| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | #include "math/SquareMatrix3.hpp" | 
| 44 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 45 | #include "brains/SnapshotManager.hpp" | 
| 46 | #include "brains/PairList.hpp" | 
| 47 |  | 
| 48 | using namespace std; | 
| 49 | namespace OpenMD { | 
| 50 |  | 
| 51 | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  | 
| 53 | // In a parallel computation, row and colum scans must visit all | 
| 54 | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | // are used when the processor can see all pairs) | 
| 56 | #ifdef IS_MPI | 
| 57 | cellOffsets_.clear(); | 
| 58 | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | #endif | 
| 86 | } | 
| 87 |  | 
| 88 |  | 
| 89 | /** | 
| 90 | * distributeInitialData is essentially a copy of the older fortran | 
| 91 | * SimulationSetup | 
| 92 | */ | 
| 93 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 | snap_ = sman_->getCurrentSnapshot(); | 
| 95 | storageLayout_ = sman_->getStorageLayout(); | 
| 96 | ff_ = info_->getForceField(); | 
| 97 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 |  | 
| 99 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 | // gather the information for atomtype IDs (atids): | 
| 101 | idents = info_->getIdentArray(); | 
| 102 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 103 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 104 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 105 |  | 
| 106 | massFactors = info_->getMassFactors(); | 
| 107 |  | 
| 108 | PairList* excludes = info_->getExcludedInteractions(); | 
| 109 | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 |  | 
| 113 | if (needVelocities_) | 
| 114 | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | DataStorage::dslVelocity); | 
| 116 | else | 
| 117 | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 |  | 
| 119 | #ifdef IS_MPI | 
| 120 |  | 
| 121 | MPI::Intracomm row = rowComm.getComm(); | 
| 122 | MPI::Intracomm col = colComm.getComm(); | 
| 123 |  | 
| 124 | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 |  | 
| 130 | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 |  | 
| 136 | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 |  | 
| 141 | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 |  | 
| 146 | // Modify the data storage objects with the correct layouts and sizes: | 
| 147 | atomRowData.resize(nAtomsInRow_); | 
| 148 | atomRowData.setStorageLayout(storageLayout_); | 
| 149 | atomColData.resize(nAtomsInCol_); | 
| 150 | atomColData.setStorageLayout(storageLayout_); | 
| 151 | cgRowData.resize(nGroupsInRow_); | 
| 152 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 | cgColData.resize(nGroupsInCol_); | 
| 154 | if (needVelocities_) | 
| 155 | // we only need column velocities if we need them. | 
| 156 | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | DataStorage::dslVelocity); | 
| 158 | else | 
| 159 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 |  | 
| 161 | identsRow.resize(nAtomsInRow_); | 
| 162 | identsCol.resize(nAtomsInCol_); | 
| 163 |  | 
| 164 | AtomPlanIntRow->gather(idents, identsRow); | 
| 165 | AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 |  | 
| 167 | // allocate memory for the parallel objects | 
| 168 | atypesRow.resize(nAtomsInRow_); | 
| 169 | atypesCol.resize(nAtomsInCol_); | 
| 170 |  | 
| 171 | for (int i = 0; i < nAtomsInRow_; i++) | 
| 172 | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 173 | for (int i = 0; i < nAtomsInCol_; i++) | 
| 174 | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 175 |  | 
| 176 | pot_row.resize(nAtomsInRow_); | 
| 177 | pot_col.resize(nAtomsInCol_); | 
| 178 |  | 
| 179 | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 180 | AtomColToGlobal.resize(nAtomsInCol_); | 
| 181 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 182 | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 183 |  | 
| 184 | cgRowToGlobal.resize(nGroupsInRow_); | 
| 185 | cgColToGlobal.resize(nGroupsInCol_); | 
| 186 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 187 | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 188 |  | 
| 189 | massFactorsRow.resize(nAtomsInRow_); | 
| 190 | massFactorsCol.resize(nAtomsInCol_); | 
| 191 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 192 | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 193 |  | 
| 194 | groupListRow_.clear(); | 
| 195 | groupListRow_.resize(nGroupsInRow_); | 
| 196 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 197 | int gid = cgRowToGlobal[i]; | 
| 198 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 199 | int aid = AtomRowToGlobal[j]; | 
| 200 | if (globalGroupMembership[aid] == gid) | 
| 201 | groupListRow_[i].push_back(j); | 
| 202 | } | 
| 203 | } | 
| 204 |  | 
| 205 | groupListCol_.clear(); | 
| 206 | groupListCol_.resize(nGroupsInCol_); | 
| 207 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 208 | int gid = cgColToGlobal[i]; | 
| 209 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 210 | int aid = AtomColToGlobal[j]; | 
| 211 | if (globalGroupMembership[aid] == gid) | 
| 212 | groupListCol_[i].push_back(j); | 
| 213 | } | 
| 214 | } | 
| 215 |  | 
| 216 | excludesForAtom.clear(); | 
| 217 | excludesForAtom.resize(nAtomsInRow_); | 
| 218 | toposForAtom.clear(); | 
| 219 | toposForAtom.resize(nAtomsInRow_); | 
| 220 | topoDist.clear(); | 
| 221 | topoDist.resize(nAtomsInRow_); | 
| 222 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 223 | int iglob = AtomRowToGlobal[i]; | 
| 224 |  | 
| 225 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 226 | int jglob = AtomColToGlobal[j]; | 
| 227 |  | 
| 228 | if (excludes->hasPair(iglob, jglob)) | 
| 229 | excludesForAtom[i].push_back(j); | 
| 230 |  | 
| 231 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 232 | toposForAtom[i].push_back(j); | 
| 233 | topoDist[i].push_back(1); | 
| 234 | } else { | 
| 235 | if (oneThree->hasPair(iglob, jglob)) { | 
| 236 | toposForAtom[i].push_back(j); | 
| 237 | topoDist[i].push_back(2); | 
| 238 | } else { | 
| 239 | if (oneFour->hasPair(iglob, jglob)) { | 
| 240 | toposForAtom[i].push_back(j); | 
| 241 | topoDist[i].push_back(3); | 
| 242 | } | 
| 243 | } | 
| 244 | } | 
| 245 | } | 
| 246 | } | 
| 247 |  | 
| 248 | #else | 
| 249 | excludesForAtom.clear(); | 
| 250 | excludesForAtom.resize(nLocal_); | 
| 251 | toposForAtom.clear(); | 
| 252 | toposForAtom.resize(nLocal_); | 
| 253 | topoDist.clear(); | 
| 254 | topoDist.resize(nLocal_); | 
| 255 |  | 
| 256 | for (int i = 0; i < nLocal_; i++) { | 
| 257 | int iglob = AtomLocalToGlobal[i]; | 
| 258 |  | 
| 259 | for (int j = 0; j < nLocal_; j++) { | 
| 260 | int jglob = AtomLocalToGlobal[j]; | 
| 261 |  | 
| 262 | if (excludes->hasPair(iglob, jglob)) | 
| 263 | excludesForAtom[i].push_back(j); | 
| 264 |  | 
| 265 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 266 | toposForAtom[i].push_back(j); | 
| 267 | topoDist[i].push_back(1); | 
| 268 | } else { | 
| 269 | if (oneThree->hasPair(iglob, jglob)) { | 
| 270 | toposForAtom[i].push_back(j); | 
| 271 | topoDist[i].push_back(2); | 
| 272 | } else { | 
| 273 | if (oneFour->hasPair(iglob, jglob)) { | 
| 274 | toposForAtom[i].push_back(j); | 
| 275 | topoDist[i].push_back(3); | 
| 276 | } | 
| 277 | } | 
| 278 | } | 
| 279 | } | 
| 280 | } | 
| 281 | #endif | 
| 282 |  | 
| 283 | // allocate memory for the parallel objects | 
| 284 | atypesLocal.resize(nLocal_); | 
| 285 |  | 
| 286 | for (int i = 0; i < nLocal_; i++) | 
| 287 | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 288 |  | 
| 289 | groupList_.clear(); | 
| 290 | groupList_.resize(nGroups_); | 
| 291 | for (int i = 0; i < nGroups_; i++) { | 
| 292 | int gid = cgLocalToGlobal[i]; | 
| 293 | for (int j = 0; j < nLocal_; j++) { | 
| 294 | int aid = AtomLocalToGlobal[j]; | 
| 295 | if (globalGroupMembership[aid] == gid) { | 
| 296 | groupList_[i].push_back(j); | 
| 297 | } | 
| 298 | } | 
| 299 | } | 
| 300 |  | 
| 301 |  | 
| 302 | createGtypeCutoffMap(); | 
| 303 |  | 
| 304 | } | 
| 305 |  | 
| 306 | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 307 |  | 
| 308 | RealType tol = 1e-6; | 
| 309 | largestRcut_ = 0.0; | 
| 310 | RealType rc; | 
| 311 | int atid; | 
| 312 | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 313 |  | 
| 314 | map<int, RealType> atypeCutoff; | 
| 315 |  | 
| 316 | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 317 | at != atypes.end(); ++at){ | 
| 318 | atid = (*at)->getIdent(); | 
| 319 | if (userChoseCutoff_) | 
| 320 | atypeCutoff[atid] = userCutoff_; | 
| 321 | else | 
| 322 | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 323 | } | 
| 324 |  | 
| 325 | vector<RealType> gTypeCutoffs; | 
| 326 | // first we do a single loop over the cutoff groups to find the | 
| 327 | // largest cutoff for any atypes present in this group. | 
| 328 | #ifdef IS_MPI | 
| 329 | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 330 | groupRowToGtype.resize(nGroupsInRow_); | 
| 331 | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 332 | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 333 | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 334 | ia != atomListRow.end(); ++ia) { | 
| 335 | int atom1 = (*ia); | 
| 336 | atid = identsRow[atom1]; | 
| 337 | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 338 | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 339 | } | 
| 340 | } | 
| 341 |  | 
| 342 | bool gTypeFound = false; | 
| 343 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 344 | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 345 | groupRowToGtype[cg1] = gt; | 
| 346 | gTypeFound = true; | 
| 347 | } | 
| 348 | } | 
| 349 | if (!gTypeFound) { | 
| 350 | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 351 | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 352 | } | 
| 353 |  | 
| 354 | } | 
| 355 | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 356 | groupColToGtype.resize(nGroupsInCol_); | 
| 357 | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 358 | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 359 | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 360 | jb != atomListCol.end(); ++jb) { | 
| 361 | int atom2 = (*jb); | 
| 362 | atid = identsCol[atom2]; | 
| 363 | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 364 | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 365 | } | 
| 366 | } | 
| 367 | bool gTypeFound = false; | 
| 368 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 369 | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 370 | groupColToGtype[cg2] = gt; | 
| 371 | gTypeFound = true; | 
| 372 | } | 
| 373 | } | 
| 374 | if (!gTypeFound) { | 
| 375 | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 376 | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 377 | } | 
| 378 | } | 
| 379 | #else | 
| 380 |  | 
| 381 | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 382 | groupToGtype.resize(nGroups_); | 
| 383 | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 384 | groupCutoff[cg1] = 0.0; | 
| 385 | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 386 | for (vector<int>::iterator ia = atomList.begin(); | 
| 387 | ia != atomList.end(); ++ia) { | 
| 388 | int atom1 = (*ia); | 
| 389 | atid = idents[atom1]; | 
| 390 | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 391 | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 392 | } | 
| 393 |  | 
| 394 | bool gTypeFound = false; | 
| 395 | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 396 | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 397 | groupToGtype[cg1] = gt; | 
| 398 | gTypeFound = true; | 
| 399 | } | 
| 400 | } | 
| 401 | if (!gTypeFound) { | 
| 402 | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 403 | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 404 | } | 
| 405 | } | 
| 406 | #endif | 
| 407 |  | 
| 408 | // Now we find the maximum group cutoff value present in the simulation | 
| 409 |  | 
| 410 | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 411 | gTypeCutoffs.end()); | 
| 412 |  | 
| 413 | #ifdef IS_MPI | 
| 414 | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 415 | MPI::MAX); | 
| 416 | #endif | 
| 417 |  | 
| 418 | RealType tradRcut = groupMax; | 
| 419 |  | 
| 420 | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 421 | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 422 | RealType thisRcut; | 
| 423 | switch(cutoffPolicy_) { | 
| 424 | case TRADITIONAL: | 
| 425 | thisRcut = tradRcut; | 
| 426 | break; | 
| 427 | case MIX: | 
| 428 | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 429 | break; | 
| 430 | case MAX: | 
| 431 | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 432 | break; | 
| 433 | default: | 
| 434 | sprintf(painCave.errMsg, | 
| 435 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 436 | "hit an unknown cutoff policy!\n"); | 
| 437 | painCave.severity = OPENMD_ERROR; | 
| 438 | painCave.isFatal = 1; | 
| 439 | simError(); | 
| 440 | break; | 
| 441 | } | 
| 442 |  | 
| 443 | pair<int,int> key = make_pair(i,j); | 
| 444 | gTypeCutoffMap[key].first = thisRcut; | 
| 445 | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 446 | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 447 | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 448 | // sanity check | 
| 449 |  | 
| 450 | if (userChoseCutoff_) { | 
| 451 | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 452 | sprintf(painCave.errMsg, | 
| 453 | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 454 | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 455 | painCave.severity = OPENMD_ERROR; | 
| 456 | painCave.isFatal = 1; | 
| 457 | simError(); | 
| 458 | } | 
| 459 | } | 
| 460 | } | 
| 461 | } | 
| 462 | } | 
| 463 |  | 
| 464 | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 465 | int i, j; | 
| 466 | #ifdef IS_MPI | 
| 467 | i = groupRowToGtype[cg1]; | 
| 468 | j = groupColToGtype[cg2]; | 
| 469 | #else | 
| 470 | i = groupToGtype[cg1]; | 
| 471 | j = groupToGtype[cg2]; | 
| 472 | #endif | 
| 473 | return gTypeCutoffMap[make_pair(i,j)]; | 
| 474 | } | 
| 475 |  | 
| 476 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 477 | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 478 | if (toposForAtom[atom1][j] == atom2) | 
| 479 | return topoDist[atom1][j]; | 
| 480 | } | 
| 481 | return 0; | 
| 482 | } | 
| 483 |  | 
| 484 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 485 | pairwisePot = 0.0; | 
| 486 | embeddingPot = 0.0; | 
| 487 |  | 
| 488 | #ifdef IS_MPI | 
| 489 | if (storageLayout_ & DataStorage::dslForce) { | 
| 490 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 491 | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 492 | } | 
| 493 |  | 
| 494 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 495 | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 496 | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 497 | } | 
| 498 |  | 
| 499 | fill(pot_row.begin(), pot_row.end(), | 
| 500 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 501 |  | 
| 502 | fill(pot_col.begin(), pot_col.end(), | 
| 503 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 504 |  | 
| 505 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 506 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 507 | 0.0); | 
| 508 | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 509 | 0.0); | 
| 510 | } | 
| 511 |  | 
| 512 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 513 | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 514 | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 515 | } | 
| 516 |  | 
| 517 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 518 | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 519 | 0.0); | 
| 520 | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 521 | 0.0); | 
| 522 | } | 
| 523 |  | 
| 524 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 525 | fill(atomRowData.functionalDerivative.begin(), | 
| 526 | atomRowData.functionalDerivative.end(), 0.0); | 
| 527 | fill(atomColData.functionalDerivative.begin(), | 
| 528 | atomColData.functionalDerivative.end(), 0.0); | 
| 529 | } | 
| 530 |  | 
| 531 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 532 | fill(atomRowData.skippedCharge.begin(), | 
| 533 | atomRowData.skippedCharge.end(), 0.0); | 
| 534 | fill(atomColData.skippedCharge.begin(), | 
| 535 | atomColData.skippedCharge.end(), 0.0); | 
| 536 | } | 
| 537 |  | 
| 538 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 539 | fill(atomRowData.flucQFrc.begin(), | 
| 540 | atomRowData.flucQFrc.end(), 0.0); | 
| 541 | fill(atomColData.flucQFrc.begin(), | 
| 542 | atomColData.flucQFrc.end(), 0.0); | 
| 543 | } | 
| 544 |  | 
| 545 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 546 | fill(atomRowData.electricField.begin(), | 
| 547 | atomRowData.electricField.end(), V3Zero); | 
| 548 | fill(atomColData.electricField.begin(), | 
| 549 | atomColData.electricField.end(), V3Zero); | 
| 550 | } | 
| 551 |  | 
| 552 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 553 | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 554 | 0.0); | 
| 555 | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 556 | 0.0); | 
| 557 | } | 
| 558 |  | 
| 559 | #endif | 
| 560 | // even in parallel, we need to zero out the local arrays: | 
| 561 |  | 
| 562 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 563 | fill(snap_->atomData.particlePot.begin(), | 
| 564 | snap_->atomData.particlePot.end(), 0.0); | 
| 565 | } | 
| 566 |  | 
| 567 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 568 | fill(snap_->atomData.density.begin(), | 
| 569 | snap_->atomData.density.end(), 0.0); | 
| 570 | } | 
| 571 |  | 
| 572 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 573 | fill(snap_->atomData.functional.begin(), | 
| 574 | snap_->atomData.functional.end(), 0.0); | 
| 575 | } | 
| 576 |  | 
| 577 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 578 | fill(snap_->atomData.functionalDerivative.begin(), | 
| 579 | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 580 | } | 
| 581 |  | 
| 582 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 583 | fill(snap_->atomData.skippedCharge.begin(), | 
| 584 | snap_->atomData.skippedCharge.end(), 0.0); | 
| 585 | } | 
| 586 |  | 
| 587 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 588 | fill(snap_->atomData.electricField.begin(), | 
| 589 | snap_->atomData.electricField.end(), V3Zero); | 
| 590 | } | 
| 591 | } | 
| 592 |  | 
| 593 |  | 
| 594 | void ForceMatrixDecomposition::distributeData()  { | 
| 595 | snap_ = sman_->getCurrentSnapshot(); | 
| 596 | storageLayout_ = sman_->getStorageLayout(); | 
| 597 | #ifdef IS_MPI | 
| 598 |  | 
| 599 | // gather up the atomic positions | 
| 600 | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 601 | atomRowData.position); | 
| 602 | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 603 | atomColData.position); | 
| 604 |  | 
| 605 | // gather up the cutoff group positions | 
| 606 |  | 
| 607 | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 608 | cgRowData.position); | 
| 609 |  | 
| 610 | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 611 | cgColData.position); | 
| 612 |  | 
| 613 |  | 
| 614 |  | 
| 615 | if (needVelocities_) { | 
| 616 | // gather up the atomic velocities | 
| 617 | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 618 | atomColData.velocity); | 
| 619 |  | 
| 620 | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 621 | cgColData.velocity); | 
| 622 | } | 
| 623 |  | 
| 624 |  | 
| 625 | // if needed, gather the atomic rotation matrices | 
| 626 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 627 | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 628 | atomRowData.aMat); | 
| 629 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 630 | atomColData.aMat); | 
| 631 | } | 
| 632 |  | 
| 633 | // if needed, gather the atomic eletrostatic frames | 
| 634 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 635 | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 636 | atomRowData.electroFrame); | 
| 637 | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 638 | atomColData.electroFrame); | 
| 639 | } | 
| 640 |  | 
| 641 | // if needed, gather the atomic fluctuating charge values | 
| 642 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 643 | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 644 | atomRowData.flucQPos); | 
| 645 | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 646 | atomColData.flucQPos); | 
| 647 | } | 
| 648 |  | 
| 649 | #endif | 
| 650 | } | 
| 651 |  | 
| 652 | /* collects information obtained during the pre-pair loop onto local | 
| 653 | * data structures. | 
| 654 | */ | 
| 655 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 656 | snap_ = sman_->getCurrentSnapshot(); | 
| 657 | storageLayout_ = sman_->getStorageLayout(); | 
| 658 | #ifdef IS_MPI | 
| 659 |  | 
| 660 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 661 |  | 
| 662 | AtomPlanRealRow->scatter(atomRowData.density, | 
| 663 | snap_->atomData.density); | 
| 664 |  | 
| 665 | int n = snap_->atomData.density.size(); | 
| 666 | vector<RealType> rho_tmp(n, 0.0); | 
| 667 | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 668 | for (int i = 0; i < n; i++) | 
| 669 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 670 | } | 
| 671 |  | 
| 672 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 673 |  | 
| 674 | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 675 | snap_->atomData.electricField); | 
| 676 |  | 
| 677 | int n = snap_->atomData.electricField.size(); | 
| 678 | vector<Vector3d> field_tmp(n, V3Zero); | 
| 679 | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 680 | for (int i = 0; i < n; i++) | 
| 681 | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 682 | } | 
| 683 | #endif | 
| 684 | } | 
| 685 |  | 
| 686 | /* | 
| 687 | * redistributes information obtained during the pre-pair loop out to | 
| 688 | * row and column-indexed data structures | 
| 689 | */ | 
| 690 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 691 | snap_ = sman_->getCurrentSnapshot(); | 
| 692 | storageLayout_ = sman_->getStorageLayout(); | 
| 693 | #ifdef IS_MPI | 
| 694 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 695 | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 696 | atomRowData.functional); | 
| 697 | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 698 | atomColData.functional); | 
| 699 | } | 
| 700 |  | 
| 701 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 702 | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 703 | atomRowData.functionalDerivative); | 
| 704 | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 705 | atomColData.functionalDerivative); | 
| 706 | } | 
| 707 | #endif | 
| 708 | } | 
| 709 |  | 
| 710 |  | 
| 711 | void ForceMatrixDecomposition::collectData() { | 
| 712 | snap_ = sman_->getCurrentSnapshot(); | 
| 713 | storageLayout_ = sman_->getStorageLayout(); | 
| 714 | #ifdef IS_MPI | 
| 715 | int n = snap_->atomData.force.size(); | 
| 716 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 717 |  | 
| 718 | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 719 | for (int i = 0; i < n; i++) { | 
| 720 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 721 | frc_tmp[i] = 0.0; | 
| 722 | } | 
| 723 |  | 
| 724 | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 725 | for (int i = 0; i < n; i++) { | 
| 726 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 727 | } | 
| 728 |  | 
| 729 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 730 |  | 
| 731 | int nt = snap_->atomData.torque.size(); | 
| 732 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 733 |  | 
| 734 | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 735 | for (int i = 0; i < nt; i++) { | 
| 736 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 737 | trq_tmp[i] = 0.0; | 
| 738 | } | 
| 739 |  | 
| 740 | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 741 | for (int i = 0; i < nt; i++) | 
| 742 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 743 | } | 
| 744 |  | 
| 745 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 746 |  | 
| 747 | int ns = snap_->atomData.skippedCharge.size(); | 
| 748 | vector<RealType> skch_tmp(ns, 0.0); | 
| 749 |  | 
| 750 | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 751 | for (int i = 0; i < ns; i++) { | 
| 752 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 753 | skch_tmp[i] = 0.0; | 
| 754 | } | 
| 755 |  | 
| 756 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 757 | for (int i = 0; i < ns; i++) | 
| 758 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 759 |  | 
| 760 | } | 
| 761 |  | 
| 762 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 763 |  | 
| 764 | int nq = snap_->atomData.flucQFrc.size(); | 
| 765 | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 766 |  | 
| 767 | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 768 | for (int i = 0; i < nq; i++) { | 
| 769 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 770 | fqfrc_tmp[i] = 0.0; | 
| 771 | } | 
| 772 |  | 
| 773 | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 774 | for (int i = 0; i < nq; i++) | 
| 775 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 776 |  | 
| 777 | } | 
| 778 |  | 
| 779 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 780 |  | 
| 781 | vector<potVec> pot_temp(nLocal_, | 
| 782 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 783 |  | 
| 784 | // scatter/gather pot_row into the members of my column | 
| 785 |  | 
| 786 | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 787 |  | 
| 788 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 789 | pairwisePot += pot_temp[ii]; | 
| 790 |  | 
| 791 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 792 | // This is the pairwise contribution to the particle pot.  The | 
| 793 | // embedding contribution is added in each of the low level | 
| 794 | // non-bonded routines.  In single processor, this is done in | 
| 795 | // unpackInteractionData, not in collectData. | 
| 796 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 797 | for (int i = 0; i < nLocal_; i++) { | 
| 798 | // factor of two is because the total potential terms are divided | 
| 799 | // by 2 in parallel due to row/ column scatter | 
| 800 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 801 | } | 
| 802 | } | 
| 803 | } | 
| 804 |  | 
| 805 | fill(pot_temp.begin(), pot_temp.end(), | 
| 806 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 807 |  | 
| 808 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 809 |  | 
| 810 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 811 | pairwisePot += pot_temp[ii]; | 
| 812 |  | 
| 813 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 814 | // This is the pairwise contribution to the particle pot.  The | 
| 815 | // embedding contribution is added in each of the low level | 
| 816 | // non-bonded routines.  In single processor, this is done in | 
| 817 | // unpackInteractionData, not in collectData. | 
| 818 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 819 | for (int i = 0; i < nLocal_; i++) { | 
| 820 | // factor of two is because the total potential terms are divided | 
| 821 | // by 2 in parallel due to row/ column scatter | 
| 822 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 823 | } | 
| 824 | } | 
| 825 | } | 
| 826 |  | 
| 827 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 828 | int npp = snap_->atomData.particlePot.size(); | 
| 829 | vector<RealType> ppot_temp(npp, 0.0); | 
| 830 |  | 
| 831 | // This is the direct or embedding contribution to the particle | 
| 832 | // pot. | 
| 833 |  | 
| 834 | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 835 | for (int i = 0; i < npp; i++) { | 
| 836 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 837 | } | 
| 838 |  | 
| 839 | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 840 |  | 
| 841 | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 842 | for (int i = 0; i < npp; i++) { | 
| 843 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 844 | } | 
| 845 | } | 
| 846 |  | 
| 847 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 848 | RealType ploc1 = pairwisePot[ii]; | 
| 849 | RealType ploc2 = 0.0; | 
| 850 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 851 | pairwisePot[ii] = ploc2; | 
| 852 | } | 
| 853 |  | 
| 854 | // Here be dragons. | 
| 855 | MPI::Intracomm col = colComm.getComm(); | 
| 856 |  | 
| 857 | col.Allreduce(MPI::IN_PLACE, | 
| 858 | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 859 | MPI::REALTYPE, MPI::SUM); | 
| 860 |  | 
| 861 |  | 
| 862 | #endif | 
| 863 |  | 
| 864 | } | 
| 865 |  | 
| 866 | /** | 
| 867 | * Collects information obtained during the post-pair (and embedding | 
| 868 | * functional) loops onto local data structures. | 
| 869 | */ | 
| 870 | void ForceMatrixDecomposition::collectSelfData() { | 
| 871 | snap_ = sman_->getCurrentSnapshot(); | 
| 872 | storageLayout_ = sman_->getStorageLayout(); | 
| 873 |  | 
| 874 | #ifdef IS_MPI | 
| 875 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 876 | RealType ploc1 = embeddingPot[ii]; | 
| 877 | RealType ploc2 = 0.0; | 
| 878 | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 879 | embeddingPot[ii] = ploc2; | 
| 880 | } | 
| 881 | #endif | 
| 882 |  | 
| 883 | } | 
| 884 |  | 
| 885 |  | 
| 886 |  | 
| 887 | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 888 | #ifdef IS_MPI | 
| 889 | return nAtomsInRow_; | 
| 890 | #else | 
| 891 | return nLocal_; | 
| 892 | #endif | 
| 893 | } | 
| 894 |  | 
| 895 | /** | 
| 896 | * returns the list of atoms belonging to this group. | 
| 897 | */ | 
| 898 | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 899 | #ifdef IS_MPI | 
| 900 | return groupListRow_[cg1]; | 
| 901 | #else | 
| 902 | return groupList_[cg1]; | 
| 903 | #endif | 
| 904 | } | 
| 905 |  | 
| 906 | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 907 | #ifdef IS_MPI | 
| 908 | return groupListCol_[cg2]; | 
| 909 | #else | 
| 910 | return groupList_[cg2]; | 
| 911 | #endif | 
| 912 | } | 
| 913 |  | 
| 914 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 915 | Vector3d d; | 
| 916 |  | 
| 917 | #ifdef IS_MPI | 
| 918 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 919 | #else | 
| 920 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 921 | #endif | 
| 922 |  | 
| 923 | snap_->wrapVector(d); | 
| 924 | return d; | 
| 925 | } | 
| 926 |  | 
| 927 | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 928 | #ifdef IS_MPI | 
| 929 | return cgColData.velocity[cg2]; | 
| 930 | #else | 
| 931 | return snap_->cgData.velocity[cg2]; | 
| 932 | #endif | 
| 933 | } | 
| 934 |  | 
| 935 | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 936 | #ifdef IS_MPI | 
| 937 | return atomColData.velocity[atom2]; | 
| 938 | #else | 
| 939 | return snap_->atomData.velocity[atom2]; | 
| 940 | #endif | 
| 941 | } | 
| 942 |  | 
| 943 |  | 
| 944 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 945 |  | 
| 946 | Vector3d d; | 
| 947 |  | 
| 948 | #ifdef IS_MPI | 
| 949 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 950 | #else | 
| 951 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 952 | #endif | 
| 953 |  | 
| 954 | snap_->wrapVector(d); | 
| 955 | return d; | 
| 956 | } | 
| 957 |  | 
| 958 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 959 | Vector3d d; | 
| 960 |  | 
| 961 | #ifdef IS_MPI | 
| 962 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 963 | #else | 
| 964 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 965 | #endif | 
| 966 |  | 
| 967 | snap_->wrapVector(d); | 
| 968 | return d; | 
| 969 | } | 
| 970 |  | 
| 971 | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 972 | #ifdef IS_MPI | 
| 973 | return massFactorsRow[atom1]; | 
| 974 | #else | 
| 975 | return massFactors[atom1]; | 
| 976 | #endif | 
| 977 | } | 
| 978 |  | 
| 979 | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 980 | #ifdef IS_MPI | 
| 981 | return massFactorsCol[atom2]; | 
| 982 | #else | 
| 983 | return massFactors[atom2]; | 
| 984 | #endif | 
| 985 |  | 
| 986 | } | 
| 987 |  | 
| 988 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 989 | Vector3d d; | 
| 990 |  | 
| 991 | #ifdef IS_MPI | 
| 992 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 993 | #else | 
| 994 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 995 | #endif | 
| 996 |  | 
| 997 | snap_->wrapVector(d); | 
| 998 | return d; | 
| 999 | } | 
| 1000 |  | 
| 1001 | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 1002 | return excludesForAtom[atom1]; | 
| 1003 | } | 
| 1004 |  | 
| 1005 | /** | 
| 1006 | * We need to exclude some overcounted interactions that result from | 
| 1007 | * the parallel decomposition. | 
| 1008 | */ | 
| 1009 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1010 | int unique_id_1, unique_id_2, group1, group2; | 
| 1011 |  | 
| 1012 | #ifdef IS_MPI | 
| 1013 | // in MPI, we have to look up the unique IDs for each atom | 
| 1014 | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1015 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1016 | group1 = cgRowToGlobal[cg1]; | 
| 1017 | group2 = cgColToGlobal[cg2]; | 
| 1018 | #else | 
| 1019 | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1020 | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1021 | group1 = cgLocalToGlobal[cg1]; | 
| 1022 | group2 = cgLocalToGlobal[cg2]; | 
| 1023 | #endif | 
| 1024 |  | 
| 1025 | if (unique_id_1 == unique_id_2) return true; | 
| 1026 |  | 
| 1027 | #ifdef IS_MPI | 
| 1028 | // this prevents us from doing the pair on multiple processors | 
| 1029 | if (unique_id_1 < unique_id_2) { | 
| 1030 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1031 | } else { | 
| 1032 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1033 | } | 
| 1034 | #endif | 
| 1035 |  | 
| 1036 | #ifndef IS_MPI | 
| 1037 | if (group1 == group2) { | 
| 1038 | if (unique_id_1 < unique_id_2) return true; | 
| 1039 | } | 
| 1040 | #endif | 
| 1041 |  | 
| 1042 | return false; | 
| 1043 | } | 
| 1044 |  | 
| 1045 | /** | 
| 1046 | * We need to handle the interactions for atoms who are involved in | 
| 1047 | * the same rigid body as well as some short range interactions | 
| 1048 | * (bonds, bends, torsions) differently from other interactions. | 
| 1049 | * We'll still visit the pairwise routines, but with a flag that | 
| 1050 | * tells those routines to exclude the pair from direct long range | 
| 1051 | * interactions.  Some indirect interactions (notably reaction | 
| 1052 | * field) must still be handled for these pairs. | 
| 1053 | */ | 
| 1054 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1055 |  | 
| 1056 | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1057 | // version, and to use local IDs in the non-MPI version: | 
| 1058 |  | 
| 1059 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1060 | i != excludesForAtom[atom1].end(); ++i) { | 
| 1061 | if ( (*i) == atom2 ) return true; | 
| 1062 | } | 
| 1063 |  | 
| 1064 | return false; | 
| 1065 | } | 
| 1066 |  | 
| 1067 |  | 
| 1068 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1069 | #ifdef IS_MPI | 
| 1070 | atomRowData.force[atom1] += fg; | 
| 1071 | #else | 
| 1072 | snap_->atomData.force[atom1] += fg; | 
| 1073 | #endif | 
| 1074 | } | 
| 1075 |  | 
| 1076 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 1077 | #ifdef IS_MPI | 
| 1078 | atomColData.force[atom2] += fg; | 
| 1079 | #else | 
| 1080 | snap_->atomData.force[atom2] += fg; | 
| 1081 | #endif | 
| 1082 | } | 
| 1083 |  | 
| 1084 | // filling interaction blocks with pointers | 
| 1085 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1086 | int atom1, int atom2) { | 
| 1087 |  | 
| 1088 | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1089 |  | 
| 1090 | #ifdef IS_MPI | 
| 1091 | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1092 | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1093 | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1094 |  | 
| 1095 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1096 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1097 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1098 | } | 
| 1099 |  | 
| 1100 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1101 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1102 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1103 | } | 
| 1104 |  | 
| 1105 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1106 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1107 | idat.t2 = &(atomColData.torque[atom2]); | 
| 1108 | } | 
| 1109 |  | 
| 1110 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1111 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1112 | idat.rho2 = &(atomColData.density[atom2]); | 
| 1113 | } | 
| 1114 |  | 
| 1115 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1116 | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1117 | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1118 | } | 
| 1119 |  | 
| 1120 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1121 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1122 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1123 | } | 
| 1124 |  | 
| 1125 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1126 | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1127 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1128 | } | 
| 1129 |  | 
| 1130 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1131 | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1132 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1133 | } | 
| 1134 |  | 
| 1135 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1136 | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1137 | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1138 | } | 
| 1139 |  | 
| 1140 | #else | 
| 1141 |  | 
| 1142 | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1143 |  | 
| 1144 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1145 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1146 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1147 | } | 
| 1148 |  | 
| 1149 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1150 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1151 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1152 | } | 
| 1153 |  | 
| 1154 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1155 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1156 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1157 | } | 
| 1158 |  | 
| 1159 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1160 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1161 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1162 | } | 
| 1163 |  | 
| 1164 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1165 | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1166 | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1167 | } | 
| 1168 |  | 
| 1169 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1170 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1171 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1172 | } | 
| 1173 |  | 
| 1174 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1175 | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1176 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1177 | } | 
| 1178 |  | 
| 1179 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1180 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1181 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1182 | } | 
| 1183 |  | 
| 1184 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1185 | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1186 | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1187 | } | 
| 1188 |  | 
| 1189 | #endif | 
| 1190 | } | 
| 1191 |  | 
| 1192 |  | 
| 1193 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1194 | #ifdef IS_MPI | 
| 1195 | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1196 | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1197 |  | 
| 1198 | atomRowData.force[atom1] += *(idat.f1); | 
| 1199 | atomColData.force[atom2] -= *(idat.f1); | 
| 1200 |  | 
| 1201 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1202 | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1203 | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1204 | } | 
| 1205 |  | 
| 1206 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1207 | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1208 | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1209 | } | 
| 1210 |  | 
| 1211 | #else | 
| 1212 | pairwisePot += *(idat.pot); | 
| 1213 |  | 
| 1214 | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1215 | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1216 |  | 
| 1217 | if (idat.doParticlePot) { | 
| 1218 | // This is the pairwise contribution to the particle pot.  The | 
| 1219 | // embedding contribution is added in each of the low level | 
| 1220 | // non-bonded routines.  In parallel, this calculation is done | 
| 1221 | // in collectData, not in unpackInteractionData. | 
| 1222 | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1223 | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1224 | } | 
| 1225 |  | 
| 1226 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1227 | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1228 | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1229 | } | 
| 1230 |  | 
| 1231 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1232 | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1233 | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1234 | } | 
| 1235 |  | 
| 1236 | #endif | 
| 1237 |  | 
| 1238 | } | 
| 1239 |  | 
| 1240 | /* | 
| 1241 | * buildNeighborList | 
| 1242 | * | 
| 1243 | * first element of pair is row-indexed CutoffGroup | 
| 1244 | * second element of pair is column-indexed CutoffGroup | 
| 1245 | */ | 
| 1246 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1247 |  | 
| 1248 | vector<pair<int, int> > neighborList; | 
| 1249 | groupCutoffs cuts; | 
| 1250 | bool doAllPairs = false; | 
| 1251 |  | 
| 1252 | #ifdef IS_MPI | 
| 1253 | cellListRow_.clear(); | 
| 1254 | cellListCol_.clear(); | 
| 1255 | #else | 
| 1256 | cellList_.clear(); | 
| 1257 | #endif | 
| 1258 |  | 
| 1259 | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1260 | RealType rl2 = rList_ * rList_; | 
| 1261 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1262 | Mat3x3d Hmat = snap_->getHmat(); | 
| 1263 | Vector3d Hx = Hmat.getColumn(0); | 
| 1264 | Vector3d Hy = Hmat.getColumn(1); | 
| 1265 | Vector3d Hz = Hmat.getColumn(2); | 
| 1266 |  | 
| 1267 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1268 | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1269 | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1270 |  | 
| 1271 | // handle small boxes where the cell offsets can end up repeating cells | 
| 1272 |  | 
| 1273 | if (nCells_.x() < 3) doAllPairs = true; | 
| 1274 | if (nCells_.y() < 3) doAllPairs = true; | 
| 1275 | if (nCells_.z() < 3) doAllPairs = true; | 
| 1276 |  | 
| 1277 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1278 | Vector3d rs, scaled, dr; | 
| 1279 | Vector3i whichCell; | 
| 1280 | int cellIndex; | 
| 1281 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1282 |  | 
| 1283 | #ifdef IS_MPI | 
| 1284 | cellListRow_.resize(nCtot); | 
| 1285 | cellListCol_.resize(nCtot); | 
| 1286 | #else | 
| 1287 | cellList_.resize(nCtot); | 
| 1288 | #endif | 
| 1289 |  | 
| 1290 | if (!doAllPairs) { | 
| 1291 | #ifdef IS_MPI | 
| 1292 |  | 
| 1293 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1294 | rs = cgRowData.position[i]; | 
| 1295 |  | 
| 1296 | // scaled positions relative to the box vectors | 
| 1297 | scaled = invHmat * rs; | 
| 1298 |  | 
| 1299 | // wrap the vector back into the unit box by subtracting integer box | 
| 1300 | // numbers | 
| 1301 | for (int j = 0; j < 3; j++) { | 
| 1302 | scaled[j] -= roundMe(scaled[j]); | 
| 1303 | scaled[j] += 0.5; | 
| 1304 | } | 
| 1305 |  | 
| 1306 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1307 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1308 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1309 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1310 |  | 
| 1311 | // find single index of this cell: | 
| 1312 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1313 |  | 
| 1314 | // add this cutoff group to the list of groups in this cell; | 
| 1315 | cellListRow_[cellIndex].push_back(i); | 
| 1316 | } | 
| 1317 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1318 | rs = cgColData.position[i]; | 
| 1319 |  | 
| 1320 | // scaled positions relative to the box vectors | 
| 1321 | scaled = invHmat * rs; | 
| 1322 |  | 
| 1323 | // wrap the vector back into the unit box by subtracting integer box | 
| 1324 | // numbers | 
| 1325 | for (int j = 0; j < 3; j++) { | 
| 1326 | scaled[j] -= roundMe(scaled[j]); | 
| 1327 | scaled[j] += 0.5; | 
| 1328 | } | 
| 1329 |  | 
| 1330 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1331 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1332 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1333 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1334 |  | 
| 1335 | // find single index of this cell: | 
| 1336 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1337 |  | 
| 1338 | // add this cutoff group to the list of groups in this cell; | 
| 1339 | cellListCol_[cellIndex].push_back(i); | 
| 1340 | } | 
| 1341 |  | 
| 1342 | #else | 
| 1343 | for (int i = 0; i < nGroups_; i++) { | 
| 1344 | rs = snap_->cgData.position[i]; | 
| 1345 |  | 
| 1346 | // scaled positions relative to the box vectors | 
| 1347 | scaled = invHmat * rs; | 
| 1348 |  | 
| 1349 | // wrap the vector back into the unit box by subtracting integer box | 
| 1350 | // numbers | 
| 1351 | for (int j = 0; j < 3; j++) { | 
| 1352 | scaled[j] -= roundMe(scaled[j]); | 
| 1353 | scaled[j] += 0.5; | 
| 1354 | } | 
| 1355 |  | 
| 1356 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1357 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1358 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1359 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1360 |  | 
| 1361 | // find single index of this cell: | 
| 1362 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1363 |  | 
| 1364 | // add this cutoff group to the list of groups in this cell; | 
| 1365 | cellList_[cellIndex].push_back(i); | 
| 1366 | } | 
| 1367 |  | 
| 1368 | #endif | 
| 1369 |  | 
| 1370 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1371 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1372 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1373 | Vector3i m1v(m1x, m1y, m1z); | 
| 1374 | int m1 = Vlinear(m1v, nCells_); | 
| 1375 |  | 
| 1376 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1377 | os != cellOffsets_.end(); ++os) { | 
| 1378 |  | 
| 1379 | Vector3i m2v = m1v + (*os); | 
| 1380 |  | 
| 1381 |  | 
| 1382 | if (m2v.x() >= nCells_.x()) { | 
| 1383 | m2v.x() = 0; | 
| 1384 | } else if (m2v.x() < 0) { | 
| 1385 | m2v.x() = nCells_.x() - 1; | 
| 1386 | } | 
| 1387 |  | 
| 1388 | if (m2v.y() >= nCells_.y()) { | 
| 1389 | m2v.y() = 0; | 
| 1390 | } else if (m2v.y() < 0) { | 
| 1391 | m2v.y() = nCells_.y() - 1; | 
| 1392 | } | 
| 1393 |  | 
| 1394 | if (m2v.z() >= nCells_.z()) { | 
| 1395 | m2v.z() = 0; | 
| 1396 | } else if (m2v.z() < 0) { | 
| 1397 | m2v.z() = nCells_.z() - 1; | 
| 1398 | } | 
| 1399 |  | 
| 1400 | int m2 = Vlinear (m2v, nCells_); | 
| 1401 |  | 
| 1402 | #ifdef IS_MPI | 
| 1403 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1404 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1405 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1406 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1407 |  | 
| 1408 | // In parallel, we need to visit *all* pairs of row | 
| 1409 | // & column indicies and will divide labor in the | 
| 1410 | // force evaluation later. | 
| 1411 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1412 | snap_->wrapVector(dr); | 
| 1413 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1414 | if (dr.lengthSquare() < cuts.third) { | 
| 1415 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1416 | } | 
| 1417 | } | 
| 1418 | } | 
| 1419 | #else | 
| 1420 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1421 | j1 != cellList_[m1].end(); ++j1) { | 
| 1422 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1423 | j2 != cellList_[m2].end(); ++j2) { | 
| 1424 |  | 
| 1425 | // Always do this if we're in different cells or if | 
| 1426 | // we're in the same cell and the global index of | 
| 1427 | // the j2 cutoff group is greater than or equal to | 
| 1428 | // the j1 cutoff group.  Note that Rappaport's code | 
| 1429 | // has a "less than" conditional here, but that | 
| 1430 | // deals with atom-by-atom computation.  OpenMD | 
| 1431 | // allows atoms within a single cutoff group to | 
| 1432 | // interact with each other. | 
| 1433 |  | 
| 1434 |  | 
| 1435 |  | 
| 1436 | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1437 |  | 
| 1438 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1439 | snap_->wrapVector(dr); | 
| 1440 | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1441 | if (dr.lengthSquare() < cuts.third) { | 
| 1442 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1443 | } | 
| 1444 | } | 
| 1445 | } | 
| 1446 | } | 
| 1447 | #endif | 
| 1448 | } | 
| 1449 | } | 
| 1450 | } | 
| 1451 | } | 
| 1452 | } else { | 
| 1453 | // branch to do all cutoff group pairs | 
| 1454 | #ifdef IS_MPI | 
| 1455 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1456 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1457 | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1458 | snap_->wrapVector(dr); | 
| 1459 | cuts = getGroupCutoffs( j1, j2 ); | 
| 1460 | if (dr.lengthSquare() < cuts.third) { | 
| 1461 | neighborList.push_back(make_pair(j1, j2)); | 
| 1462 | } | 
| 1463 | } | 
| 1464 | } | 
| 1465 | #else | 
| 1466 | // include all groups here. | 
| 1467 | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1468 | // include self group interactions j2 == j1 | 
| 1469 | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1470 | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1471 | snap_->wrapVector(dr); | 
| 1472 | cuts = getGroupCutoffs( j1, j2 ); | 
| 1473 | if (dr.lengthSquare() < cuts.third) { | 
| 1474 | neighborList.push_back(make_pair(j1, j2)); | 
| 1475 | } | 
| 1476 | } | 
| 1477 | } | 
| 1478 | #endif | 
| 1479 | } | 
| 1480 |  | 
| 1481 | // save the local cutoff group positions for the check that is | 
| 1482 | // done on each loop: | 
| 1483 | saved_CG_positions_.clear(); | 
| 1484 | for (int i = 0; i < nGroups_; i++) | 
| 1485 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1486 |  | 
| 1487 | return neighborList; | 
| 1488 | } | 
| 1489 | } //end namespace OpenMD |