| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 50 |
|
|
| 51 |
|
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
| 52 |
|
|
| 53 |
< |
// In a parallel computation, row and colum scans must visit all |
| 54 |
< |
// surrounding cells (not just the 14 upper triangular blocks that |
| 55 |
< |
// are used when the processor can see all pairs) |
| 56 |
< |
#ifdef IS_MPI |
| 53 |
> |
// Row and colum scans must visit all surrounding cells |
| 54 |
|
cellOffsets_.clear(); |
| 55 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
| 56 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
| 79 |
|
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
| 80 |
|
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
| 81 |
|
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
| 85 |
– |
#endif |
| 82 |
|
} |
| 83 |
|
|
| 84 |
|
|
| 91 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 92 |
|
ff_ = info_->getForceField(); |
| 93 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 94 |
< |
|
| 94 |
> |
|
| 95 |
|
nGroups_ = info_->getNLocalCutoffGroups(); |
| 96 |
|
// gather the information for atomtype IDs (atids): |
| 97 |
|
idents = info_->getIdentArray(); |
| 98 |
+ |
regions = info_->getRegions(); |
| 99 |
|
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
| 100 |
|
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
| 101 |
|
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
| 106 |
|
PairList* oneTwo = info_->getOneTwoInteractions(); |
| 107 |
|
PairList* oneThree = info_->getOneThreeInteractions(); |
| 108 |
|
PairList* oneFour = info_->getOneFourInteractions(); |
| 109 |
< |
|
| 109 |
> |
|
| 110 |
> |
if (needVelocities_) |
| 111 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition | |
| 112 |
> |
DataStorage::dslVelocity); |
| 113 |
> |
else |
| 114 |
> |
snap_->cgData.setStorageLayout(DataStorage::dslPosition); |
| 115 |
> |
|
| 116 |
|
#ifdef IS_MPI |
| 117 |
|
|
| 118 |
< |
MPI::Intracomm row = rowComm.getComm(); |
| 119 |
< |
MPI::Intracomm col = colComm.getComm(); |
| 118 |
> |
MPI_Comm row = rowComm.getComm(); |
| 119 |
> |
MPI_Comm col = colComm.getComm(); |
| 120 |
|
|
| 121 |
|
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
| 122 |
|
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
| 148 |
|
cgRowData.resize(nGroupsInRow_); |
| 149 |
|
cgRowData.setStorageLayout(DataStorage::dslPosition); |
| 150 |
|
cgColData.resize(nGroupsInCol_); |
| 151 |
< |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 152 |
< |
|
| 151 |
> |
if (needVelocities_) |
| 152 |
> |
// we only need column velocities if we need them. |
| 153 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition | |
| 154 |
> |
DataStorage::dslVelocity); |
| 155 |
> |
else |
| 156 |
> |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 157 |
> |
|
| 158 |
|
identsRow.resize(nAtomsInRow_); |
| 159 |
|
identsCol.resize(nAtomsInCol_); |
| 160 |
|
|
| 161 |
|
AtomPlanIntRow->gather(idents, identsRow); |
| 162 |
|
AtomPlanIntColumn->gather(idents, identsCol); |
| 163 |
+ |
|
| 164 |
+ |
regionsRow.resize(nAtomsInRow_); |
| 165 |
+ |
regionsCol.resize(nAtomsInCol_); |
| 166 |
|
|
| 167 |
+ |
AtomPlanIntRow->gather(regions, regionsRow); |
| 168 |
+ |
AtomPlanIntColumn->gather(regions, regionsCol); |
| 169 |
+ |
|
| 170 |
|
// allocate memory for the parallel objects |
| 171 |
|
atypesRow.resize(nAtomsInRow_); |
| 172 |
|
atypesCol.resize(nAtomsInCol_); |
| 179 |
|
pot_row.resize(nAtomsInRow_); |
| 180 |
|
pot_col.resize(nAtomsInCol_); |
| 181 |
|
|
| 182 |
+ |
expot_row.resize(nAtomsInRow_); |
| 183 |
+ |
expot_col.resize(nAtomsInCol_); |
| 184 |
+ |
|
| 185 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 186 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 187 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 302 |
|
groupList_[i].push_back(j); |
| 303 |
|
} |
| 304 |
|
} |
| 305 |
< |
} |
| 289 |
< |
|
| 290 |
< |
|
| 291 |
< |
createGtypeCutoffMap(); |
| 292 |
< |
|
| 305 |
> |
} |
| 306 |
|
} |
| 294 |
– |
|
| 295 |
– |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
| 307 |
|
|
| 308 |
< |
RealType tol = 1e-6; |
| 309 |
< |
largestRcut_ = 0.0; |
| 299 |
< |
RealType rc; |
| 300 |
< |
int atid; |
| 301 |
< |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
| 302 |
< |
|
| 303 |
< |
map<int, RealType> atypeCutoff; |
| 304 |
< |
|
| 305 |
< |
for (set<AtomType*>::iterator at = atypes.begin(); |
| 306 |
< |
at != atypes.end(); ++at){ |
| 307 |
< |
atid = (*at)->getIdent(); |
| 308 |
< |
if (userChoseCutoff_) |
| 309 |
< |
atypeCutoff[atid] = userCutoff_; |
| 310 |
< |
else |
| 311 |
< |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
| 312 |
< |
} |
| 313 |
< |
|
| 314 |
< |
vector<RealType> gTypeCutoffs; |
| 315 |
< |
// first we do a single loop over the cutoff groups to find the |
| 316 |
< |
// largest cutoff for any atypes present in this group. |
| 317 |
< |
#ifdef IS_MPI |
| 318 |
< |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
| 319 |
< |
groupRowToGtype.resize(nGroupsInRow_); |
| 320 |
< |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { |
| 321 |
< |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
| 322 |
< |
for (vector<int>::iterator ia = atomListRow.begin(); |
| 323 |
< |
ia != atomListRow.end(); ++ia) { |
| 324 |
< |
int atom1 = (*ia); |
| 325 |
< |
atid = identsRow[atom1]; |
| 326 |
< |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) { |
| 327 |
< |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
| 328 |
< |
} |
| 329 |
< |
} |
| 330 |
< |
|
| 331 |
< |
bool gTypeFound = false; |
| 332 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 333 |
< |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { |
| 334 |
< |
groupRowToGtype[cg1] = gt; |
| 335 |
< |
gTypeFound = true; |
| 336 |
< |
} |
| 337 |
< |
} |
| 338 |
< |
if (!gTypeFound) { |
| 339 |
< |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
| 340 |
< |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
| 341 |
< |
} |
| 342 |
< |
|
| 343 |
< |
} |
| 344 |
< |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
| 345 |
< |
groupColToGtype.resize(nGroupsInCol_); |
| 346 |
< |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { |
| 347 |
< |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
| 348 |
< |
for (vector<int>::iterator jb = atomListCol.begin(); |
| 349 |
< |
jb != atomListCol.end(); ++jb) { |
| 350 |
< |
int atom2 = (*jb); |
| 351 |
< |
atid = identsCol[atom2]; |
| 352 |
< |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) { |
| 353 |
< |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
| 354 |
< |
} |
| 355 |
< |
} |
| 356 |
< |
bool gTypeFound = false; |
| 357 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 358 |
< |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { |
| 359 |
< |
groupColToGtype[cg2] = gt; |
| 360 |
< |
gTypeFound = true; |
| 361 |
< |
} |
| 362 |
< |
} |
| 363 |
< |
if (!gTypeFound) { |
| 364 |
< |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
| 365 |
< |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
| 366 |
< |
} |
| 367 |
< |
} |
| 368 |
< |
#else |
| 369 |
< |
|
| 370 |
< |
vector<RealType> groupCutoff(nGroups_, 0.0); |
| 371 |
< |
groupToGtype.resize(nGroups_); |
| 372 |
< |
for (int cg1 = 0; cg1 < nGroups_; cg1++) { |
| 373 |
< |
groupCutoff[cg1] = 0.0; |
| 374 |
< |
vector<int> atomList = getAtomsInGroupRow(cg1); |
| 375 |
< |
for (vector<int>::iterator ia = atomList.begin(); |
| 376 |
< |
ia != atomList.end(); ++ia) { |
| 377 |
< |
int atom1 = (*ia); |
| 378 |
< |
atid = idents[atom1]; |
| 379 |
< |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
| 380 |
< |
groupCutoff[cg1] = atypeCutoff[atid]; |
| 381 |
< |
} |
| 382 |
< |
|
| 383 |
< |
bool gTypeFound = false; |
| 384 |
< |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { |
| 385 |
< |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { |
| 386 |
< |
groupToGtype[cg1] = gt; |
| 387 |
< |
gTypeFound = true; |
| 388 |
< |
} |
| 389 |
< |
} |
| 390 |
< |
if (!gTypeFound) { |
| 391 |
< |
gTypeCutoffs.push_back( groupCutoff[cg1] ); |
| 392 |
< |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
| 393 |
< |
} |
| 394 |
< |
} |
| 395 |
< |
#endif |
| 396 |
< |
|
| 397 |
< |
// Now we find the maximum group cutoff value present in the simulation |
| 398 |
< |
|
| 399 |
< |
RealType groupMax = *max_element(gTypeCutoffs.begin(), |
| 400 |
< |
gTypeCutoffs.end()); |
| 401 |
< |
|
| 402 |
< |
#ifdef IS_MPI |
| 403 |
< |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
| 404 |
< |
MPI::MAX); |
| 405 |
< |
#endif |
| 406 |
< |
|
| 407 |
< |
RealType tradRcut = groupMax; |
| 408 |
< |
|
| 409 |
< |
for (int i = 0; i < gTypeCutoffs.size(); i++) { |
| 410 |
< |
for (int j = 0; j < gTypeCutoffs.size(); j++) { |
| 411 |
< |
RealType thisRcut; |
| 412 |
< |
switch(cutoffPolicy_) { |
| 413 |
< |
case TRADITIONAL: |
| 414 |
< |
thisRcut = tradRcut; |
| 415 |
< |
break; |
| 416 |
< |
case MIX: |
| 417 |
< |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
| 418 |
< |
break; |
| 419 |
< |
case MAX: |
| 420 |
< |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
| 421 |
< |
break; |
| 422 |
< |
default: |
| 423 |
< |
sprintf(painCave.errMsg, |
| 424 |
< |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
| 425 |
< |
"hit an unknown cutoff policy!\n"); |
| 426 |
< |
painCave.severity = OPENMD_ERROR; |
| 427 |
< |
painCave.isFatal = 1; |
| 428 |
< |
simError(); |
| 429 |
< |
break; |
| 430 |
< |
} |
| 431 |
< |
|
| 432 |
< |
pair<int,int> key = make_pair(i,j); |
| 433 |
< |
gTypeCutoffMap[key].first = thisRcut; |
| 434 |
< |
if (thisRcut > largestRcut_) largestRcut_ = thisRcut; |
| 435 |
< |
gTypeCutoffMap[key].second = thisRcut*thisRcut; |
| 436 |
< |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
| 437 |
< |
// sanity check |
| 438 |
< |
|
| 439 |
< |
if (userChoseCutoff_) { |
| 440 |
< |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { |
| 441 |
< |
sprintf(painCave.errMsg, |
| 442 |
< |
"ForceMatrixDecomposition::createGtypeCutoffMap " |
| 443 |
< |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
| 444 |
< |
painCave.severity = OPENMD_ERROR; |
| 445 |
< |
painCave.isFatal = 1; |
| 446 |
< |
simError(); |
| 447 |
< |
} |
| 448 |
< |
} |
| 449 |
< |
} |
| 450 |
< |
} |
| 451 |
< |
} |
| 452 |
< |
|
| 453 |
< |
|
| 454 |
< |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
| 455 |
< |
int i, j; |
| 456 |
< |
#ifdef IS_MPI |
| 457 |
< |
i = groupRowToGtype[cg1]; |
| 458 |
< |
j = groupColToGtype[cg2]; |
| 459 |
< |
#else |
| 460 |
< |
i = groupToGtype[cg1]; |
| 461 |
< |
j = groupToGtype[cg2]; |
| 462 |
< |
#endif |
| 463 |
< |
return gTypeCutoffMap[make_pair(i,j)]; |
| 464 |
< |
} |
| 465 |
< |
|
| 466 |
< |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 467 |
< |
for (int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 308 |
> |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
| 309 |
> |
for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { |
| 310 |
|
if (toposForAtom[atom1][j] == atom2) |
| 311 |
|
return topoDist[atom1][j]; |
| 312 |
< |
} |
| 312 |
> |
} |
| 313 |
|
return 0; |
| 314 |
|
} |
| 315 |
|
|
| 316 |
|
void ForceMatrixDecomposition::zeroWorkArrays() { |
| 317 |
|
pairwisePot = 0.0; |
| 318 |
|
embeddingPot = 0.0; |
| 319 |
+ |
excludedPot = 0.0; |
| 320 |
+ |
excludedSelfPot = 0.0; |
| 321 |
|
|
| 322 |
|
#ifdef IS_MPI |
| 323 |
|
if (storageLayout_ & DataStorage::dslForce) { |
| 336 |
|
fill(pot_col.begin(), pot_col.end(), |
| 337 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 338 |
|
|
| 339 |
+ |
fill(expot_row.begin(), expot_row.end(), |
| 340 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 341 |
+ |
|
| 342 |
+ |
fill(expot_col.begin(), expot_col.end(), |
| 343 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 344 |
+ |
|
| 345 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 346 |
|
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
| 347 |
|
0.0); |
| 375 |
|
atomColData.skippedCharge.end(), 0.0); |
| 376 |
|
} |
| 377 |
|
|
| 378 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 379 |
+ |
fill(atomRowData.flucQFrc.begin(), |
| 380 |
+ |
atomRowData.flucQFrc.end(), 0.0); |
| 381 |
+ |
fill(atomColData.flucQFrc.begin(), |
| 382 |
+ |
atomColData.flucQFrc.end(), 0.0); |
| 383 |
+ |
} |
| 384 |
+ |
|
| 385 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 386 |
+ |
fill(atomRowData.electricField.begin(), |
| 387 |
+ |
atomRowData.electricField.end(), V3Zero); |
| 388 |
+ |
fill(atomColData.electricField.begin(), |
| 389 |
+ |
atomColData.electricField.end(), V3Zero); |
| 390 |
+ |
} |
| 391 |
+ |
|
| 392 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
| 393 |
+ |
fill(atomRowData.sitePotential.begin(), |
| 394 |
+ |
atomRowData.sitePotential.end(), 0.0); |
| 395 |
+ |
fill(atomColData.sitePotential.begin(), |
| 396 |
+ |
atomColData.sitePotential.end(), 0.0); |
| 397 |
+ |
} |
| 398 |
+ |
|
| 399 |
|
#endif |
| 400 |
|
// even in parallel, we need to zero out the local arrays: |
| 401 |
|
|
| 408 |
|
fill(snap_->atomData.density.begin(), |
| 409 |
|
snap_->atomData.density.end(), 0.0); |
| 410 |
|
} |
| 411 |
+ |
|
| 412 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 413 |
|
fill(snap_->atomData.functional.begin(), |
| 414 |
|
snap_->atomData.functional.end(), 0.0); |
| 415 |
|
} |
| 416 |
+ |
|
| 417 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 418 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
| 419 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
| 420 |
|
} |
| 421 |
+ |
|
| 422 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 423 |
|
fill(snap_->atomData.skippedCharge.begin(), |
| 424 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
| 425 |
|
} |
| 426 |
< |
|
| 426 |
> |
|
| 427 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 428 |
> |
fill(snap_->atomData.electricField.begin(), |
| 429 |
> |
snap_->atomData.electricField.end(), V3Zero); |
| 430 |
> |
} |
| 431 |
> |
if (storageLayout_ & DataStorage::dslSitePotential) { |
| 432 |
> |
fill(snap_->atomData.sitePotential.begin(), |
| 433 |
> |
snap_->atomData.sitePotential.end(), 0.0); |
| 434 |
> |
} |
| 435 |
|
} |
| 436 |
|
|
| 437 |
|
|
| 438 |
|
void ForceMatrixDecomposition::distributeData() { |
| 439 |
+ |
|
| 440 |
+ |
#ifdef IS_MPI |
| 441 |
+ |
|
| 442 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 443 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 559 |
– |
#ifdef IS_MPI |
| 444 |
|
|
| 445 |
+ |
bool needsCG = true; |
| 446 |
+ |
if(info_->getNCutoffGroups() != info_->getNAtoms()) |
| 447 |
+ |
needsCG = false; |
| 448 |
+ |
|
| 449 |
|
// gather up the atomic positions |
| 450 |
|
AtomPlanVectorRow->gather(snap_->atomData.position, |
| 451 |
|
atomRowData.position); |
| 454 |
|
|
| 455 |
|
// gather up the cutoff group positions |
| 456 |
|
|
| 457 |
< |
cgPlanVectorRow->gather(snap_->cgData.position, |
| 458 |
< |
cgRowData.position); |
| 457 |
> |
if (needsCG) { |
| 458 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
| 459 |
> |
cgRowData.position); |
| 460 |
> |
|
| 461 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 462 |
> |
cgColData.position); |
| 463 |
> |
} |
| 464 |
|
|
| 572 |
– |
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 573 |
– |
cgColData.position); |
| 465 |
|
|
| 466 |
+ |
if (needVelocities_) { |
| 467 |
+ |
// gather up the atomic velocities |
| 468 |
+ |
AtomPlanVectorColumn->gather(snap_->atomData.velocity, |
| 469 |
+ |
atomColData.velocity); |
| 470 |
+ |
|
| 471 |
+ |
if (needsCG) { |
| 472 |
+ |
cgPlanVectorColumn->gather(snap_->cgData.velocity, |
| 473 |
+ |
cgColData.velocity); |
| 474 |
+ |
} |
| 475 |
+ |
} |
| 476 |
+ |
|
| 477 |
|
|
| 478 |
|
// if needed, gather the atomic rotation matrices |
| 479 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 482 |
|
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 483 |
|
atomColData.aMat); |
| 484 |
|
} |
| 485 |
< |
|
| 486 |
< |
// if needed, gather the atomic eletrostatic frames |
| 487 |
< |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 488 |
< |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
| 489 |
< |
atomRowData.electroFrame); |
| 490 |
< |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
| 491 |
< |
atomColData.electroFrame); |
| 485 |
> |
|
| 486 |
> |
// if needed, gather the atomic eletrostatic information |
| 487 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 488 |
> |
AtomPlanVectorRow->gather(snap_->atomData.dipole, |
| 489 |
> |
atomRowData.dipole); |
| 490 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.dipole, |
| 491 |
> |
atomColData.dipole); |
| 492 |
|
} |
| 493 |
|
|
| 494 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 495 |
+ |
AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, |
| 496 |
+ |
atomRowData.quadrupole); |
| 497 |
+ |
AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, |
| 498 |
+ |
atomColData.quadrupole); |
| 499 |
+ |
} |
| 500 |
+ |
|
| 501 |
+ |
// if needed, gather the atomic fluctuating charge values |
| 502 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 503 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 504 |
+ |
atomRowData.flucQPos); |
| 505 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
| 506 |
+ |
atomColData.flucQPos); |
| 507 |
+ |
} |
| 508 |
+ |
|
| 509 |
|
#endif |
| 510 |
|
} |
| 511 |
|
|
| 528 |
|
for (int i = 0; i < n; i++) |
| 529 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 530 |
|
} |
| 531 |
+ |
|
| 532 |
+ |
// this isn't necessary if we don't have polarizable atoms, but |
| 533 |
+ |
// we'll leave it here for now. |
| 534 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 535 |
+ |
|
| 536 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 537 |
+ |
snap_->atomData.electricField); |
| 538 |
+ |
|
| 539 |
+ |
int n = snap_->atomData.electricField.size(); |
| 540 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
| 541 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, |
| 542 |
+ |
field_tmp); |
| 543 |
+ |
for (int i = 0; i < n; i++) |
| 544 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
| 545 |
+ |
} |
| 546 |
|
#endif |
| 547 |
|
} |
| 548 |
|
|
| 622 |
|
|
| 623 |
|
} |
| 624 |
|
|
| 625 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 626 |
+ |
|
| 627 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
| 628 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
| 629 |
+ |
|
| 630 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
| 631 |
+ |
for (int i = 0; i < nq; i++) { |
| 632 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 633 |
+ |
fqfrc_tmp[i] = 0.0; |
| 634 |
+ |
} |
| 635 |
+ |
|
| 636 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
| 637 |
+ |
for (int i = 0; i < nq; i++) |
| 638 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 639 |
+ |
|
| 640 |
+ |
} |
| 641 |
+ |
|
| 642 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 643 |
+ |
|
| 644 |
+ |
int nef = snap_->atomData.electricField.size(); |
| 645 |
+ |
vector<Vector3d> efield_tmp(nef, V3Zero); |
| 646 |
+ |
|
| 647 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); |
| 648 |
+ |
for (int i = 0; i < nef; i++) { |
| 649 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 650 |
+ |
efield_tmp[i] = 0.0; |
| 651 |
+ |
} |
| 652 |
+ |
|
| 653 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); |
| 654 |
+ |
for (int i = 0; i < nef; i++) |
| 655 |
+ |
snap_->atomData.electricField[i] += efield_tmp[i]; |
| 656 |
+ |
} |
| 657 |
+ |
|
| 658 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
| 659 |
+ |
|
| 660 |
+ |
int nsp = snap_->atomData.sitePotential.size(); |
| 661 |
+ |
vector<RealType> sp_tmp(nsp, 0.0); |
| 662 |
+ |
|
| 663 |
+ |
AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); |
| 664 |
+ |
for (int i = 0; i < nsp; i++) { |
| 665 |
+ |
snap_->atomData.sitePotential[i] += sp_tmp[i]; |
| 666 |
+ |
sp_tmp[i] = 0.0; |
| 667 |
+ |
} |
| 668 |
+ |
|
| 669 |
+ |
AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); |
| 670 |
+ |
for (int i = 0; i < nsp; i++) |
| 671 |
+ |
snap_->atomData.sitePotential[i] += sp_tmp[i]; |
| 672 |
+ |
} |
| 673 |
+ |
|
| 674 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 675 |
|
|
| 676 |
|
vector<potVec> pot_temp(nLocal_, |
| 677 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 678 |
+ |
vector<potVec> expot_temp(nLocal_, |
| 679 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 680 |
|
|
| 681 |
|
// scatter/gather pot_row into the members of my column |
| 682 |
|
|
| 683 |
|
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 684 |
+ |
AtomPlanPotRow->scatter(expot_row, expot_temp); |
| 685 |
|
|
| 686 |
< |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 686 |
> |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 687 |
|
pairwisePot += pot_temp[ii]; |
| 688 |
< |
|
| 688 |
> |
|
| 689 |
> |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 690 |
> |
excludedPot += expot_temp[ii]; |
| 691 |
> |
|
| 692 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 693 |
> |
// This is the pairwise contribution to the particle pot. The |
| 694 |
> |
// embedding contribution is added in each of the low level |
| 695 |
> |
// non-bonded routines. In single processor, this is done in |
| 696 |
> |
// unpackInteractionData, not in collectData. |
| 697 |
> |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 698 |
> |
for (int i = 0; i < nLocal_; i++) { |
| 699 |
> |
// factor of two is because the total potential terms are divided |
| 700 |
> |
// by 2 in parallel due to row/ column scatter |
| 701 |
> |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 702 |
> |
} |
| 703 |
> |
} |
| 704 |
> |
} |
| 705 |
> |
|
| 706 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 707 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 708 |
+ |
fill(expot_temp.begin(), expot_temp.end(), |
| 709 |
+ |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 710 |
|
|
| 711 |
|
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 712 |
+ |
AtomPlanPotColumn->scatter(expot_col, expot_temp); |
| 713 |
|
|
| 714 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 715 |
|
pairwisePot += pot_temp[ii]; |
| 716 |
+ |
|
| 717 |
+ |
for (int ii = 0; ii < expot_temp.size(); ii++ ) |
| 718 |
+ |
excludedPot += expot_temp[ii]; |
| 719 |
+ |
|
| 720 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 721 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 722 |
+ |
// embedding contribution is added in each of the low level |
| 723 |
+ |
// non-bonded routines. In single processor, this is done in |
| 724 |
+ |
// unpackInteractionData, not in collectData. |
| 725 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 726 |
+ |
for (int i = 0; i < nLocal_; i++) { |
| 727 |
+ |
// factor of two is because the total potential terms are divided |
| 728 |
+ |
// by 2 in parallel due to row/ column scatter |
| 729 |
+ |
snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); |
| 730 |
+ |
} |
| 731 |
+ |
} |
| 732 |
+ |
} |
| 733 |
|
|
| 734 |
+ |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 735 |
+ |
int npp = snap_->atomData.particlePot.size(); |
| 736 |
+ |
vector<RealType> ppot_temp(npp, 0.0); |
| 737 |
+ |
|
| 738 |
+ |
// This is the direct or embedding contribution to the particle |
| 739 |
+ |
// pot. |
| 740 |
+ |
|
| 741 |
+ |
AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); |
| 742 |
+ |
for (int i = 0; i < npp; i++) { |
| 743 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 744 |
+ |
} |
| 745 |
+ |
|
| 746 |
+ |
fill(ppot_temp.begin(), ppot_temp.end(), 0.0); |
| 747 |
+ |
|
| 748 |
+ |
AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); |
| 749 |
+ |
for (int i = 0; i < npp; i++) { |
| 750 |
+ |
snap_->atomData.particlePot[i] += ppot_temp[i]; |
| 751 |
+ |
} |
| 752 |
+ |
} |
| 753 |
+ |
|
| 754 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 755 |
|
RealType ploc1 = pairwisePot[ii]; |
| 756 |
|
RealType ploc2 = 0.0; |
| 757 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 757 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 758 |
|
pairwisePot[ii] = ploc2; |
| 759 |
|
} |
| 760 |
|
|
| 761 |
|
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 762 |
< |
RealType ploc1 = embeddingPot[ii]; |
| 762 |
> |
RealType ploc1 = excludedPot[ii]; |
| 763 |
|
RealType ploc2 = 0.0; |
| 764 |
< |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 765 |
< |
embeddingPot[ii] = ploc2; |
| 764 |
> |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 765 |
> |
excludedPot[ii] = ploc2; |
| 766 |
|
} |
| 767 |
|
|
| 768 |
+ |
// Here be dragons. |
| 769 |
+ |
MPI_Comm col = colComm.getComm(); |
| 770 |
+ |
|
| 771 |
+ |
MPI_Allreduce(MPI_IN_PLACE, |
| 772 |
+ |
&snap_->frameData.conductiveHeatFlux[0], 3, |
| 773 |
+ |
MPI_REALTYPE, MPI_SUM, col); |
| 774 |
+ |
|
| 775 |
+ |
|
| 776 |
|
#endif |
| 777 |
|
|
| 778 |
|
} |
| 779 |
|
|
| 780 |
< |
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 780 |
> |
/** |
| 781 |
> |
* Collects information obtained during the post-pair (and embedding |
| 782 |
> |
* functional) loops onto local data structures. |
| 783 |
> |
*/ |
| 784 |
> |
void ForceMatrixDecomposition::collectSelfData() { |
| 785 |
> |
snap_ = sman_->getCurrentSnapshot(); |
| 786 |
> |
storageLayout_ = sman_->getStorageLayout(); |
| 787 |
> |
|
| 788 |
|
#ifdef IS_MPI |
| 789 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 790 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 791 |
+ |
RealType ploc2 = 0.0; |
| 792 |
+ |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 793 |
+ |
embeddingPot[ii] = ploc2; |
| 794 |
+ |
} |
| 795 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 796 |
+ |
RealType ploc1 = excludedSelfPot[ii]; |
| 797 |
+ |
RealType ploc2 = 0.0; |
| 798 |
+ |
MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 799 |
+ |
excludedSelfPot[ii] = ploc2; |
| 800 |
+ |
} |
| 801 |
+ |
#endif |
| 802 |
+ |
|
| 803 |
+ |
} |
| 804 |
+ |
|
| 805 |
+ |
|
| 806 |
+ |
|
| 807 |
+ |
int& ForceMatrixDecomposition::getNAtomsInRow() { |
| 808 |
+ |
#ifdef IS_MPI |
| 809 |
|
return nAtomsInRow_; |
| 810 |
|
#else |
| 811 |
|
return nLocal_; |
| 815 |
|
/** |
| 816 |
|
* returns the list of atoms belonging to this group. |
| 817 |
|
*/ |
| 818 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
| 818 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ |
| 819 |
|
#ifdef IS_MPI |
| 820 |
|
return groupListRow_[cg1]; |
| 821 |
|
#else |
| 823 |
|
#endif |
| 824 |
|
} |
| 825 |
|
|
| 826 |
< |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
| 826 |
> |
vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ |
| 827 |
|
#ifdef IS_MPI |
| 828 |
|
return groupListCol_[cg2]; |
| 829 |
|
#else |
| 840 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
| 841 |
|
#endif |
| 842 |
|
|
| 843 |
< |
snap_->wrapVector(d); |
| 843 |
> |
if (usePeriodicBoundaryConditions_) { |
| 844 |
> |
snap_->wrapVector(d); |
| 845 |
> |
} |
| 846 |
|
return d; |
| 847 |
|
} |
| 848 |
|
|
| 849 |
+ |
Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ |
| 850 |
+ |
#ifdef IS_MPI |
| 851 |
+ |
return cgColData.velocity[cg2]; |
| 852 |
+ |
#else |
| 853 |
+ |
return snap_->cgData.velocity[cg2]; |
| 854 |
+ |
#endif |
| 855 |
+ |
} |
| 856 |
|
|
| 857 |
+ |
Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ |
| 858 |
+ |
#ifdef IS_MPI |
| 859 |
+ |
return atomColData.velocity[atom2]; |
| 860 |
+ |
#else |
| 861 |
+ |
return snap_->atomData.velocity[atom2]; |
| 862 |
+ |
#endif |
| 863 |
+ |
} |
| 864 |
+ |
|
| 865 |
+ |
|
| 866 |
|
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
| 867 |
|
|
| 868 |
|
Vector3d d; |
| 872 |
|
#else |
| 873 |
|
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
| 874 |
|
#endif |
| 875 |
< |
|
| 876 |
< |
snap_->wrapVector(d); |
| 875 |
> |
if (usePeriodicBoundaryConditions_) { |
| 876 |
> |
snap_->wrapVector(d); |
| 877 |
> |
} |
| 878 |
|
return d; |
| 879 |
|
} |
| 880 |
|
|
| 886 |
|
#else |
| 887 |
|
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
| 888 |
|
#endif |
| 889 |
< |
|
| 890 |
< |
snap_->wrapVector(d); |
| 889 |
> |
if (usePeriodicBoundaryConditions_) { |
| 890 |
> |
snap_->wrapVector(d); |
| 891 |
> |
} |
| 892 |
|
return d; |
| 893 |
|
} |
| 894 |
|
|
| 895 |
< |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
| 895 |
> |
RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
| 896 |
|
#ifdef IS_MPI |
| 897 |
|
return massFactorsRow[atom1]; |
| 898 |
|
#else |
| 900 |
|
#endif |
| 901 |
|
} |
| 902 |
|
|
| 903 |
< |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
| 903 |
> |
RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
| 904 |
|
#ifdef IS_MPI |
| 905 |
|
return massFactorsCol[atom2]; |
| 906 |
|
#else |
| 917 |
|
#else |
| 918 |
|
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
| 919 |
|
#endif |
| 920 |
< |
|
| 921 |
< |
snap_->wrapVector(d); |
| 920 |
> |
if (usePeriodicBoundaryConditions_) { |
| 921 |
> |
snap_->wrapVector(d); |
| 922 |
> |
} |
| 923 |
|
return d; |
| 924 |
|
} |
| 925 |
|
|
| 926 |
< |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
| 926 |
> |
vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
| 927 |
|
return excludesForAtom[atom1]; |
| 928 |
|
} |
| 929 |
|
|
| 931 |
|
* We need to exclude some overcounted interactions that result from |
| 932 |
|
* the parallel decomposition. |
| 933 |
|
*/ |
| 934 |
< |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 934 |
> |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { |
| 935 |
|
int unique_id_1, unique_id_2; |
| 936 |
|
|
| 937 |
|
#ifdef IS_MPI |
| 938 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 939 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 940 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 941 |
+ |
// group1 = cgRowToGlobal[cg1]; |
| 942 |
+ |
// group2 = cgColToGlobal[cg2]; |
| 943 |
|
#else |
| 944 |
|
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 945 |
|
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 946 |
+ |
int group1 = cgLocalToGlobal[cg1]; |
| 947 |
+ |
int group2 = cgLocalToGlobal[cg2]; |
| 948 |
|
#endif |
| 949 |
|
|
| 950 |
|
if (unique_id_1 == unique_id_2) return true; |
| 956 |
|
} else { |
| 957 |
|
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 958 |
|
} |
| 959 |
+ |
#endif |
| 960 |
+ |
|
| 961 |
+ |
#ifndef IS_MPI |
| 962 |
+ |
if (group1 == group2) { |
| 963 |
+ |
if (unique_id_1 < unique_id_2) return true; |
| 964 |
+ |
} |
| 965 |
|
#endif |
| 966 |
|
|
| 967 |
|
return false; |
| 1008 |
|
|
| 1009 |
|
// filling interaction blocks with pointers |
| 1010 |
|
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, |
| 1011 |
< |
int atom1, int atom2) { |
| 1011 |
> |
int atom1, int atom2, |
| 1012 |
> |
bool newAtom1) { |
| 1013 |
|
|
| 1014 |
|
idat.excluded = excludeAtomPair(atom1, atom2); |
| 1015 |
< |
|
| 1015 |
> |
|
| 1016 |
> |
if (newAtom1) { |
| 1017 |
> |
|
| 1018 |
|
#ifdef IS_MPI |
| 1019 |
< |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
| 1020 |
< |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
| 1021 |
< |
// ff_->getAtomType(identsCol[atom2]) ); |
| 1022 |
< |
|
| 1019 |
> |
idat.atid1 = identsRow[atom1]; |
| 1020 |
> |
idat.atid2 = identsCol[atom2]; |
| 1021 |
> |
|
| 1022 |
> |
if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
| 1023 |
> |
idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
| 1024 |
> |
} else { |
| 1025 |
> |
idat.sameRegion = false; |
| 1026 |
> |
} |
| 1027 |
> |
|
| 1028 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
| 1029 |
> |
idat.A1 = &(atomRowData.aMat[atom1]); |
| 1030 |
> |
idat.A2 = &(atomColData.aMat[atom2]); |
| 1031 |
> |
} |
| 1032 |
> |
|
| 1033 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
| 1034 |
> |
idat.t1 = &(atomRowData.torque[atom1]); |
| 1035 |
> |
idat.t2 = &(atomColData.torque[atom2]); |
| 1036 |
> |
} |
| 1037 |
> |
|
| 1038 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1039 |
> |
idat.dipole1 = &(atomRowData.dipole[atom1]); |
| 1040 |
> |
idat.dipole2 = &(atomColData.dipole[atom2]); |
| 1041 |
> |
} |
| 1042 |
> |
|
| 1043 |
> |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1044 |
> |
idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); |
| 1045 |
> |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
| 1046 |
> |
} |
| 1047 |
> |
|
| 1048 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
| 1049 |
> |
idat.rho1 = &(atomRowData.density[atom1]); |
| 1050 |
> |
idat.rho2 = &(atomColData.density[atom2]); |
| 1051 |
> |
} |
| 1052 |
> |
|
| 1053 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 1054 |
> |
idat.frho1 = &(atomRowData.functional[atom1]); |
| 1055 |
> |
idat.frho2 = &(atomColData.functional[atom2]); |
| 1056 |
> |
} |
| 1057 |
> |
|
| 1058 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 1059 |
> |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
| 1060 |
> |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
| 1061 |
> |
} |
| 1062 |
> |
|
| 1063 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 1064 |
> |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
| 1065 |
> |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
| 1066 |
> |
} |
| 1067 |
> |
|
| 1068 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 1069 |
> |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
| 1070 |
> |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
| 1071 |
> |
} |
| 1072 |
> |
|
| 1073 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1074 |
> |
idat.flucQ1 = &(atomRowData.flucQPos[atom1]); |
| 1075 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
| 1076 |
> |
} |
| 1077 |
> |
|
| 1078 |
> |
#else |
| 1079 |
> |
|
| 1080 |
> |
idat.atid1 = idents[atom1]; |
| 1081 |
> |
idat.atid2 = idents[atom2]; |
| 1082 |
> |
|
| 1083 |
> |
if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
| 1084 |
> |
idat.sameRegion = (regions[atom1] == regions[atom2]); |
| 1085 |
> |
} else { |
| 1086 |
> |
idat.sameRegion = false; |
| 1087 |
> |
} |
| 1088 |
> |
|
| 1089 |
> |
if (storageLayout_ & DataStorage::dslAmat) { |
| 1090 |
> |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 1091 |
> |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 1092 |
> |
} |
| 1093 |
> |
|
| 1094 |
> |
if (storageLayout_ & DataStorage::dslTorque) { |
| 1095 |
> |
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 1096 |
> |
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 1097 |
> |
} |
| 1098 |
> |
|
| 1099 |
> |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1100 |
> |
idat.dipole1 = &(snap_->atomData.dipole[atom1]); |
| 1101 |
> |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
| 1102 |
> |
} |
| 1103 |
> |
|
| 1104 |
> |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1105 |
> |
idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); |
| 1106 |
> |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
| 1107 |
> |
} |
| 1108 |
> |
|
| 1109 |
> |
if (storageLayout_ & DataStorage::dslDensity) { |
| 1110 |
> |
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 1111 |
> |
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 1112 |
> |
} |
| 1113 |
> |
|
| 1114 |
> |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 1115 |
> |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
| 1116 |
> |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
| 1117 |
> |
} |
| 1118 |
> |
|
| 1119 |
> |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 1120 |
> |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
| 1121 |
> |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
| 1122 |
> |
} |
| 1123 |
> |
|
| 1124 |
> |
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 1125 |
> |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
| 1126 |
> |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
| 1127 |
> |
} |
| 1128 |
> |
|
| 1129 |
> |
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 1130 |
> |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
| 1131 |
> |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
| 1132 |
> |
} |
| 1133 |
> |
|
| 1134 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1135 |
> |
idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); |
| 1136 |
> |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
| 1137 |
> |
} |
| 1138 |
> |
#endif |
| 1139 |
> |
|
| 1140 |
> |
} else { |
| 1141 |
> |
// atom1 is not new, so don't bother updating properties of that atom: |
| 1142 |
> |
#ifdef IS_MPI |
| 1143 |
> |
idat.atid2 = identsCol[atom2]; |
| 1144 |
> |
|
| 1145 |
> |
if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { |
| 1146 |
> |
idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); |
| 1147 |
> |
} else { |
| 1148 |
> |
idat.sameRegion = false; |
| 1149 |
> |
} |
| 1150 |
> |
|
| 1151 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 914 |
– |
idat.A1 = &(atomRowData.aMat[atom1]); |
| 1152 |
|
idat.A2 = &(atomColData.aMat[atom2]); |
| 1153 |
|
} |
| 1154 |
|
|
| 918 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 919 |
– |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 920 |
– |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 921 |
– |
} |
| 922 |
– |
|
| 1155 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 924 |
– |
idat.t1 = &(atomRowData.torque[atom1]); |
| 1156 |
|
idat.t2 = &(atomColData.torque[atom2]); |
| 1157 |
|
} |
| 1158 |
|
|
| 1159 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1160 |
+ |
idat.dipole2 = &(atomColData.dipole[atom2]); |
| 1161 |
+ |
} |
| 1162 |
+ |
|
| 1163 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1164 |
+ |
idat.quadrupole2 = &(atomColData.quadrupole[atom2]); |
| 1165 |
+ |
} |
| 1166 |
+ |
|
| 1167 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 929 |
– |
idat.rho1 = &(atomRowData.density[atom1]); |
| 1168 |
|
idat.rho2 = &(atomColData.density[atom2]); |
| 1169 |
|
} |
| 1170 |
|
|
| 1171 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 934 |
– |
idat.frho1 = &(atomRowData.functional[atom1]); |
| 1172 |
|
idat.frho2 = &(atomColData.functional[atom2]); |
| 1173 |
|
} |
| 1174 |
|
|
| 1175 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 939 |
– |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
| 1176 |
|
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
| 1177 |
|
} |
| 1178 |
|
|
| 1179 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 944 |
– |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
| 1180 |
|
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
| 1181 |
|
} |
| 1182 |
|
|
| 1183 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 949 |
– |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
| 1184 |
|
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
| 1185 |
|
} |
| 1186 |
|
|
| 1187 |
< |
#else |
| 1188 |
< |
|
| 1187 |
> |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1188 |
> |
idat.flucQ2 = &(atomColData.flucQPos[atom2]); |
| 1189 |
> |
} |
| 1190 |
|
|
| 1191 |
< |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
| 1192 |
< |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
| 958 |
< |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
| 1191 |
> |
#else |
| 1192 |
> |
idat.atid2 = idents[atom2]; |
| 1193 |
|
|
| 1194 |
< |
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
| 1195 |
< |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 1196 |
< |
// ff_->getAtomType(idents[atom2]) ); |
| 1194 |
> |
if (regions[atom1] >= 0 && regions[atom2] >= 0) { |
| 1195 |
> |
idat.sameRegion = (regions[atom1] == regions[atom2]); |
| 1196 |
> |
} else { |
| 1197 |
> |
idat.sameRegion = false; |
| 1198 |
> |
} |
| 1199 |
|
|
| 1200 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 965 |
– |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 1201 |
|
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 1202 |
|
} |
| 1203 |
|
|
| 969 |
– |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 970 |
– |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 971 |
– |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 972 |
– |
} |
| 973 |
– |
|
| 1204 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 975 |
– |
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 1205 |
|
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 1206 |
|
} |
| 1207 |
|
|
| 1208 |
+ |
if (storageLayout_ & DataStorage::dslDipole) { |
| 1209 |
+ |
idat.dipole2 = &(snap_->atomData.dipole[atom2]); |
| 1210 |
+ |
} |
| 1211 |
+ |
|
| 1212 |
+ |
if (storageLayout_ & DataStorage::dslQuadrupole) { |
| 1213 |
+ |
idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); |
| 1214 |
+ |
} |
| 1215 |
+ |
|
| 1216 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 980 |
– |
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 1217 |
|
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 1218 |
|
} |
| 1219 |
|
|
| 1220 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 985 |
– |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
| 1221 |
|
idat.frho2 = &(snap_->atomData.functional[atom2]); |
| 1222 |
|
} |
| 1223 |
|
|
| 1224 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 990 |
– |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
| 1225 |
|
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
| 1226 |
|
} |
| 1227 |
|
|
| 1228 |
|
if (storageLayout_ & DataStorage::dslParticlePot) { |
| 995 |
– |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
| 1229 |
|
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
| 1230 |
|
} |
| 1231 |
|
|
| 1232 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 1000 |
– |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
| 1233 |
|
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
| 1234 |
|
} |
| 1235 |
+ |
|
| 1236 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 1237 |
+ |
idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); |
| 1238 |
+ |
} |
| 1239 |
+ |
|
| 1240 |
|
#endif |
| 1241 |
+ |
} |
| 1242 |
|
} |
| 1005 |
– |
|
| 1243 |
|
|
| 1244 |
< |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 1244 |
> |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, |
| 1245 |
> |
int atom1, int atom2) { |
| 1246 |
|
#ifdef IS_MPI |
| 1247 |
|
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1248 |
|
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1249 |
+ |
expot_row[atom1] += RealType(0.5) * *(idat.excludedPot); |
| 1250 |
+ |
expot_col[atom2] += RealType(0.5) * *(idat.excludedPot); |
| 1251 |
|
|
| 1252 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1253 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1254 |
+ |
|
| 1255 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1256 |
+ |
atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1257 |
+ |
atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1258 |
+ |
} |
| 1259 |
+ |
|
| 1260 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1261 |
+ |
atomRowData.electricField[atom1] += *(idat.eField1); |
| 1262 |
+ |
atomColData.electricField[atom2] += *(idat.eField2); |
| 1263 |
+ |
} |
| 1264 |
+ |
|
| 1265 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
| 1266 |
+ |
atomRowData.sitePotential[atom1] += *(idat.sPot1); |
| 1267 |
+ |
atomColData.sitePotential[atom2] += *(idat.sPot2); |
| 1268 |
+ |
} |
| 1269 |
+ |
|
| 1270 |
|
#else |
| 1271 |
|
pairwisePot += *(idat.pot); |
| 1272 |
+ |
excludedPot += *(idat.excludedPot); |
| 1273 |
|
|
| 1274 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
| 1275 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
| 1276 |
+ |
|
| 1277 |
+ |
if (idat.doParticlePot) { |
| 1278 |
+ |
// This is the pairwise contribution to the particle pot. The |
| 1279 |
+ |
// embedding contribution is added in each of the low level |
| 1280 |
+ |
// non-bonded routines. In parallel, this calculation is done |
| 1281 |
+ |
// in collectData, not in unpackInteractionData. |
| 1282 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
| 1283 |
+ |
snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); |
| 1284 |
+ |
} |
| 1285 |
+ |
|
| 1286 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 1287 |
+ |
snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); |
| 1288 |
+ |
snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); |
| 1289 |
+ |
} |
| 1290 |
+ |
|
| 1291 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 1292 |
+ |
snap_->atomData.electricField[atom1] += *(idat.eField1); |
| 1293 |
+ |
snap_->atomData.electricField[atom2] += *(idat.eField2); |
| 1294 |
+ |
} |
| 1295 |
+ |
|
| 1296 |
+ |
if (storageLayout_ & DataStorage::dslSitePotential) { |
| 1297 |
+ |
snap_->atomData.sitePotential[atom1] += *(idat.sPot1); |
| 1298 |
+ |
snap_->atomData.sitePotential[atom2] += *(idat.sPot2); |
| 1299 |
+ |
} |
| 1300 |
+ |
|
| 1301 |
|
#endif |
| 1302 |
|
|
| 1303 |
|
} |
| 1305 |
|
/* |
| 1306 |
|
* buildNeighborList |
| 1307 |
|
* |
| 1308 |
< |
* first element of pair is row-indexed CutoffGroup |
| 1309 |
< |
* second element of pair is column-indexed CutoffGroup |
| 1308 |
> |
* Constructs the Verlet neighbor list for a force-matrix |
| 1309 |
> |
* decomposition. In this case, each processor is responsible for |
| 1310 |
> |
* row-site interactions with column-sites. |
| 1311 |
> |
* |
| 1312 |
> |
* neighborList is returned as a packed array of neighboring |
| 1313 |
> |
* column-ordered CutoffGroups. The starting position in |
| 1314 |
> |
* neighborList for each row-ordered CutoffGroup is given by the |
| 1315 |
> |
* returned vector point. |
| 1316 |
|
*/ |
| 1317 |
< |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
| 1318 |
< |
|
| 1319 |
< |
vector<pair<int, int> > neighborList; |
| 1320 |
< |
groupCutoffs cuts; |
| 1317 |
> |
void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, |
| 1318 |
> |
vector<int>& point) { |
| 1319 |
> |
neighborList.clear(); |
| 1320 |
> |
point.clear(); |
| 1321 |
> |
int len = 0; |
| 1322 |
> |
|
| 1323 |
|
bool doAllPairs = false; |
| 1324 |
|
|
| 1325 |
+ |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1326 |
+ |
Mat3x3d box; |
| 1327 |
+ |
Mat3x3d invBox; |
| 1328 |
+ |
|
| 1329 |
+ |
Vector3d rs, scaled, dr; |
| 1330 |
+ |
Vector3i whichCell; |
| 1331 |
+ |
int cellIndex; |
| 1332 |
+ |
|
| 1333 |
|
#ifdef IS_MPI |
| 1334 |
|
cellListRow_.clear(); |
| 1335 |
|
cellListCol_.clear(); |
| 1336 |
+ |
point.resize(nGroupsInRow_+1); |
| 1337 |
|
#else |
| 1338 |
|
cellList_.clear(); |
| 1339 |
+ |
point.resize(nGroups_+1); |
| 1340 |
|
#endif |
| 1341 |
+ |
|
| 1342 |
+ |
if (!usePeriodicBoundaryConditions_) { |
| 1343 |
+ |
box = snap_->getBoundingBox(); |
| 1344 |
+ |
invBox = snap_->getInvBoundingBox(); |
| 1345 |
+ |
} else { |
| 1346 |
+ |
box = snap_->getHmat(); |
| 1347 |
+ |
invBox = snap_->getInvHmat(); |
| 1348 |
+ |
} |
| 1349 |
+ |
|
| 1350 |
+ |
Vector3d A = box.getColumn(0); |
| 1351 |
+ |
Vector3d B = box.getColumn(1); |
| 1352 |
+ |
Vector3d C = box.getColumn(2); |
| 1353 |
|
|
| 1354 |
< |
RealType rList_ = (largestRcut_ + skinThickness_); |
| 1355 |
< |
RealType rl2 = rList_ * rList_; |
| 1356 |
< |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
| 1357 |
< |
Mat3x3d Hmat = snap_->getHmat(); |
| 1046 |
< |
Vector3d Hx = Hmat.getColumn(0); |
| 1047 |
< |
Vector3d Hy = Hmat.getColumn(1); |
| 1048 |
< |
Vector3d Hz = Hmat.getColumn(2); |
| 1354 |
> |
// Required for triclinic cells |
| 1355 |
> |
Vector3d AxB = cross(A, B); |
| 1356 |
> |
Vector3d BxC = cross(B, C); |
| 1357 |
> |
Vector3d CxA = cross(C, A); |
| 1358 |
|
|
| 1359 |
< |
nCells_.x() = (int) ( Hx.length() )/ rList_; |
| 1360 |
< |
nCells_.y() = (int) ( Hy.length() )/ rList_; |
| 1361 |
< |
nCells_.z() = (int) ( Hz.length() )/ rList_; |
| 1359 |
> |
// unit vectors perpendicular to the faces of the triclinic cell: |
| 1360 |
> |
AxB.normalize(); |
| 1361 |
> |
BxC.normalize(); |
| 1362 |
> |
CxA.normalize(); |
| 1363 |
|
|
| 1364 |
< |
// handle small boxes where the cell offsets can end up repeating cells |
| 1364 |
> |
// A set of perpendicular lengths in triclinic cells: |
| 1365 |
> |
RealType Wa = abs(dot(A, BxC)); |
| 1366 |
> |
RealType Wb = abs(dot(B, CxA)); |
| 1367 |
> |
RealType Wc = abs(dot(C, AxB)); |
| 1368 |
|
|
| 1369 |
+ |
nCells_.x() = int( Wa / rList_ ); |
| 1370 |
+ |
nCells_.y() = int( Wb / rList_ ); |
| 1371 |
+ |
nCells_.z() = int( Wc / rList_ ); |
| 1372 |
+ |
|
| 1373 |
+ |
// handle small boxes where the cell offsets can end up repeating cells |
| 1374 |
|
if (nCells_.x() < 3) doAllPairs = true; |
| 1375 |
|
if (nCells_.y() < 3) doAllPairs = true; |
| 1376 |
|
if (nCells_.z() < 3) doAllPairs = true; |
| 1377 |
< |
|
| 1060 |
< |
Mat3x3d invHmat = snap_->getInvHmat(); |
| 1061 |
< |
Vector3d rs, scaled, dr; |
| 1062 |
< |
Vector3i whichCell; |
| 1063 |
< |
int cellIndex; |
| 1377 |
> |
|
| 1378 |
|
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
| 1379 |
< |
|
| 1379 |
> |
|
| 1380 |
|
#ifdef IS_MPI |
| 1381 |
|
cellListRow_.resize(nCtot); |
| 1382 |
|
cellListCol_.resize(nCtot); |
| 1383 |
|
#else |
| 1384 |
|
cellList_.resize(nCtot); |
| 1385 |
|
#endif |
| 1386 |
< |
|
| 1386 |
> |
|
| 1387 |
|
if (!doAllPairs) { |
| 1388 |
+ |
|
| 1389 |
|
#ifdef IS_MPI |
| 1390 |
< |
|
| 1390 |
> |
|
| 1391 |
|
for (int i = 0; i < nGroupsInRow_; i++) { |
| 1392 |
|
rs = cgRowData.position[i]; |
| 1393 |
|
|
| 1394 |
|
// scaled positions relative to the box vectors |
| 1395 |
< |
scaled = invHmat * rs; |
| 1395 |
> |
scaled = invBox * rs; |
| 1396 |
|
|
| 1397 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1398 |
|
// numbers |
| 1399 |
|
for (int j = 0; j < 3; j++) { |
| 1400 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1401 |
|
scaled[j] += 0.5; |
| 1402 |
+ |
// Handle the special case when an object is exactly on the |
| 1403 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1404 |
+ |
// scaled coordinate of 0.0) |
| 1405 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1406 |
|
} |
| 1407 |
|
|
| 1408 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1420 |
|
rs = cgColData.position[i]; |
| 1421 |
|
|
| 1422 |
|
// scaled positions relative to the box vectors |
| 1423 |
< |
scaled = invHmat * rs; |
| 1423 |
> |
scaled = invBox * rs; |
| 1424 |
|
|
| 1425 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1426 |
|
// numbers |
| 1427 |
|
for (int j = 0; j < 3; j++) { |
| 1428 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1429 |
|
scaled[j] += 0.5; |
| 1430 |
+ |
// Handle the special case when an object is exactly on the |
| 1431 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1432 |
+ |
// scaled coordinate of 0.0) |
| 1433 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1434 |
|
} |
| 1435 |
|
|
| 1436 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1444 |
|
// add this cutoff group to the list of groups in this cell; |
| 1445 |
|
cellListCol_[cellIndex].push_back(i); |
| 1446 |
|
} |
| 1447 |
< |
|
| 1447 |
> |
|
| 1448 |
|
#else |
| 1449 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1450 |
|
rs = snap_->cgData.position[i]; |
| 1451 |
|
|
| 1452 |
|
// scaled positions relative to the box vectors |
| 1453 |
< |
scaled = invHmat * rs; |
| 1453 |
> |
scaled = invBox * rs; |
| 1454 |
|
|
| 1455 |
|
// wrap the vector back into the unit box by subtracting integer box |
| 1456 |
|
// numbers |
| 1457 |
|
for (int j = 0; j < 3; j++) { |
| 1458 |
|
scaled[j] -= roundMe(scaled[j]); |
| 1459 |
|
scaled[j] += 0.5; |
| 1460 |
+ |
// Handle the special case when an object is exactly on the |
| 1461 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1462 |
+ |
// scaled coordinate of 0.0) |
| 1463 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1464 |
|
} |
| 1465 |
|
|
| 1466 |
|
// find xyz-indices of cell that cutoffGroup is in. |
| 1467 |
< |
whichCell.x() = nCells_.x() * scaled.x(); |
| 1468 |
< |
whichCell.y() = nCells_.y() * scaled.y(); |
| 1469 |
< |
whichCell.z() = nCells_.z() * scaled.z(); |
| 1467 |
> |
whichCell.x() = int(nCells_.x() * scaled.x()); |
| 1468 |
> |
whichCell.y() = int(nCells_.y() * scaled.y()); |
| 1469 |
> |
whichCell.z() = int(nCells_.z() * scaled.z()); |
| 1470 |
|
|
| 1471 |
|
// find single index of this cell: |
| 1472 |
|
cellIndex = Vlinear(whichCell, nCells_); |
| 1477 |
|
|
| 1478 |
|
#endif |
| 1479 |
|
|
| 1153 |
– |
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1154 |
– |
for (int m1y = 0; m1y < nCells_.y(); m1y++) { |
| 1155 |
– |
for (int m1x = 0; m1x < nCells_.x(); m1x++) { |
| 1156 |
– |
Vector3i m1v(m1x, m1y, m1z); |
| 1157 |
– |
int m1 = Vlinear(m1v, nCells_); |
| 1158 |
– |
|
| 1159 |
– |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
| 1160 |
– |
os != cellOffsets_.end(); ++os) { |
| 1161 |
– |
|
| 1162 |
– |
Vector3i m2v = m1v + (*os); |
| 1163 |
– |
|
| 1164 |
– |
|
| 1165 |
– |
if (m2v.x() >= nCells_.x()) { |
| 1166 |
– |
m2v.x() = 0; |
| 1167 |
– |
} else if (m2v.x() < 0) { |
| 1168 |
– |
m2v.x() = nCells_.x() - 1; |
| 1169 |
– |
} |
| 1170 |
– |
|
| 1171 |
– |
if (m2v.y() >= nCells_.y()) { |
| 1172 |
– |
m2v.y() = 0; |
| 1173 |
– |
} else if (m2v.y() < 0) { |
| 1174 |
– |
m2v.y() = nCells_.y() - 1; |
| 1175 |
– |
} |
| 1176 |
– |
|
| 1177 |
– |
if (m2v.z() >= nCells_.z()) { |
| 1178 |
– |
m2v.z() = 0; |
| 1179 |
– |
} else if (m2v.z() < 0) { |
| 1180 |
– |
m2v.z() = nCells_.z() - 1; |
| 1181 |
– |
} |
| 1182 |
– |
|
| 1183 |
– |
int m2 = Vlinear (m2v, nCells_); |
| 1184 |
– |
|
| 1480 |
|
#ifdef IS_MPI |
| 1481 |
< |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
| 1482 |
< |
j1 != cellListRow_[m1].end(); ++j1) { |
| 1188 |
< |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1189 |
< |
j2 != cellListCol_[m2].end(); ++j2) { |
| 1190 |
< |
|
| 1191 |
< |
// In parallel, we need to visit *all* pairs of row |
| 1192 |
< |
// & column indicies and will divide labor in the |
| 1193 |
< |
// force evaluation later. |
| 1194 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1195 |
< |
snap_->wrapVector(dr); |
| 1196 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1197 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1198 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1199 |
< |
} |
| 1200 |
< |
} |
| 1201 |
< |
} |
| 1481 |
> |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1482 |
> |
rs = cgRowData.position[j1]; |
| 1483 |
|
#else |
| 1203 |
– |
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1204 |
– |
j1 != cellList_[m1].end(); ++j1) { |
| 1205 |
– |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1206 |
– |
j2 != cellList_[m2].end(); ++j2) { |
| 1207 |
– |
|
| 1208 |
– |
// Always do this if we're in different cells or if |
| 1209 |
– |
// we're in the same cell and the global index of |
| 1210 |
– |
// the j2 cutoff group is greater than or equal to |
| 1211 |
– |
// the j1 cutoff group. Note that Rappaport's code |
| 1212 |
– |
// has a "less than" conditional here, but that |
| 1213 |
– |
// deals with atom-by-atom computation. OpenMD |
| 1214 |
– |
// allows atoms within a single cutoff group to |
| 1215 |
– |
// interact with each other. |
| 1484 |
|
|
| 1485 |
+ |
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1486 |
+ |
rs = snap_->cgData.position[j1]; |
| 1487 |
+ |
#endif |
| 1488 |
+ |
point[j1] = len; |
| 1489 |
+ |
|
| 1490 |
+ |
// scaled positions relative to the box vectors |
| 1491 |
+ |
scaled = invBox * rs; |
| 1492 |
+ |
|
| 1493 |
+ |
// wrap the vector back into the unit box by subtracting integer box |
| 1494 |
+ |
// numbers |
| 1495 |
+ |
for (int j = 0; j < 3; j++) { |
| 1496 |
+ |
scaled[j] -= roundMe(scaled[j]); |
| 1497 |
+ |
scaled[j] += 0.5; |
| 1498 |
+ |
// Handle the special case when an object is exactly on the |
| 1499 |
+ |
// boundary (a scaled coordinate of 1.0 is the same as |
| 1500 |
+ |
// scaled coordinate of 0.0) |
| 1501 |
+ |
if (scaled[j] >= 1.0) scaled[j] -= 1.0; |
| 1502 |
+ |
} |
| 1503 |
+ |
|
| 1504 |
+ |
// find xyz-indices of cell that cutoffGroup is in. |
| 1505 |
+ |
whichCell.x() = nCells_.x() * scaled.x(); |
| 1506 |
+ |
whichCell.y() = nCells_.y() * scaled.y(); |
| 1507 |
+ |
whichCell.z() = nCells_.z() * scaled.z(); |
| 1508 |
+ |
|
| 1509 |
+ |
// find single index of this cell: |
| 1510 |
+ |
int m1 = Vlinear(whichCell, nCells_); |
| 1511 |
|
|
| 1512 |
+ |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); |
| 1513 |
+ |
os != cellOffsets_.end(); ++os) { |
| 1514 |
+ |
|
| 1515 |
+ |
Vector3i m2v = whichCell + (*os); |
| 1516 |
|
|
| 1517 |
< |
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1518 |
< |
|
| 1519 |
< |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1520 |
< |
snap_->wrapVector(dr); |
| 1521 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1522 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1523 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1524 |
< |
} |
| 1525 |
< |
} |
| 1526 |
< |
} |
| 1517 |
> |
if (m2v.x() >= nCells_.x()) { |
| 1518 |
> |
m2v.x() = 0; |
| 1519 |
> |
} else if (m2v.x() < 0) { |
| 1520 |
> |
m2v.x() = nCells_.x() - 1; |
| 1521 |
> |
} |
| 1522 |
> |
|
| 1523 |
> |
if (m2v.y() >= nCells_.y()) { |
| 1524 |
> |
m2v.y() = 0; |
| 1525 |
> |
} else if (m2v.y() < 0) { |
| 1526 |
> |
m2v.y() = nCells_.y() - 1; |
| 1527 |
> |
} |
| 1528 |
> |
|
| 1529 |
> |
if (m2v.z() >= nCells_.z()) { |
| 1530 |
> |
m2v.z() = 0; |
| 1531 |
> |
} else if (m2v.z() < 0) { |
| 1532 |
> |
m2v.z() = nCells_.z() - 1; |
| 1533 |
> |
} |
| 1534 |
> |
int m2 = Vlinear (m2v, nCells_); |
| 1535 |
> |
#ifdef IS_MPI |
| 1536 |
> |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1537 |
> |
j2 != cellListCol_[m2].end(); ++j2) { |
| 1538 |
> |
|
| 1539 |
> |
// In parallel, we need to visit *all* pairs of row |
| 1540 |
> |
// & column indicies and will divide labor in the |
| 1541 |
> |
// force evaluation later. |
| 1542 |
> |
dr = cgColData.position[(*j2)] - rs; |
| 1543 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1544 |
> |
snap_->wrapVector(dr); |
| 1545 |
> |
} |
| 1546 |
> |
if (dr.lengthSquare() < rListSq_) { |
| 1547 |
> |
neighborList.push_back( (*j2) ); |
| 1548 |
> |
++len; |
| 1549 |
> |
} |
| 1550 |
> |
} |
| 1551 |
> |
#else |
| 1552 |
> |
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1553 |
> |
j2 != cellList_[m2].end(); ++j2) { |
| 1554 |
> |
|
| 1555 |
> |
// Always do this if we're in different cells or if |
| 1556 |
> |
// we're in the same cell and the global index of |
| 1557 |
> |
// the j2 cutoff group is greater than or equal to |
| 1558 |
> |
// the j1 cutoff group. Note that Rappaport's code |
| 1559 |
> |
// has a "less than" conditional here, but that |
| 1560 |
> |
// deals with atom-by-atom computation. OpenMD |
| 1561 |
> |
// allows atoms within a single cutoff group to |
| 1562 |
> |
// interact with each other. |
| 1563 |
> |
|
| 1564 |
> |
if ( (*j2) >= j1 ) { |
| 1565 |
> |
|
| 1566 |
> |
dr = snap_->cgData.position[(*j2)] - rs; |
| 1567 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1568 |
> |
snap_->wrapVector(dr); |
| 1569 |
|
} |
| 1570 |
< |
#endif |
| 1570 |
> |
if ( dr.lengthSquare() < rListSq_) { |
| 1571 |
> |
neighborList.push_back( (*j2) ); |
| 1572 |
> |
++len; |
| 1573 |
> |
} |
| 1574 |
|
} |
| 1575 |
< |
} |
| 1575 |
> |
} |
| 1576 |
> |
#endif |
| 1577 |
|
} |
| 1578 |
< |
} |
| 1578 |
> |
} |
| 1579 |
|
} else { |
| 1580 |
|
// branch to do all cutoff group pairs |
| 1581 |
|
#ifdef IS_MPI |
| 1582 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1583 |
+ |
point[j1] = len; |
| 1584 |
+ |
rs = cgRowData.position[j1]; |
| 1585 |
|
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1586 |
< |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1587 |
< |
snap_->wrapVector(dr); |
| 1588 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
| 1243 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1244 |
< |
neighborList.push_back(make_pair(j1, j2)); |
| 1586 |
> |
dr = cgColData.position[j2] - rs; |
| 1587 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1588 |
> |
snap_->wrapVector(dr); |
| 1589 |
|
} |
| 1590 |
+ |
if (dr.lengthSquare() < rListSq_) { |
| 1591 |
+ |
neighborList.push_back( j2 ); |
| 1592 |
+ |
++len; |
| 1593 |
+ |
} |
| 1594 |
|
} |
| 1595 |
|
} |
| 1596 |
|
#else |
| 1597 |
|
// include all groups here. |
| 1598 |
|
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1599 |
+ |
point[j1] = len; |
| 1600 |
+ |
rs = snap_->cgData.position[j1]; |
| 1601 |
|
// include self group interactions j2 == j1 |
| 1602 |
|
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1603 |
< |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1604 |
< |
snap_->wrapVector(dr); |
| 1605 |
< |
cuts = getGroupCutoffs( j1, j2 ); |
| 1256 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1257 |
< |
neighborList.push_back(make_pair(j1, j2)); |
| 1603 |
> |
dr = snap_->cgData.position[j2] - rs; |
| 1604 |
> |
if (usePeriodicBoundaryConditions_) { |
| 1605 |
> |
snap_->wrapVector(dr); |
| 1606 |
|
} |
| 1607 |
+ |
if (dr.lengthSquare() < rListSq_) { |
| 1608 |
+ |
neighborList.push_back( j2 ); |
| 1609 |
+ |
++len; |
| 1610 |
+ |
} |
| 1611 |
|
} |
| 1612 |
|
} |
| 1613 |
|
#endif |
| 1614 |
|
} |
| 1615 |
< |
|
| 1615 |
> |
|
| 1616 |
> |
#ifdef IS_MPI |
| 1617 |
> |
point[nGroupsInRow_] = len; |
| 1618 |
> |
#else |
| 1619 |
> |
point[nGroups_] = len; |
| 1620 |
> |
#endif |
| 1621 |
> |
|
| 1622 |
|
// save the local cutoff group positions for the check that is |
| 1623 |
|
// done on each loop: |
| 1624 |
|
saved_CG_positions_.clear(); |
| 1625 |
+ |
saved_CG_positions_.reserve(nGroups_); |
| 1626 |
|
for (int i = 0; i < nGroups_; i++) |
| 1627 |
|
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
| 1269 |
– |
|
| 1270 |
– |
return neighborList; |
| 1628 |
|
} |
| 1629 |
|
} //end namespace OpenMD |