| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
| 43 |
|
#include "math/SquareMatrix3.hpp" |
| 48 |
|
using namespace std; |
| 49 |
|
namespace OpenMD { |
| 50 |
|
|
| 51 |
+ |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { |
| 52 |
+ |
|
| 53 |
+ |
// In a parallel computation, row and colum scans must visit all |
| 54 |
+ |
// surrounding cells (not just the 14 upper triangular blocks that |
| 55 |
+ |
// are used when the processor can see all pairs) |
| 56 |
+ |
#ifdef IS_MPI |
| 57 |
+ |
cellOffsets_.clear(); |
| 58 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
| 59 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
| 60 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
| 61 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
| 62 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
| 63 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
| 64 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
| 65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
| 66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
| 67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
| 68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
| 69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
| 70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
| 71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
| 72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
| 73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
| 74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
| 75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
| 76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
| 77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
| 78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
| 79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
| 80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
| 81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
| 82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
| 83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
| 84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
| 85 |
+ |
#endif |
| 86 |
+ |
} |
| 87 |
+ |
|
| 88 |
+ |
|
| 89 |
|
/** |
| 90 |
|
* distributeInitialData is essentially a copy of the older fortran |
| 91 |
|
* SimulationSetup |
| 92 |
|
*/ |
| 54 |
– |
|
| 93 |
|
void ForceMatrixDecomposition::distributeInitialData() { |
| 94 |
|
snap_ = sman_->getCurrentSnapshot(); |
| 95 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 112 |
|
|
| 113 |
|
#ifdef IS_MPI |
| 114 |
|
|
| 115 |
< |
AtomCommIntRow = new Communicator<Row,int>(nLocal_); |
| 116 |
< |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); |
| 79 |
< |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); |
| 80 |
< |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); |
| 81 |
< |
AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); |
| 115 |
> |
MPI::Intracomm row = rowComm.getComm(); |
| 116 |
> |
MPI::Intracomm col = colComm.getComm(); |
| 117 |
|
|
| 118 |
< |
AtomCommIntColumn = new Communicator<Column,int>(nLocal_); |
| 119 |
< |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); |
| 120 |
< |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); |
| 121 |
< |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); |
| 122 |
< |
AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); |
| 118 |
> |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
| 119 |
> |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
| 120 |
> |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
| 121 |
> |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
| 122 |
> |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
| 123 |
|
|
| 124 |
< |
cgCommIntRow = new Communicator<Row,int>(nGroups_); |
| 125 |
< |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); |
| 126 |
< |
cgCommIntColumn = new Communicator<Column,int>(nGroups_); |
| 127 |
< |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); |
| 124 |
> |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
| 125 |
> |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
| 126 |
> |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
| 127 |
> |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
| 128 |
> |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
| 129 |
|
|
| 130 |
< |
nAtomsInRow_ = AtomCommIntRow->getSize(); |
| 131 |
< |
nAtomsInCol_ = AtomCommIntColumn->getSize(); |
| 132 |
< |
nGroupsInRow_ = cgCommIntRow->getSize(); |
| 133 |
< |
nGroupsInCol_ = cgCommIntColumn->getSize(); |
| 130 |
> |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
| 131 |
> |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
| 132 |
> |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
| 133 |
> |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
| 134 |
|
|
| 135 |
+ |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
| 136 |
+ |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
| 137 |
+ |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
| 138 |
+ |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
| 139 |
+ |
|
| 140 |
|
// Modify the data storage objects with the correct layouts and sizes: |
| 141 |
|
atomRowData.resize(nAtomsInRow_); |
| 142 |
|
atomRowData.setStorageLayout(storageLayout_); |
| 150 |
|
identsRow.resize(nAtomsInRow_); |
| 151 |
|
identsCol.resize(nAtomsInCol_); |
| 152 |
|
|
| 153 |
< |
AtomCommIntRow->gather(idents, identsRow); |
| 154 |
< |
AtomCommIntColumn->gather(idents, identsCol); |
| 153 |
> |
AtomPlanIntRow->gather(idents, identsRow); |
| 154 |
> |
AtomPlanIntColumn->gather(idents, identsCol); |
| 155 |
|
|
| 156 |
|
// allocate memory for the parallel objects |
| 157 |
|
atypesRow.resize(nAtomsInRow_); |
| 167 |
|
|
| 168 |
|
AtomRowToGlobal.resize(nAtomsInRow_); |
| 169 |
|
AtomColToGlobal.resize(nAtomsInCol_); |
| 170 |
< |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 171 |
< |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 172 |
< |
|
| 170 |
> |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 171 |
> |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 172 |
> |
|
| 173 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
| 174 |
|
cgColToGlobal.resize(nGroupsInCol_); |
| 175 |
< |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 176 |
< |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 175 |
> |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 176 |
> |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 177 |
|
|
| 178 |
|
massFactorsRow.resize(nAtomsInRow_); |
| 179 |
|
massFactorsCol.resize(nAtomsInCol_); |
| 180 |
< |
AtomCommRealRow->gather(massFactors, massFactorsRow); |
| 181 |
< |
AtomCommRealColumn->gather(massFactors, massFactorsCol); |
| 180 |
> |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
| 181 |
> |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
| 182 |
|
|
| 183 |
|
groupListRow_.clear(); |
| 184 |
|
groupListRow_.resize(nGroupsInRow_); |
| 234 |
|
} |
| 235 |
|
} |
| 236 |
|
|
| 237 |
< |
#endif |
| 197 |
< |
|
| 198 |
< |
// allocate memory for the parallel objects |
| 199 |
< |
atypesLocal.resize(nLocal_); |
| 200 |
< |
|
| 201 |
< |
for (int i = 0; i < nLocal_; i++) |
| 202 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 203 |
< |
|
| 204 |
< |
groupList_.clear(); |
| 205 |
< |
groupList_.resize(nGroups_); |
| 206 |
< |
for (int i = 0; i < nGroups_; i++) { |
| 207 |
< |
int gid = cgLocalToGlobal[i]; |
| 208 |
< |
for (int j = 0; j < nLocal_; j++) { |
| 209 |
< |
int aid = AtomLocalToGlobal[j]; |
| 210 |
< |
if (globalGroupMembership[aid] == gid) { |
| 211 |
< |
groupList_[i].push_back(j); |
| 212 |
< |
} |
| 213 |
< |
} |
| 214 |
< |
} |
| 215 |
< |
|
| 237 |
> |
#else |
| 238 |
|
excludesForAtom.clear(); |
| 239 |
|
excludesForAtom.resize(nLocal_); |
| 240 |
|
toposForAtom.clear(); |
| 267 |
|
} |
| 268 |
|
} |
| 269 |
|
} |
| 270 |
< |
|
| 270 |
> |
#endif |
| 271 |
> |
|
| 272 |
> |
// allocate memory for the parallel objects |
| 273 |
> |
atypesLocal.resize(nLocal_); |
| 274 |
> |
|
| 275 |
> |
for (int i = 0; i < nLocal_; i++) |
| 276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 277 |
> |
|
| 278 |
> |
groupList_.clear(); |
| 279 |
> |
groupList_.resize(nGroups_); |
| 280 |
> |
for (int i = 0; i < nGroups_; i++) { |
| 281 |
> |
int gid = cgLocalToGlobal[i]; |
| 282 |
> |
for (int j = 0; j < nLocal_; j++) { |
| 283 |
> |
int aid = AtomLocalToGlobal[j]; |
| 284 |
> |
if (globalGroupMembership[aid] == gid) { |
| 285 |
> |
groupList_[i].push_back(j); |
| 286 |
> |
} |
| 287 |
> |
} |
| 288 |
> |
} |
| 289 |
> |
|
| 290 |
> |
|
| 291 |
|
createGtypeCutoffMap(); |
| 292 |
|
|
| 293 |
|
} |
| 525 |
|
atomColData.skippedCharge.end(), 0.0); |
| 526 |
|
} |
| 527 |
|
|
| 528 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 529 |
+ |
fill(atomRowData.electricField.begin(), |
| 530 |
+ |
atomRowData.electricField.end(), V3Zero); |
| 531 |
+ |
fill(atomColData.electricField.begin(), |
| 532 |
+ |
atomColData.electricField.end(), V3Zero); |
| 533 |
+ |
} |
| 534 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 535 |
+ |
fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), |
| 536 |
+ |
0.0); |
| 537 |
+ |
fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), |
| 538 |
+ |
0.0); |
| 539 |
+ |
} |
| 540 |
+ |
|
| 541 |
|
#endif |
| 542 |
|
// even in parallel, we need to zero out the local arrays: |
| 543 |
|
|
| 550 |
|
fill(snap_->atomData.density.begin(), |
| 551 |
|
snap_->atomData.density.end(), 0.0); |
| 552 |
|
} |
| 553 |
+ |
|
| 554 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 555 |
|
fill(snap_->atomData.functional.begin(), |
| 556 |
|
snap_->atomData.functional.end(), 0.0); |
| 557 |
|
} |
| 558 |
+ |
|
| 559 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 560 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
| 561 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
| 562 |
|
} |
| 563 |
+ |
|
| 564 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 565 |
|
fill(snap_->atomData.skippedCharge.begin(), |
| 566 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
| 567 |
|
} |
| 568 |
< |
|
| 568 |
> |
|
| 569 |
> |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 570 |
> |
fill(snap_->atomData.electricField.begin(), |
| 571 |
> |
snap_->atomData.electricField.end(), V3Zero); |
| 572 |
> |
} |
| 573 |
|
} |
| 574 |
|
|
| 575 |
|
|
| 579 |
|
#ifdef IS_MPI |
| 580 |
|
|
| 581 |
|
// gather up the atomic positions |
| 582 |
< |
AtomCommVectorRow->gather(snap_->atomData.position, |
| 582 |
> |
AtomPlanVectorRow->gather(snap_->atomData.position, |
| 583 |
|
atomRowData.position); |
| 584 |
< |
AtomCommVectorColumn->gather(snap_->atomData.position, |
| 584 |
> |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
| 585 |
|
atomColData.position); |
| 586 |
|
|
| 587 |
|
// gather up the cutoff group positions |
| 588 |
< |
cgCommVectorRow->gather(snap_->cgData.position, |
| 588 |
> |
|
| 589 |
> |
cgPlanVectorRow->gather(snap_->cgData.position, |
| 590 |
|
cgRowData.position); |
| 591 |
< |
cgCommVectorColumn->gather(snap_->cgData.position, |
| 591 |
> |
|
| 592 |
> |
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 593 |
|
cgColData.position); |
| 594 |
+ |
|
| 595 |
|
|
| 596 |
|
// if needed, gather the atomic rotation matrices |
| 597 |
|
if (storageLayout_ & DataStorage::dslAmat) { |
| 598 |
< |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
| 598 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
| 599 |
|
atomRowData.aMat); |
| 600 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
| 600 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
| 601 |
|
atomColData.aMat); |
| 602 |
|
} |
| 603 |
|
|
| 604 |
|
// if needed, gather the atomic eletrostatic frames |
| 605 |
|
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 606 |
< |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
| 606 |
> |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
| 607 |
|
atomRowData.electroFrame); |
| 608 |
< |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
| 608 |
> |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
| 609 |
|
atomColData.electroFrame); |
| 610 |
|
} |
| 611 |
|
|
| 612 |
+ |
// if needed, gather the atomic fluctuating charge values |
| 613 |
+ |
if (storageLayout_ & DataStorage::dslFlucQPosition) { |
| 614 |
+ |
AtomPlanRealRow->gather(snap_->atomData.flucQPos, |
| 615 |
+ |
atomRowData.flucQPos); |
| 616 |
+ |
AtomPlanRealColumn->gather(snap_->atomData.flucQPos, |
| 617 |
+ |
atomColData.flucQPos); |
| 618 |
+ |
} |
| 619 |
+ |
|
| 620 |
|
#endif |
| 621 |
|
} |
| 622 |
|
|
| 630 |
|
|
| 631 |
|
if (storageLayout_ & DataStorage::dslDensity) { |
| 632 |
|
|
| 633 |
< |
AtomCommRealRow->scatter(atomRowData.density, |
| 633 |
> |
AtomPlanRealRow->scatter(atomRowData.density, |
| 634 |
|
snap_->atomData.density); |
| 635 |
|
|
| 636 |
|
int n = snap_->atomData.density.size(); |
| 637 |
|
vector<RealType> rho_tmp(n, 0.0); |
| 638 |
< |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
| 638 |
> |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
| 639 |
|
for (int i = 0; i < n; i++) |
| 640 |
|
snap_->atomData.density[i] += rho_tmp[i]; |
| 641 |
|
} |
| 642 |
+ |
|
| 643 |
+ |
if (storageLayout_ & DataStorage::dslElectricField) { |
| 644 |
+ |
|
| 645 |
+ |
AtomPlanVectorRow->scatter(atomRowData.electricField, |
| 646 |
+ |
snap_->atomData.electricField); |
| 647 |
+ |
|
| 648 |
+ |
int n = snap_->atomData.electricField.size(); |
| 649 |
+ |
vector<Vector3d> field_tmp(n, V3Zero); |
| 650 |
+ |
AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); |
| 651 |
+ |
for (int i = 0; i < n; i++) |
| 652 |
+ |
snap_->atomData.electricField[i] += field_tmp[i]; |
| 653 |
+ |
} |
| 654 |
|
#endif |
| 655 |
|
} |
| 656 |
|
|
| 663 |
|
storageLayout_ = sman_->getStorageLayout(); |
| 664 |
|
#ifdef IS_MPI |
| 665 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 666 |
< |
AtomCommRealRow->gather(snap_->atomData.functional, |
| 666 |
> |
AtomPlanRealRow->gather(snap_->atomData.functional, |
| 667 |
|
atomRowData.functional); |
| 668 |
< |
AtomCommRealColumn->gather(snap_->atomData.functional, |
| 668 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
| 669 |
|
atomColData.functional); |
| 670 |
|
} |
| 671 |
|
|
| 672 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 673 |
< |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
| 673 |
> |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
| 674 |
|
atomRowData.functionalDerivative); |
| 675 |
< |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
| 675 |
> |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
| 676 |
|
atomColData.functionalDerivative); |
| 677 |
|
} |
| 678 |
|
#endif |
| 686 |
|
int n = snap_->atomData.force.size(); |
| 687 |
|
vector<Vector3d> frc_tmp(n, V3Zero); |
| 688 |
|
|
| 689 |
< |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
| 689 |
> |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
| 690 |
|
for (int i = 0; i < n; i++) { |
| 691 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 692 |
|
frc_tmp[i] = 0.0; |
| 693 |
|
} |
| 694 |
|
|
| 695 |
< |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
| 696 |
< |
for (int i = 0; i < n; i++) |
| 695 |
> |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
| 696 |
> |
for (int i = 0; i < n; i++) { |
| 697 |
|
snap_->atomData.force[i] += frc_tmp[i]; |
| 698 |
+ |
} |
| 699 |
|
|
| 700 |
|
if (storageLayout_ & DataStorage::dslTorque) { |
| 701 |
|
|
| 702 |
|
int nt = snap_->atomData.torque.size(); |
| 703 |
|
vector<Vector3d> trq_tmp(nt, V3Zero); |
| 704 |
|
|
| 705 |
< |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 705 |
> |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 706 |
|
for (int i = 0; i < nt; i++) { |
| 707 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 708 |
|
trq_tmp[i] = 0.0; |
| 709 |
|
} |
| 710 |
|
|
| 711 |
< |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 711 |
> |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 712 |
|
for (int i = 0; i < nt; i++) |
| 713 |
|
snap_->atomData.torque[i] += trq_tmp[i]; |
| 714 |
|
} |
| 718 |
|
int ns = snap_->atomData.skippedCharge.size(); |
| 719 |
|
vector<RealType> skch_tmp(ns, 0.0); |
| 720 |
|
|
| 721 |
< |
AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 721 |
> |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
| 722 |
|
for (int i = 0; i < ns; i++) { |
| 723 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 724 |
|
skch_tmp[i] = 0.0; |
| 725 |
|
} |
| 726 |
|
|
| 727 |
< |
AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 728 |
< |
for (int i = 0; i < ns; i++) |
| 727 |
> |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 728 |
> |
for (int i = 0; i < ns; i++) |
| 729 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 730 |
+ |
|
| 731 |
|
} |
| 732 |
|
|
| 733 |
+ |
if (storageLayout_ & DataStorage::dslFlucQForce) { |
| 734 |
+ |
|
| 735 |
+ |
int nq = snap_->atomData.flucQFrc.size(); |
| 736 |
+ |
vector<RealType> fqfrc_tmp(nq, 0.0); |
| 737 |
+ |
|
| 738 |
+ |
AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); |
| 739 |
+ |
for (int i = 0; i < nq; i++) { |
| 740 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 741 |
+ |
fqfrc_tmp[i] = 0.0; |
| 742 |
+ |
} |
| 743 |
+ |
|
| 744 |
+ |
AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); |
| 745 |
+ |
for (int i = 0; i < nq; i++) |
| 746 |
+ |
snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; |
| 747 |
+ |
|
| 748 |
+ |
} |
| 749 |
+ |
|
| 750 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 751 |
|
|
| 752 |
|
vector<potVec> pot_temp(nLocal_, |
| 754 |
|
|
| 755 |
|
// scatter/gather pot_row into the members of my column |
| 756 |
|
|
| 757 |
< |
AtomCommPotRow->scatter(pot_row, pot_temp); |
| 757 |
> |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
| 758 |
|
|
| 759 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 760 |
|
pairwisePot += pot_temp[ii]; |
| 762 |
|
fill(pot_temp.begin(), pot_temp.end(), |
| 763 |
|
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
| 764 |
|
|
| 765 |
< |
AtomCommPotColumn->scatter(pot_col, pot_temp); |
| 765 |
> |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
| 766 |
|
|
| 767 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 768 |
|
pairwisePot += pot_temp[ii]; |
| 769 |
+ |
|
| 770 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 771 |
+ |
RealType ploc1 = pairwisePot[ii]; |
| 772 |
+ |
RealType ploc2 = 0.0; |
| 773 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 774 |
+ |
pairwisePot[ii] = ploc2; |
| 775 |
+ |
} |
| 776 |
+ |
|
| 777 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 778 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 779 |
+ |
RealType ploc2 = 0.0; |
| 780 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 781 |
+ |
embeddingPot[ii] = ploc2; |
| 782 |
+ |
} |
| 783 |
+ |
|
| 784 |
|
#endif |
| 785 |
|
|
| 786 |
|
} |
| 893 |
|
*/ |
| 894 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 895 |
|
int unique_id_1, unique_id_2; |
| 896 |
< |
|
| 896 |
> |
|
| 897 |
|
#ifdef IS_MPI |
| 898 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 899 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 900 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 901 |
+ |
#else |
| 902 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 903 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 904 |
+ |
#endif |
| 905 |
|
|
| 783 |
– |
// this situation should only arise in MPI simulations |
| 906 |
|
if (unique_id_1 == unique_id_2) return true; |
| 907 |
< |
|
| 907 |
> |
|
| 908 |
> |
#ifdef IS_MPI |
| 909 |
|
// this prevents us from doing the pair on multiple processors |
| 910 |
|
if (unique_id_1 < unique_id_2) { |
| 911 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
| 912 |
|
} else { |
| 913 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 913 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 914 |
|
} |
| 915 |
|
#endif |
| 916 |
+ |
|
| 917 |
|
return false; |
| 918 |
|
} |
| 919 |
|
|
| 927 |
|
* field) must still be handled for these pairs. |
| 928 |
|
*/ |
| 929 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
| 930 |
< |
int unique_id_2; |
| 931 |
< |
|
| 932 |
< |
#ifdef IS_MPI |
| 809 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
| 810 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
| 811 |
< |
#else |
| 812 |
< |
// in the normal loop, the atom numbers are unique |
| 813 |
< |
unique_id_2 = atom2; |
| 814 |
< |
#endif |
| 930 |
> |
|
| 931 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
| 932 |
> |
// version, and to use local IDs in the non-MPI version: |
| 933 |
|
|
| 934 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
| 935 |
|
i != excludesForAtom[atom1].end(); ++i) { |
| 936 |
< |
if ( (*i) == unique_id_2 ) return true; |
| 936 |
> |
if ( (*i) == atom2 ) return true; |
| 937 |
|
} |
| 938 |
|
|
| 939 |
|
return false; |
| 1008 |
|
} |
| 1009 |
|
|
| 1010 |
|
#else |
| 1011 |
+ |
|
| 1012 |
|
|
| 1013 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
| 1014 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
| 1015 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
| 1016 |
+ |
|
| 1017 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
| 1018 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 1019 |
|
// ff_->getAtomType(idents[atom2]) ); |
| 1063 |
|
|
| 1064 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 1065 |
|
#ifdef IS_MPI |
| 1066 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 1067 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 1066 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1067 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1068 |
|
|
| 1069 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1070 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1071 |
+ |
|
| 1072 |
+ |
// should particle pot be done here also? |
| 1073 |
|
#else |
| 1074 |
|
pairwisePot += *(idat.pot); |
| 1075 |
|
|
| 1076 |
|
snap_->atomData.force[atom1] += *(idat.f1); |
| 1077 |
|
snap_->atomData.force[atom2] -= *(idat.f1); |
| 1078 |
+ |
|
| 1079 |
+ |
if (idat.doParticlePot) { |
| 1080 |
+ |
snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); |
| 1081 |
+ |
snap_->atomData.particlePot[atom2] -= *(idat.vpair) * *(idat.sw); |
| 1082 |
+ |
} |
| 1083 |
+ |
|
| 1084 |
|
#endif |
| 1085 |
|
|
| 1086 |
|
} |
| 1162 |
|
// add this cutoff group to the list of groups in this cell; |
| 1163 |
|
cellListRow_[cellIndex].push_back(i); |
| 1164 |
|
} |
| 1034 |
– |
|
| 1165 |
|
for (int i = 0; i < nGroupsInCol_; i++) { |
| 1166 |
|
rs = cgColData.position[i]; |
| 1167 |
|
|
| 1186 |
|
// add this cutoff group to the list of groups in this cell; |
| 1187 |
|
cellListCol_[cellIndex].push_back(i); |
| 1188 |
|
} |
| 1189 |
+ |
|
| 1190 |
|
#else |
| 1191 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1192 |
|
rs = snap_->cgData.position[i]; |
| 1207 |
|
whichCell.z() = nCells_.z() * scaled.z(); |
| 1208 |
|
|
| 1209 |
|
// find single index of this cell: |
| 1210 |
< |
cellIndex = Vlinear(whichCell, nCells_); |
| 1210 |
> |
cellIndex = Vlinear(whichCell, nCells_); |
| 1211 |
|
|
| 1212 |
|
// add this cutoff group to the list of groups in this cell; |
| 1213 |
|
cellList_[cellIndex].push_back(i); |
| 1214 |
|
} |
| 1215 |
+ |
|
| 1216 |
|
#endif |
| 1217 |
|
|
| 1218 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1225 |
|
os != cellOffsets_.end(); ++os) { |
| 1226 |
|
|
| 1227 |
|
Vector3i m2v = m1v + (*os); |
| 1228 |
< |
|
| 1228 |
> |
|
| 1229 |
> |
|
| 1230 |
|
if (m2v.x() >= nCells_.x()) { |
| 1231 |
|
m2v.x() = 0; |
| 1232 |
|
} else if (m2v.x() < 0) { |
| 1244 |
|
} else if (m2v.z() < 0) { |
| 1245 |
|
m2v.z() = nCells_.z() - 1; |
| 1246 |
|
} |
| 1247 |
< |
|
| 1247 |
> |
|
| 1248 |
|
int m2 = Vlinear (m2v, nCells_); |
| 1249 |
|
|
| 1250 |
|
#ifdef IS_MPI |
| 1253 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1254 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
| 1255 |
|
|
| 1256 |
< |
// Always do this if we're in different cells or if |
| 1257 |
< |
// we're in the same cell and the global index of the |
| 1258 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1259 |
< |
|
| 1260 |
< |
if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { |
| 1261 |
< |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1262 |
< |
snap_->wrapVector(dr); |
| 1263 |
< |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1264 |
< |
if (dr.lengthSquare() < cuts.third) { |
| 1132 |
< |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1133 |
< |
} |
| 1134 |
< |
} |
| 1256 |
> |
// In parallel, we need to visit *all* pairs of row |
| 1257 |
> |
// & column indicies and will divide labor in the |
| 1258 |
> |
// force evaluation later. |
| 1259 |
> |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1260 |
> |
snap_->wrapVector(dr); |
| 1261 |
> |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1262 |
> |
if (dr.lengthSquare() < cuts.third) { |
| 1263 |
> |
neighborList.push_back(make_pair((*j1), (*j2))); |
| 1264 |
> |
} |
| 1265 |
|
} |
| 1266 |
|
} |
| 1267 |
|
#else |
| 1138 |
– |
|
| 1268 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1269 |
|
j1 != cellList_[m1].end(); ++j1) { |
| 1270 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1271 |
|
j2 != cellList_[m2].end(); ++j2) { |
| 1272 |
< |
|
| 1272 |
> |
|
| 1273 |
|
// Always do this if we're in different cells or if |
| 1274 |
< |
// we're in the same cell and the global index of the |
| 1275 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1276 |
< |
|
| 1277 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
| 1274 |
> |
// we're in the same cell and the global index of |
| 1275 |
> |
// the j2 cutoff group is greater than or equal to |
| 1276 |
> |
// the j1 cutoff group. Note that Rappaport's code |
| 1277 |
> |
// has a "less than" conditional here, but that |
| 1278 |
> |
// deals with atom-by-atom computation. OpenMD |
| 1279 |
> |
// allows atoms within a single cutoff group to |
| 1280 |
> |
// interact with each other. |
| 1281 |
> |
|
| 1282 |
> |
|
| 1283 |
> |
|
| 1284 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1285 |
> |
|
| 1286 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1287 |
|
snap_->wrapVector(dr); |
| 1288 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1301 |
|
// branch to do all cutoff group pairs |
| 1302 |
|
#ifdef IS_MPI |
| 1303 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1304 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1304 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1305 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1306 |
|
snap_->wrapVector(dr); |
| 1307 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1309 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1310 |
|
} |
| 1311 |
|
} |
| 1312 |
< |
} |
| 1312 |
> |
} |
| 1313 |
|
#else |
| 1314 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
| 1315 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
| 1314 |
> |
// include all groups here. |
| 1315 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1316 |
> |
// include self group interactions j2 == j1 |
| 1317 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1318 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1319 |
|
snap_->wrapVector(dr); |
| 1320 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1321 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1322 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1323 |
|
} |
| 1324 |
< |
} |
| 1325 |
< |
} |
| 1324 |
> |
} |
| 1325 |
> |
} |
| 1326 |
|
#endif |
| 1327 |
|
} |
| 1328 |
|
|