 
| 577 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 578 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 578 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 579 |  | atomRowData.aMat); | 
| 580 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 580 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 581 |  | atomColData.aMat); | 
| 582 |  | } | 
| 583 |  |  | 
| 584 |  | // if needed, gather the atomic eletrostatic frames | 
| 585 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 586 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 586 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 587 |  | atomRowData.electroFrame); | 
| 588 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 588 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 589 |  | atomColData.electroFrame); | 
| 590 |  | } | 
| 591 |  |  | 
| 602 |  |  | 
| 603 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 604 |  |  | 
| 605 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 605 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 606 |  | snap_->atomData.density); | 
| 607 |  |  | 
| 608 |  | int n = snap_->atomData.density.size(); | 
| 609 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 610 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 610 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 611 |  | for (int i = 0; i < n; i++) | 
| 612 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 613 |  | } | 
| 623 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 624 |  | #ifdef IS_MPI | 
| 625 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 626 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 626 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 627 |  | atomRowData.functional); | 
| 628 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 628 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 629 |  | atomColData.functional); | 
| 630 |  | } | 
| 631 |  |  | 
| 632 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 633 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 633 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 634 |  | atomRowData.functionalDerivative); | 
| 635 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 635 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 636 |  | atomColData.functionalDerivative); | 
| 637 |  | } | 
| 638 |  | #endif | 
| 646 |  | int n = snap_->atomData.force.size(); | 
| 647 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 648 |  |  | 
| 649 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 649 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 650 |  | for (int i = 0; i < n; i++) { | 
| 651 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 652 |  | frc_tmp[i] = 0.0; | 
| 653 |  | } | 
| 654 |  |  | 
| 655 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 656 | < | for (int i = 0; i < n; i++) | 
| 655 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 656 | > | for (int i = 0; i < n; i++) { | 
| 657 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 658 | + | } | 
| 659 |  |  | 
| 660 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 661 |  |  | 
| 662 |  | int nt = snap_->atomData.torque.size(); | 
| 663 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 664 |  |  | 
| 665 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 665 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 666 |  | for (int i = 0; i < nt; i++) { | 
| 667 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 668 |  | trq_tmp[i] = 0.0; | 
| 669 |  | } | 
| 670 |  |  | 
| 671 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 671 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 672 |  | for (int i = 0; i < nt; i++) | 
| 673 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 674 |  | } | 
| 678 |  | int ns = snap_->atomData.skippedCharge.size(); | 
| 679 |  | vector<RealType> skch_tmp(ns, 0.0); | 
| 680 |  |  | 
| 681 | < | AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 681 | > | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 682 |  | for (int i = 0; i < ns; i++) { | 
| 683 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 684 |  | skch_tmp[i] = 0.0; | 
| 685 |  | } | 
| 686 |  |  | 
| 687 | < | AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 688 | < | for (int i = 0; i < ns; i++) | 
| 687 | > | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 688 | > | for (int i = 0; i < ns; i++) | 
| 689 |  | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 690 | + |  | 
| 691 |  | } | 
| 692 |  |  | 
| 693 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 697 |  |  | 
| 698 |  | // scatter/gather pot_row into the members of my column | 
| 699 |  |  | 
| 700 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 700 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 701 |  |  | 
| 702 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 703 |  | pairwisePot += pot_temp[ii]; | 
| 705 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 706 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 707 |  |  | 
| 708 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 708 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 709 |  |  | 
| 710 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 711 |  | pairwisePot += pot_temp[ii]; | 
| 712 | + |  | 
| 713 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 714 | + | RealType ploc1 = pairwisePot[ii]; | 
| 715 | + | RealType ploc2 = 0.0; | 
| 716 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 717 | + | pairwisePot[ii] = ploc2; | 
| 718 | + | } | 
| 719 | + |  | 
| 720 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 721 | + | RealType ploc1 = embeddingPot[ii]; | 
| 722 | + | RealType ploc2 = 0.0; | 
| 723 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 724 | + | embeddingPot[ii] = ploc2; | 
| 725 | + | } | 
| 726 | + |  | 
| 727 |  | #endif | 
| 728 |  |  | 
| 729 |  | } | 
| 836 |  | */ | 
| 837 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 838 |  | int unique_id_1, unique_id_2; | 
| 839 | < |  | 
| 839 | > |  | 
| 840 |  | #ifdef IS_MPI | 
| 841 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 842 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 865 |  | * field) must still be handled for these pairs. | 
| 866 |  | */ | 
| 867 |  | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 868 | < | int unique_id_2; | 
| 868 | > |  | 
| 869 | > | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 870 | > | // version, and to use local IDs in the non-MPI version: | 
| 871 |  |  | 
| 808 | – | #ifdef IS_MPI | 
| 809 | – | // in MPI, we have to look up the unique IDs for the row atom. | 
| 810 | – | unique_id_2 = AtomColToGlobal[atom2]; | 
| 811 | – | #else | 
| 812 | – | // in the normal loop, the atom numbers are unique | 
| 813 | – | unique_id_2 = atom2; | 
| 814 | – | #endif | 
| 815 | – |  | 
| 872 |  | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 873 |  | i != excludesForAtom[atom1].end(); ++i) { | 
| 874 | < | if ( (*i) == unique_id_2 ) return true; | 
| 874 | > | if ( (*i) == atom2 )  return true; | 
| 875 |  | } | 
| 876 |  |  | 
| 877 |  | return false; | 
| 1087 |  | // add this cutoff group to the list of groups in this cell; | 
| 1088 |  | cellListRow_[cellIndex].push_back(i); | 
| 1089 |  | } | 
| 1034 | – |  | 
| 1090 |  | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1091 |  | rs = cgColData.position[i]; | 
| 1092 |  |  | 
| 1111 |  | // add this cutoff group to the list of groups in this cell; | 
| 1112 |  | cellListCol_[cellIndex].push_back(i); | 
| 1113 |  | } | 
| 1114 | + |  | 
| 1115 |  | #else | 
| 1116 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1117 |  | rs = snap_->cgData.position[i]; | 
| 1132 |  | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1133 |  |  | 
| 1134 |  | // find single index of this cell: | 
| 1135 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1135 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1136 |  |  | 
| 1137 |  | // add this cutoff group to the list of groups in this cell; | 
| 1138 |  | cellList_[cellIndex].push_back(i); | 
| 1139 |  | } | 
| 1140 | + |  | 
| 1141 |  | #endif | 
| 1142 |  |  | 
| 1143 |  | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1150 |  | os != cellOffsets_.end(); ++os) { | 
| 1151 |  |  | 
| 1152 |  | Vector3i m2v = m1v + (*os); | 
| 1153 | < |  | 
| 1153 | > |  | 
| 1154 | > |  | 
| 1155 |  | if (m2v.x() >= nCells_.x()) { | 
| 1156 |  | m2v.x() = 0; | 
| 1157 |  | } else if (m2v.x() < 0) { | 
| 1169 |  | } else if (m2v.z() < 0) { | 
| 1170 |  | m2v.z() = nCells_.z() - 1; | 
| 1171 |  | } | 
| 1172 | < |  | 
| 1172 | > |  | 
| 1173 |  | int m2 = Vlinear (m2v, nCells_); | 
| 1174 |  |  | 
| 1175 |  | #ifdef IS_MPI | 
| 1178 |  | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1179 |  | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1180 |  |  | 
| 1181 | < | // Always do this if we're in different cells or if | 
| 1182 | < | // we're in the same cell and the global index of the | 
| 1183 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1184 | < |  | 
| 1185 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1186 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1187 | < | snap_->wrapVector(dr); | 
| 1188 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1189 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1132 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1133 | < | } | 
| 1134 | < | } | 
| 1181 | > | // In parallel, we need to visit *all* pairs of row | 
| 1182 | > | // & column indicies and will divide labor in the | 
| 1183 | > | // force evaluation later. | 
| 1184 | > | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1185 | > | snap_->wrapVector(dr); | 
| 1186 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1187 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1188 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1189 | > | } | 
| 1190 |  | } | 
| 1191 |  | } | 
| 1192 |  | #else |