| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 48 |  | using namespace std; | 
| 49 |  | namespace OpenMD { | 
| 50 |  |  | 
| 51 | + | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 | + |  | 
| 53 | + | // In a parallel computation, row and colum scans must visit all | 
| 54 | + | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | + | // are used when the processor can see all pairs) | 
| 56 | + | #ifdef IS_MPI | 
| 57 | + | cellOffsets_.clear(); | 
| 58 | + | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 59 | + | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 60 | + | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 61 | + | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 62 | + | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 63 | + | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 64 | + | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 65 | + | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 66 | + | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 67 | + | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 68 | + | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 69 | + | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 70 | + | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 71 | + | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 72 | + | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 73 | + | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 74 | + | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 75 | + | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 76 | + | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 77 | + | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 78 | + | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 79 | + | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 80 | + | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 81 | + | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 82 | + | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 83 | + | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 84 | + | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | + | #endif | 
| 86 | + | } | 
| 87 | + |  | 
| 88 | + |  | 
| 89 |  | /** | 
| 90 |  | * distributeInitialData is essentially a copy of the older fortran | 
| 91 |  | * SimulationSetup | 
| 92 |  | */ | 
| 54 | – |  | 
| 93 |  | void ForceMatrixDecomposition::distributeInitialData() { | 
| 94 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 62 | – | cerr << "in dId, nGroups = " << nGroups_ << "\n"; | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 | < | identsLocal = info_->getIdentArray(); | 
| 101 | > | idents = info_->getIdentArray(); | 
| 102 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 103 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 104 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 105 | + |  | 
| 106 |  | massFactors = info_->getMassFactors(); | 
| 69 | – | PairList excludes = info_->getExcludedInteractions(); | 
| 70 | – | PairList oneTwo = info_->getOneTwoInteractions(); | 
| 71 | – | PairList oneThree = info_->getOneThreeInteractions(); | 
| 72 | – | PairList oneFour = info_->getOneFourInteractions(); | 
| 107 |  |  | 
| 108 | + | PairList* excludes = info_->getExcludedInteractions(); | 
| 109 | + | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 | + | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 | + | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | + |  | 
| 113 | + | if (needVelocities_) | 
| 114 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | + | DataStorage::dslVelocity); | 
| 116 | + | else | 
| 117 | + | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | + |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 | < | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 122 | < | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 78 | < | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 79 | < | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 80 | < | AtomCommPotRow = new Communicator<Row,potVec>(nLocal_); | 
| 121 | > | MPI::Intracomm row = rowComm.getComm(); | 
| 122 | > | MPI::Intracomm col = colComm.getComm(); | 
| 123 |  |  | 
| 124 | < | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 125 | < | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 126 | < | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 127 | < | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 128 | < | AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_); | 
| 124 | > | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 125 | > | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 126 | > | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 127 | > | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 128 | > | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 129 |  |  | 
| 130 | < | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 131 | < | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 132 | < | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 133 | < | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 130 | > | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 131 | > | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 132 | > | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 133 | > | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 134 | > | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 135 |  |  | 
| 136 | < | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 137 | < | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 138 | < | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 139 | < | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 136 | > | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 137 | > | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 138 | > | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 139 | > | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 140 |  |  | 
| 141 | + | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 142 | + | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 143 | + | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 144 | + | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 145 | + |  | 
| 146 |  | // Modify the data storage objects with the correct layouts and sizes: | 
| 147 |  | atomRowData.resize(nAtomsInRow_); | 
| 148 |  | atomRowData.setStorageLayout(storageLayout_); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 164 | < | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 165 | < | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 164 | > | AtomPlanIntRow->gather(idents, identsRow); | 
| 165 | > | AtomPlanIntColumn->gather(idents, identsCol); | 
| 166 |  |  | 
| 167 | < | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 168 | < | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 169 | < |  | 
| 117 | < | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 118 | < | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 167 | > | // allocate memory for the parallel objects | 
| 168 | > | atypesRow.resize(nAtomsInRow_); | 
| 169 | > | atypesCol.resize(nAtomsInCol_); | 
| 170 |  |  | 
| 171 | < | AtomCommRealRow->gather(massFactors, massFactorsRow); | 
| 172 | < | AtomCommRealColumn->gather(massFactors, massFactorsCol); | 
| 171 | > | for (int i = 0; i < nAtomsInRow_; i++) | 
| 172 | > | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 173 | > | for (int i = 0; i < nAtomsInCol_; i++) | 
| 174 | > | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 175 |  |  | 
| 176 | + | pot_row.resize(nAtomsInRow_); | 
| 177 | + | pot_col.resize(nAtomsInCol_); | 
| 178 | + |  | 
| 179 | + | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 180 | + | AtomColToGlobal.resize(nAtomsInCol_); | 
| 181 | + | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 182 | + | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 183 | + |  | 
| 184 | + | cgRowToGlobal.resize(nGroupsInRow_); | 
| 185 | + | cgColToGlobal.resize(nGroupsInCol_); | 
| 186 | + | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 187 | + | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 188 | + |  | 
| 189 | + | massFactorsRow.resize(nAtomsInRow_); | 
| 190 | + | massFactorsCol.resize(nAtomsInCol_); | 
| 191 | + | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 192 | + | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 193 | + |  | 
| 194 |  | groupListRow_.clear(); | 
| 195 |  | groupListRow_.resize(nGroupsInRow_); | 
| 196 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 213 |  | } | 
| 214 |  | } | 
| 215 |  |  | 
| 216 | < | skipsForAtom.clear(); | 
| 217 | < | skipsForAtom.resize(nAtomsInRow_); | 
| 216 | > | excludesForAtom.clear(); | 
| 217 | > | excludesForAtom.resize(nAtomsInRow_); | 
| 218 |  | toposForAtom.clear(); | 
| 219 |  | toposForAtom.resize(nAtomsInRow_); | 
| 220 |  | topoDist.clear(); | 
| 225 |  | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 226 |  | int jglob = AtomColToGlobal[j]; | 
| 227 |  |  | 
| 228 | < | if (excludes.hasPair(iglob, jglob)) | 
| 229 | < | skipsForAtom[i].push_back(j); | 
| 228 | > | if (excludes->hasPair(iglob, jglob)) | 
| 229 | > | excludesForAtom[i].push_back(j); | 
| 230 |  |  | 
| 231 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 231 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 232 |  | toposForAtom[i].push_back(j); | 
| 233 |  | topoDist[i].push_back(1); | 
| 234 |  | } else { | 
| 235 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 235 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 236 |  | toposForAtom[i].push_back(j); | 
| 237 |  | topoDist[i].push_back(2); | 
| 238 |  | } else { | 
| 239 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 239 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 240 |  | toposForAtom[i].push_back(j); | 
| 241 |  | topoDist[i].push_back(3); | 
| 242 |  | } | 
| 245 |  | } | 
| 246 |  | } | 
| 247 |  |  | 
| 248 | < | #endif | 
| 249 | < |  | 
| 250 | < | groupList_.clear(); | 
| 180 | < | groupList_.resize(nGroups_); | 
| 181 | < | for (int i = 0; i < nGroups_; i++) { | 
| 182 | < | int gid = cgLocalToGlobal[i]; | 
| 183 | < | for (int j = 0; j < nLocal_; j++) { | 
| 184 | < | int aid = AtomLocalToGlobal[j]; | 
| 185 | < | if (globalGroupMembership[aid] == gid) { | 
| 186 | < | groupList_[i].push_back(j); | 
| 187 | < | } | 
| 188 | < | } | 
| 189 | < | } | 
| 190 | < |  | 
| 191 | < | skipsForAtom.clear(); | 
| 192 | < | skipsForAtom.resize(nLocal_); | 
| 248 | > | #else | 
| 249 | > | excludesForAtom.clear(); | 
| 250 | > | excludesForAtom.resize(nLocal_); | 
| 251 |  | toposForAtom.clear(); | 
| 252 |  | toposForAtom.resize(nLocal_); | 
| 253 |  | topoDist.clear(); | 
| 259 |  | for (int j = 0; j < nLocal_; j++) { | 
| 260 |  | int jglob = AtomLocalToGlobal[j]; | 
| 261 |  |  | 
| 262 | < | if (excludes.hasPair(iglob, jglob)) | 
| 263 | < | skipsForAtom[i].push_back(j); | 
| 262 | > | if (excludes->hasPair(iglob, jglob)) | 
| 263 | > | excludesForAtom[i].push_back(j); | 
| 264 |  |  | 
| 265 | < | if (oneTwo.hasPair(iglob, jglob)) { | 
| 265 | > | if (oneTwo->hasPair(iglob, jglob)) { | 
| 266 |  | toposForAtom[i].push_back(j); | 
| 267 |  | topoDist[i].push_back(1); | 
| 268 |  | } else { | 
| 269 | < | if (oneThree.hasPair(iglob, jglob)) { | 
| 269 | > | if (oneThree->hasPair(iglob, jglob)) { | 
| 270 |  | toposForAtom[i].push_back(j); | 
| 271 |  | topoDist[i].push_back(2); | 
| 272 |  | } else { | 
| 273 | < | if (oneFour.hasPair(iglob, jglob)) { | 
| 273 | > | if (oneFour->hasPair(iglob, jglob)) { | 
| 274 |  | toposForAtom[i].push_back(j); | 
| 275 |  | topoDist[i].push_back(3); | 
| 276 |  | } | 
| 278 |  | } | 
| 279 |  | } | 
| 280 |  | } | 
| 281 | < |  | 
| 281 | > | #endif | 
| 282 | > |  | 
| 283 | > | // allocate memory for the parallel objects | 
| 284 | > | atypesLocal.resize(nLocal_); | 
| 285 | > |  | 
| 286 | > | for (int i = 0; i < nLocal_; i++) | 
| 287 | > | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 288 | > |  | 
| 289 | > | groupList_.clear(); | 
| 290 | > | groupList_.resize(nGroups_); | 
| 291 | > | for (int i = 0; i < nGroups_; i++) { | 
| 292 | > | int gid = cgLocalToGlobal[i]; | 
| 293 | > | for (int j = 0; j < nLocal_; j++) { | 
| 294 | > | int aid = AtomLocalToGlobal[j]; | 
| 295 | > | if (globalGroupMembership[aid] == gid) { | 
| 296 | > | groupList_[i].push_back(j); | 
| 297 | > | } | 
| 298 | > | } | 
| 299 | > | } | 
| 300 | > |  | 
| 301 | > |  | 
| 302 |  | createGtypeCutoffMap(); | 
| 303 | + |  | 
| 304 |  | } | 
| 305 |  |  | 
| 306 |  | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 307 | < |  | 
| 307 | > |  | 
| 308 |  | RealType tol = 1e-6; | 
| 309 | + | largestRcut_ = 0.0; | 
| 310 |  | RealType rc; | 
| 311 |  | int atid; | 
| 312 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 313 | < | vector<RealType> atypeCutoff; | 
| 314 | < | atypeCutoff.resize( atypes.size() ); | 
| 315 | < |  | 
| 313 | > |  | 
| 314 | > | map<int, RealType> atypeCutoff; | 
| 315 | > |  | 
| 316 |  | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 317 |  | at != atypes.end(); ++at){ | 
| 238 | – | rc = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 318 |  | atid = (*at)->getIdent(); | 
| 319 | < | atypeCutoff[atid] = rc; | 
| 319 | > | if (userChoseCutoff_) | 
| 320 | > | atypeCutoff[atid] = userCutoff_; | 
| 321 | > | else | 
| 322 | > | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 323 |  | } | 
| 324 | < |  | 
| 324 | > |  | 
| 325 |  | vector<RealType> gTypeCutoffs; | 
| 244 | – |  | 
| 326 |  | // first we do a single loop over the cutoff groups to find the | 
| 327 |  | // largest cutoff for any atypes present in this group. | 
| 328 |  | #ifdef IS_MPI | 
| 380 |  |  | 
| 381 |  | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 382 |  | groupToGtype.resize(nGroups_); | 
| 302 | – |  | 
| 303 | – | cerr << "nGroups = " << nGroups_ << "\n"; | 
| 383 |  | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 305 | – |  | 
| 384 |  | groupCutoff[cg1] = 0.0; | 
| 385 |  | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 308 | – |  | 
| 386 |  | for (vector<int>::iterator ia = atomList.begin(); | 
| 387 |  | ia != atomList.end(); ++ia) { | 
| 388 |  | int atom1 = (*ia); | 
| 389 | < | atid = identsLocal[atom1]; | 
| 390 | < | if (atypeCutoff[atid] > groupCutoff[cg1]) { | 
| 389 | > | atid = idents[atom1]; | 
| 390 | > | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 391 |  | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 315 | – | } | 
| 392 |  | } | 
| 393 | < |  | 
| 393 | > |  | 
| 394 |  | bool gTypeFound = false; | 
| 395 |  | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 396 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 398 |  | gTypeFound = true; | 
| 399 |  | } | 
| 400 |  | } | 
| 401 | < | if (!gTypeFound) { | 
| 401 | > | if (!gTypeFound) { | 
| 402 |  | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 403 |  | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 404 |  | } | 
| 405 |  | } | 
| 406 |  | #endif | 
| 407 |  |  | 
| 332 | – | cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n"; | 
| 408 |  | // Now we find the maximum group cutoff value present in the simulation | 
| 409 |  |  | 
| 410 | < | RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); | 
| 410 | > | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 411 | > | gTypeCutoffs.end()); | 
| 412 |  |  | 
| 413 |  | #ifdef IS_MPI | 
| 414 | < | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); | 
| 414 | > | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 415 | > | MPI::MAX); | 
| 416 |  | #endif | 
| 417 |  |  | 
| 418 |  | RealType tradRcut = groupMax; | 
| 442 |  |  | 
| 443 |  | pair<int,int> key = make_pair(i,j); | 
| 444 |  | gTypeCutoffMap[key].first = thisRcut; | 
| 368 | – |  | 
| 445 |  | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 370 | – |  | 
| 446 |  | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 372 | – |  | 
| 447 |  | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 374 | – |  | 
| 448 |  | // sanity check | 
| 449 |  |  | 
| 450 |  | if (userChoseCutoff_) { | 
| 451 |  | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 452 |  | sprintf(painCave.errMsg, | 
| 453 |  | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 454 | < | "user-specified rCut does not match computed group Cutoff\n"); | 
| 454 | > | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 455 |  | painCave.severity = OPENMD_ERROR; | 
| 456 |  | painCave.isFatal = 1; | 
| 457 |  | simError(); | 
| 483 |  | } | 
| 484 |  |  | 
| 485 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 486 | + | pairwisePot = 0.0; | 
| 487 | + | embeddingPot = 0.0; | 
| 488 |  |  | 
| 414 | – | for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { | 
| 415 | – | longRangePot_[j] = 0.0; | 
| 416 | – | } | 
| 417 | – |  | 
| 489 |  | #ifdef IS_MPI | 
| 490 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 491 |  | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 501 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 502 |  |  | 
| 503 |  | fill(pot_col.begin(), pot_col.end(), | 
| 504 | < | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 434 | < |  | 
| 435 | < | pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0); | 
| 504 | > | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 505 |  |  | 
| 506 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 507 | < | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); | 
| 508 | < | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); | 
| 507 | > | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 508 | > | 0.0); | 
| 509 | > | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 510 | > | 0.0); | 
| 511 |  | } | 
| 512 |  |  | 
| 513 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 516 |  | } | 
| 517 |  |  | 
| 518 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 519 | < | fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); | 
| 520 | < | fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); | 
| 519 | > | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 520 | > | 0.0); | 
| 521 | > | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 522 | > | 0.0); | 
| 523 |  | } | 
| 524 |  |  | 
| 525 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 529 |  | atomColData.functionalDerivative.end(), 0.0); | 
| 530 |  | } | 
| 531 |  |  | 
| 532 | < | #else | 
| 533 | < |  | 
| 532 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 533 | > | fill(atomRowData.skippedCharge.begin(), | 
| 534 | > | atomRowData.skippedCharge.end(), 0.0); | 
| 535 | > | fill(atomColData.skippedCharge.begin(), | 
| 536 | > | atomColData.skippedCharge.end(), 0.0); | 
| 537 | > | } | 
| 538 | > |  | 
| 539 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 540 | > | fill(atomRowData.flucQFrc.begin(), | 
| 541 | > | atomRowData.flucQFrc.end(), 0.0); | 
| 542 | > | fill(atomColData.flucQFrc.begin(), | 
| 543 | > | atomColData.flucQFrc.end(), 0.0); | 
| 544 | > | } | 
| 545 | > |  | 
| 546 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 547 | > | fill(atomRowData.electricField.begin(), | 
| 548 | > | atomRowData.electricField.end(), V3Zero); | 
| 549 | > | fill(atomColData.electricField.begin(), | 
| 550 | > | atomColData.electricField.end(), V3Zero); | 
| 551 | > | } | 
| 552 | > |  | 
| 553 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 554 | > | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 555 | > | 0.0); | 
| 556 | > | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 557 | > | 0.0); | 
| 558 | > | } | 
| 559 | > |  | 
| 560 | > | #endif | 
| 561 | > | // even in parallel, we need to zero out the local arrays: | 
| 562 | > |  | 
| 563 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 564 |  | fill(snap_->atomData.particlePot.begin(), | 
| 565 |  | snap_->atomData.particlePot.end(), 0.0); | 
| 569 |  | fill(snap_->atomData.density.begin(), | 
| 570 |  | snap_->atomData.density.end(), 0.0); | 
| 571 |  | } | 
| 572 | + |  | 
| 573 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 574 |  | fill(snap_->atomData.functional.begin(), | 
| 575 |  | snap_->atomData.functional.end(), 0.0); | 
| 576 |  | } | 
| 577 | + |  | 
| 578 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 579 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 580 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 581 |  | } | 
| 582 | < | #endif | 
| 583 | < |  | 
| 582 | > |  | 
| 583 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 584 | > | fill(snap_->atomData.skippedCharge.begin(), | 
| 585 | > | snap_->atomData.skippedCharge.end(), 0.0); | 
| 586 | > | } | 
| 587 | > |  | 
| 588 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 589 | > | fill(snap_->atomData.electricField.begin(), | 
| 590 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 591 | > | } | 
| 592 |  | } | 
| 593 |  |  | 
| 594 |  |  | 
| 598 |  | #ifdef IS_MPI | 
| 599 |  |  | 
| 600 |  | // gather up the atomic positions | 
| 601 | < | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 601 | > | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 602 |  | atomRowData.position); | 
| 603 | < | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 603 | > | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 604 |  | atomColData.position); | 
| 605 |  |  | 
| 606 |  | // gather up the cutoff group positions | 
| 607 | < | cgCommVectorRow->gather(snap_->cgData.position, | 
| 607 | > |  | 
| 608 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 609 |  | cgRowData.position); | 
| 610 | < | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 610 | > |  | 
| 611 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 612 |  | cgColData.position); | 
| 613 | + |  | 
| 614 | + |  | 
| 615 | + |  | 
| 616 | + | if (needVelocities_) { | 
| 617 | + | // gather up the atomic velocities | 
| 618 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 619 | + | atomColData.velocity); | 
| 620 | + |  | 
| 621 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 622 | + | cgColData.velocity); | 
| 623 | + | } | 
| 624 | + |  | 
| 625 |  |  | 
| 626 |  | // if needed, gather the atomic rotation matrices | 
| 627 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 628 | < | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 628 | > | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 629 |  | atomRowData.aMat); | 
| 630 | < | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 630 | > | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 631 |  | atomColData.aMat); | 
| 632 |  | } | 
| 633 |  |  | 
| 634 |  | // if needed, gather the atomic eletrostatic frames | 
| 635 |  | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 636 | < | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 636 | > | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 637 |  | atomRowData.electroFrame); | 
| 638 | < | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 638 | > | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 639 |  | atomColData.electroFrame); | 
| 640 |  | } | 
| 641 | + |  | 
| 642 | + | // if needed, gather the atomic fluctuating charge values | 
| 643 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 644 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 645 | + | atomRowData.flucQPos); | 
| 646 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 647 | + | atomColData.flucQPos); | 
| 648 | + | } | 
| 649 | + |  | 
| 650 |  | #endif | 
| 651 |  | } | 
| 652 |  |  | 
| 660 |  |  | 
| 661 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 662 |  |  | 
| 663 | < | AtomCommRealRow->scatter(atomRowData.density, | 
| 663 | > | AtomPlanRealRow->scatter(atomRowData.density, | 
| 664 |  | snap_->atomData.density); | 
| 665 |  |  | 
| 666 |  | int n = snap_->atomData.density.size(); | 
| 667 |  | vector<RealType> rho_tmp(n, 0.0); | 
| 668 | < | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 668 | > | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 669 |  | for (int i = 0; i < n; i++) | 
| 670 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 671 |  | } | 
| 672 | + |  | 
| 673 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 674 | + |  | 
| 675 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 676 | + | snap_->atomData.electricField); | 
| 677 | + |  | 
| 678 | + | int n = snap_->atomData.electricField.size(); | 
| 679 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 680 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 681 | + | for (int i = 0; i < n; i++) | 
| 682 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 683 | + | } | 
| 684 |  | #endif | 
| 685 |  | } | 
| 686 |  |  | 
| 693 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 694 |  | #ifdef IS_MPI | 
| 695 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 696 | < | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 696 | > | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 697 |  | atomRowData.functional); | 
| 698 | < | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 698 | > | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 699 |  | atomColData.functional); | 
| 700 |  | } | 
| 701 |  |  | 
| 702 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 703 | < | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 703 | > | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 704 |  | atomRowData.functionalDerivative); | 
| 705 | < | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 705 | > | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 706 |  | atomColData.functionalDerivative); | 
| 707 |  | } | 
| 708 |  | #endif | 
| 716 |  | int n = snap_->atomData.force.size(); | 
| 717 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 718 |  |  | 
| 719 | < | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 719 | > | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 720 |  | for (int i = 0; i < n; i++) { | 
| 721 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 722 |  | frc_tmp[i] = 0.0; | 
| 723 |  | } | 
| 724 |  |  | 
| 725 | < | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | < | for (int i = 0; i < n; i++) | 
| 725 | > | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 726 | > | for (int i = 0; i < n; i++) { | 
| 727 |  | snap_->atomData.force[i] += frc_tmp[i]; | 
| 728 | < |  | 
| 729 | < |  | 
| 728 | > | } | 
| 729 | > |  | 
| 730 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 731 |  |  | 
| 732 | < | int nt = snap_->atomData.force.size(); | 
| 732 | > | int nt = snap_->atomData.torque.size(); | 
| 733 |  | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 734 |  |  | 
| 735 | < | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 736 | < | for (int i = 0; i < n; i++) { | 
| 735 | > | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 736 | > | for (int i = 0; i < nt; i++) { | 
| 737 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 738 |  | trq_tmp[i] = 0.0; | 
| 739 |  | } | 
| 740 |  |  | 
| 741 | < | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 742 | < | for (int i = 0; i < n; i++) | 
| 741 | > | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 742 | > | for (int i = 0; i < nt; i++) | 
| 743 |  | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 744 |  | } | 
| 745 | + |  | 
| 746 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 747 | + |  | 
| 748 | + | int ns = snap_->atomData.skippedCharge.size(); | 
| 749 | + | vector<RealType> skch_tmp(ns, 0.0); | 
| 750 | + |  | 
| 751 | + | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 752 | + | for (int i = 0; i < ns; i++) { | 
| 753 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 754 | + | skch_tmp[i] = 0.0; | 
| 755 | + | } | 
| 756 | + |  | 
| 757 | + | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 758 | + | for (int i = 0; i < ns; i++) | 
| 759 | + | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 760 | + |  | 
| 761 | + | } | 
| 762 |  |  | 
| 763 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 764 | + |  | 
| 765 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 766 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 767 | + |  | 
| 768 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 769 | + | for (int i = 0; i < nq; i++) { | 
| 770 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 771 | + | fqfrc_tmp[i] = 0.0; | 
| 772 | + | } | 
| 773 | + |  | 
| 774 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 775 | + | for (int i = 0; i < nq; i++) | 
| 776 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 777 | + |  | 
| 778 | + | } | 
| 779 | + |  | 
| 780 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 781 |  |  | 
| 782 |  | vector<potVec> pot_temp(nLocal_, | 
| 784 |  |  | 
| 785 |  | // scatter/gather pot_row into the members of my column | 
| 786 |  |  | 
| 787 | < | AtomCommPotRow->scatter(pot_row, pot_temp); | 
| 787 | > | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 788 |  |  | 
| 789 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 790 | < | pot_local += pot_temp[ii]; | 
| 791 | < |  | 
| 790 | > | pairwisePot += pot_temp[ii]; | 
| 791 | > |  | 
| 792 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 793 | > | // This is the pairwise contribution to the particle pot.  The | 
| 794 | > | // embedding contribution is added in each of the low level | 
| 795 | > | // non-bonded routines.  In single processor, this is done in | 
| 796 | > | // unpackInteractionData, not in collectData. | 
| 797 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 798 | > | for (int i = 0; i < nLocal_; i++) { | 
| 799 | > | // factor of two is because the total potential terms are divided | 
| 800 | > | // by 2 in parallel due to row/ column scatter | 
| 801 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 802 | > | } | 
| 803 | > | } | 
| 804 | > | } | 
| 805 | > |  | 
| 806 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 807 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 808 |  |  | 
| 809 | < | AtomCommPotColumn->scatter(pot_col, pot_temp); | 
| 809 | > | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 810 |  |  | 
| 811 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 812 | < | pot_local += pot_temp[ii]; | 
| 812 | > | pairwisePot += pot_temp[ii]; | 
| 813 | > |  | 
| 814 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 815 | > | // This is the pairwise contribution to the particle pot.  The | 
| 816 | > | // embedding contribution is added in each of the low level | 
| 817 | > | // non-bonded routines.  In single processor, this is done in | 
| 818 | > | // unpackInteractionData, not in collectData. | 
| 819 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 820 | > | for (int i = 0; i < nLocal_; i++) { | 
| 821 | > | // factor of two is because the total potential terms are divided | 
| 822 | > | // by 2 in parallel due to row/ column scatter | 
| 823 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 824 | > | } | 
| 825 | > | } | 
| 826 | > | } | 
| 827 | > |  | 
| 828 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 829 | > | int npp = snap_->atomData.particlePot.size(); | 
| 830 | > | vector<RealType> ppot_temp(npp, 0.0); | 
| 831 | > |  | 
| 832 | > | // This is the direct or embedding contribution to the particle | 
| 833 | > | // pot. | 
| 834 | > |  | 
| 835 | > | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 836 | > | for (int i = 0; i < npp; i++) { | 
| 837 | > | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 838 | > | } | 
| 839 | > |  | 
| 840 | > | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 841 | > |  | 
| 842 | > | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 843 | > | for (int i = 0; i < npp; i++) { | 
| 844 | > | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 845 | > | } | 
| 846 | > | } | 
| 847 | > |  | 
| 848 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 849 | > | RealType ploc1 = pairwisePot[ii]; | 
| 850 | > | RealType ploc2 = 0.0; | 
| 851 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 852 | > | pairwisePot[ii] = ploc2; | 
| 853 | > | } | 
| 854 | > |  | 
| 855 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 856 | > | RealType ploc1 = embeddingPot[ii]; | 
| 857 | > | RealType ploc2 = 0.0; | 
| 858 | > | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 859 | > | embeddingPot[ii] = ploc2; | 
| 860 | > | } | 
| 861 |  |  | 
| 862 | + | // Here be dragons. | 
| 863 | + | MPI::Intracomm col = colComm.getComm(); | 
| 864 | + |  | 
| 865 | + | col.Allreduce(MPI::IN_PLACE, | 
| 866 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 867 | + | MPI::REALTYPE, MPI::SUM); | 
| 868 | + |  | 
| 869 | + |  | 
| 870 |  | #endif | 
| 871 | + |  | 
| 872 |  | } | 
| 873 |  |  | 
| 874 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 911 |  | return d; | 
| 912 |  | } | 
| 913 |  |  | 
| 914 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 915 | + | #ifdef IS_MPI | 
| 916 | + | return cgColData.velocity[cg2]; | 
| 917 | + | #else | 
| 918 | + | return snap_->cgData.velocity[cg2]; | 
| 919 | + | #endif | 
| 920 | + | } | 
| 921 |  |  | 
| 922 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 923 | + | #ifdef IS_MPI | 
| 924 | + | return atomColData.velocity[atom2]; | 
| 925 | + | #else | 
| 926 | + | return snap_->atomData.velocity[atom2]; | 
| 927 | + | #endif | 
| 928 | + | } | 
| 929 | + |  | 
| 930 | + |  | 
| 931 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 932 |  |  | 
| 933 |  | Vector3d d; | 
| 985 |  | return d; | 
| 986 |  | } | 
| 987 |  |  | 
| 988 | < | vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) { | 
| 989 | < | return skipsForAtom[atom1]; | 
| 988 | > | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 989 | > | return excludesForAtom[atom1]; | 
| 990 |  | } | 
| 991 |  |  | 
| 992 |  | /** | 
| 993 | < | * There are a number of reasons to skip a pair or a | 
| 726 | < | * particle. Mostly we do this to exclude atoms who are involved in | 
| 727 | < | * short range interactions (bonds, bends, torsions), but we also | 
| 728 | < | * need to exclude some overcounted interactions that result from | 
| 993 | > | * We need to exclude some overcounted interactions that result from | 
| 994 |  | * the parallel decomposition. | 
| 995 |  | */ | 
| 996 |  | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 997 |  | int unique_id_1, unique_id_2; | 
| 998 | < |  | 
| 998 | > |  | 
| 999 |  | #ifdef IS_MPI | 
| 1000 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1001 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1002 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1003 | + | #else | 
| 1004 | + | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1005 | + | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1006 | + | #endif | 
| 1007 |  |  | 
| 739 | – | // this situation should only arise in MPI simulations | 
| 1008 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1009 | < |  | 
| 1009 | > |  | 
| 1010 | > | #ifdef IS_MPI | 
| 1011 |  | // this prevents us from doing the pair on multiple processors | 
| 1012 |  | if (unique_id_1 < unique_id_2) { | 
| 1013 |  | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 1014 |  | } else { | 
| 1015 | < | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1015 | > | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1016 |  | } | 
| 748 | – | #else | 
| 749 | – | // in the normal loop, the atom numbers are unique | 
| 750 | – | unique_id_1 = atom1; | 
| 751 | – | unique_id_2 = atom2; | 
| 1017 |  | #endif | 
| 1018 |  |  | 
| 1019 | < | for (vector<int>::iterator i = skipsForAtom[atom1].begin(); | 
| 1020 | < | i != skipsForAtom[atom1].end(); ++i) { | 
| 756 | < | if ( (*i) == unique_id_2 ) return true; | 
| 757 | < | } | 
| 1019 | > | return false; | 
| 1020 | > | } | 
| 1021 |  |  | 
| 1022 | + | /** | 
| 1023 | + | * We need to handle the interactions for atoms who are involved in | 
| 1024 | + | * the same rigid body as well as some short range interactions | 
| 1025 | + | * (bonds, bends, torsions) differently from other interactions. | 
| 1026 | + | * We'll still visit the pairwise routines, but with a flag that | 
| 1027 | + | * tells those routines to exclude the pair from direct long range | 
| 1028 | + | * interactions.  Some indirect interactions (notably reaction | 
| 1029 | + | * field) must still be handled for these pairs. | 
| 1030 | + | */ | 
| 1031 | + | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 1032 | + |  | 
| 1033 | + | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 1034 | + | // version, and to use local IDs in the non-MPI version: | 
| 1035 | + |  | 
| 1036 | + | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 1037 | + | i != excludesForAtom[atom1].end(); ++i) { | 
| 1038 | + | if ( (*i) == atom2 ) return true; | 
| 1039 | + | } | 
| 1040 | + |  | 
| 1041 | + | return false; | 
| 1042 |  | } | 
| 1043 |  |  | 
| 1044 |  |  | 
| 1060 |  |  | 
| 1061 |  | // filling interaction blocks with pointers | 
| 1062 |  | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1063 | < | int atom1, int atom2) { | 
| 1063 | > | int atom1, int atom2) { | 
| 1064 | > |  | 
| 1065 | > | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1066 | > |  | 
| 1067 |  | #ifdef IS_MPI | 
| 1068 | + | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1069 | + | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1070 | + | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1071 |  |  | 
| 783 | – | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 784 | – | ff_->getAtomType(identsCol[atom2]) ); | 
| 785 | – |  | 
| 1072 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1073 |  | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1074 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1104 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1105 |  | } | 
| 1106 |  |  | 
| 1107 | < | #else | 
| 1107 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1108 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1109 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1110 | > | } | 
| 1111 |  |  | 
| 1112 | < | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 1113 | < | ff_->getAtomType(identsLocal[atom2]) ); | 
| 1112 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1113 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1114 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1115 | > | } | 
| 1116 |  |  | 
| 1117 | + | #else | 
| 1118 | + |  | 
| 1119 | + | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1120 | + |  | 
| 1121 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1122 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1123 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1133 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1134 |  | } | 
| 1135 |  |  | 
| 1136 | < | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1136 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1137 |  | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1138 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1139 |  | } | 
| 1153 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1154 |  | } | 
| 1155 |  |  | 
| 1156 | + | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1157 | + | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1158 | + | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1159 | + | } | 
| 1160 | + |  | 
| 1161 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1162 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1163 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1164 | + | } | 
| 1165 | + |  | 
| 1166 |  | #endif | 
| 1167 |  | } | 
| 1168 |  |  | 
| 1169 |  |  | 
| 1170 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1171 |  | #ifdef IS_MPI | 
| 1172 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1173 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1172 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1173 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1174 |  |  | 
| 1175 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1176 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 872 | – | #else | 
| 873 | – | longRangePot_ += *(idat.pot); | 
| 874 | – |  | 
| 875 | – | snap_->atomData.force[atom1] += *(idat.f1); | 
| 876 | – | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 877 | – | #endif | 
| 1177 |  |  | 
| 1178 | < | } | 
| 1178 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1179 | > | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1180 | > | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1181 | > | } | 
| 1182 |  |  | 
| 1183 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1184 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1185 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1186 | + | } | 
| 1187 |  |  | 
| 1188 | < | void ForceMatrixDecomposition::fillSkipData(InteractionData &idat, | 
| 1189 | < | int atom1, int atom2) { | 
| 884 | < | #ifdef IS_MPI | 
| 885 | < | idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 886 | < | ff_->getAtomType(identsCol[atom2]) ); | 
| 1188 | > | #else | 
| 1189 | > | pairwisePot += *(idat.pot); | 
| 1190 |  |  | 
| 1191 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1192 | < | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1193 | < | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1191 | > | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1192 | > | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1193 | > |  | 
| 1194 | > | if (idat.doParticlePot) { | 
| 1195 | > | // This is the pairwise contribution to the particle pot.  The | 
| 1196 | > | // embedding contribution is added in each of the low level | 
| 1197 | > | // non-bonded routines.  In parallel, this calculation is done | 
| 1198 | > | // in collectData, not in unpackInteractionData. | 
| 1199 | > | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1200 | > | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1201 |  | } | 
| 1202 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1203 | < | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1204 | < | idat.t2 = &(atomColData.torque[atom2]); | 
| 1202 | > |  | 
| 1203 | > | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1204 | > | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1205 | > | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1206 |  | } | 
| 896 | – | #else | 
| 897 | – | idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), | 
| 898 | – | ff_->getAtomType(identsLocal[atom2]) ); | 
| 1207 |  |  | 
| 1208 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1209 | < | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1210 | < | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1208 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1209 | > | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1210 | > | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1211 |  | } | 
| 1212 | < | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1213 | < | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1214 | < | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 907 | < | } | 
| 908 | < | #endif | 
| 1212 | > |  | 
| 1213 | > | #endif | 
| 1214 | > |  | 
| 1215 |  | } | 
| 1216 |  |  | 
| 1217 |  | /* | 
| 1224 |  |  | 
| 1225 |  | vector<pair<int, int> > neighborList; | 
| 1226 |  | groupCutoffs cuts; | 
| 1227 | + | bool doAllPairs = false; | 
| 1228 | + |  | 
| 1229 |  | #ifdef IS_MPI | 
| 1230 |  | cellListRow_.clear(); | 
| 1231 |  | cellListCol_.clear(); | 
| 1245 |  | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1246 |  | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1247 |  |  | 
| 1248 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1249 | + |  | 
| 1250 | + | if (nCells_.x() < 3) doAllPairs = true; | 
| 1251 | + | if (nCells_.y() < 3) doAllPairs = true; | 
| 1252 | + | if (nCells_.z() < 3) doAllPairs = true; | 
| 1253 | + |  | 
| 1254 |  | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1255 |  | Vector3d rs, scaled, dr; | 
| 1256 |  | Vector3i whichCell; | 
| 1264 |  | cellList_.resize(nCtot); | 
| 1265 |  | #endif | 
| 1266 |  |  | 
| 1267 | + | if (!doAllPairs) { | 
| 1268 |  | #ifdef IS_MPI | 
| 954 | – | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 955 | – | rs = cgRowData.position[i]; | 
| 1269 |  |  | 
| 1270 | < | // scaled positions relative to the box vectors | 
| 1271 | < | scaled = invHmat * rs; | 
| 1272 | < |  | 
| 1273 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1274 | < | // numbers | 
| 1275 | < | for (int j = 0; j < 3; j++) { | 
| 1276 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1277 | < | scaled[j] += 0.5; | 
| 1270 | > | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1271 | > | rs = cgRowData.position[i]; | 
| 1272 | > |  | 
| 1273 | > | // scaled positions relative to the box vectors | 
| 1274 | > | scaled = invHmat * rs; | 
| 1275 | > |  | 
| 1276 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1277 | > | // numbers | 
| 1278 | > | for (int j = 0; j < 3; j++) { | 
| 1279 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1280 | > | scaled[j] += 0.5; | 
| 1281 | > | } | 
| 1282 | > |  | 
| 1283 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1284 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1285 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1286 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1287 | > |  | 
| 1288 | > | // find single index of this cell: | 
| 1289 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1290 | > |  | 
| 1291 | > | // add this cutoff group to the list of groups in this cell; | 
| 1292 | > | cellListRow_[cellIndex].push_back(i); | 
| 1293 |  | } | 
| 1294 | < |  | 
| 1295 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 1296 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1297 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1298 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1299 | < |  | 
| 1300 | < | // find single index of this cell: | 
| 1301 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 1302 | < |  | 
| 1303 | < | // add this cutoff group to the list of groups in this cell; | 
| 1304 | < | cellListRow_[cellIndex].push_back(i); | 
| 1305 | < | } | 
| 1306 | < |  | 
| 1307 | < | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1308 | < | rs = cgColData.position[i]; | 
| 1309 | < |  | 
| 1310 | < | // scaled positions relative to the box vectors | 
| 1311 | < | scaled = invHmat * rs; | 
| 1312 | < |  | 
| 1313 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1314 | < | // numbers | 
| 1315 | < | for (int j = 0; j < 3; j++) { | 
| 1316 | < | scaled[j] -= roundMe(scaled[j]); | 
| 989 | < | scaled[j] += 0.5; | 
| 1294 | > | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1295 | > | rs = cgColData.position[i]; | 
| 1296 | > |  | 
| 1297 | > | // scaled positions relative to the box vectors | 
| 1298 | > | scaled = invHmat * rs; | 
| 1299 | > |  | 
| 1300 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1301 | > | // numbers | 
| 1302 | > | for (int j = 0; j < 3; j++) { | 
| 1303 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1304 | > | scaled[j] += 0.5; | 
| 1305 | > | } | 
| 1306 | > |  | 
| 1307 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1308 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1309 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1310 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1311 | > |  | 
| 1312 | > | // find single index of this cell: | 
| 1313 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1314 | > |  | 
| 1315 | > | // add this cutoff group to the list of groups in this cell; | 
| 1316 | > | cellListCol_[cellIndex].push_back(i); | 
| 1317 |  | } | 
| 1318 | < |  | 
| 992 | < | // find xyz-indices of cell that cutoffGroup is in. | 
| 993 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 994 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 995 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 996 | < |  | 
| 997 | < | // find single index of this cell: | 
| 998 | < | cellIndex = Vlinear(whichCell, nCells_); | 
| 999 | < |  | 
| 1000 | < | // add this cutoff group to the list of groups in this cell; | 
| 1001 | < | cellListCol_[cellIndex].push_back(i); | 
| 1002 | < | } | 
| 1318 | > |  | 
| 1319 |  | #else | 
| 1320 | < | for (int i = 0; i < nGroups_; i++) { | 
| 1321 | < | rs = snap_->cgData.position[i]; | 
| 1322 | < |  | 
| 1323 | < | // scaled positions relative to the box vectors | 
| 1324 | < | scaled = invHmat * rs; | 
| 1325 | < |  | 
| 1326 | < | // wrap the vector back into the unit box by subtracting integer box | 
| 1327 | < | // numbers | 
| 1328 | < | for (int j = 0; j < 3; j++) { | 
| 1329 | < | scaled[j] -= roundMe(scaled[j]); | 
| 1330 | < | scaled[j] += 0.5; | 
| 1320 | > | for (int i = 0; i < nGroups_; i++) { | 
| 1321 | > | rs = snap_->cgData.position[i]; | 
| 1322 | > |  | 
| 1323 | > | // scaled positions relative to the box vectors | 
| 1324 | > | scaled = invHmat * rs; | 
| 1325 | > |  | 
| 1326 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1327 | > | // numbers | 
| 1328 | > | for (int j = 0; j < 3; j++) { | 
| 1329 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1330 | > | scaled[j] += 0.5; | 
| 1331 | > | } | 
| 1332 | > |  | 
| 1333 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1334 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1335 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1336 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1337 | > |  | 
| 1338 | > | // find single index of this cell: | 
| 1339 | > | cellIndex = Vlinear(whichCell, nCells_); | 
| 1340 | > |  | 
| 1341 | > | // add this cutoff group to the list of groups in this cell; | 
| 1342 | > | cellList_[cellIndex].push_back(i); | 
| 1343 |  | } | 
| 1344 |  |  | 
| 1017 | – | // find xyz-indices of cell that cutoffGroup is in. | 
| 1018 | – | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1019 | – | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1020 | – | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1021 | – |  | 
| 1022 | – | // find single index of this cell: | 
| 1023 | – | cellIndex = Vlinear(whichCell, nCells_); | 
| 1024 | – |  | 
| 1025 | – | // add this cutoff group to the list of groups in this cell; | 
| 1026 | – | cellList_[cellIndex].push_back(i); | 
| 1027 | – | } | 
| 1345 |  | #endif | 
| 1346 |  |  | 
| 1347 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1348 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1349 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1350 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1351 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1035 | < |  | 
| 1036 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1037 | < | os != cellOffsets_.end(); ++os) { | 
| 1347 | > | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1348 | > | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1349 | > | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1350 | > | Vector3i m1v(m1x, m1y, m1z); | 
| 1351 | > | int m1 = Vlinear(m1v, nCells_); | 
| 1352 |  |  | 
| 1353 | < | Vector3i m2v = m1v + (*os); | 
| 1354 | < |  | 
| 1355 | < | if (m2v.x() >= nCells_.x()) { | 
| 1356 | < | m2v.x() = 0; | 
| 1357 | < | } else if (m2v.x() < 0) { | 
| 1044 | < | m2v.x() = nCells_.x() - 1; | 
| 1045 | < | } | 
| 1046 | < |  | 
| 1047 | < | if (m2v.y() >= nCells_.y()) { | 
| 1048 | < | m2v.y() = 0; | 
| 1049 | < | } else if (m2v.y() < 0) { | 
| 1050 | < | m2v.y() = nCells_.y() - 1; | 
| 1051 | < | } | 
| 1052 | < |  | 
| 1053 | < | if (m2v.z() >= nCells_.z()) { | 
| 1054 | < | m2v.z() = 0; | 
| 1055 | < | } else if (m2v.z() < 0) { | 
| 1056 | < | m2v.z() = nCells_.z() - 1; | 
| 1057 | < | } | 
| 1058 | < |  | 
| 1059 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1353 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1354 | > | os != cellOffsets_.end(); ++os) { | 
| 1355 | > |  | 
| 1356 | > | Vector3i m2v = m1v + (*os); | 
| 1357 | > |  | 
| 1358 |  |  | 
| 1359 | < | #ifdef IS_MPI | 
| 1360 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1361 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1362 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1363 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1364 | < |  | 
| 1365 | < | // Always do this if we're in different cells or if | 
| 1366 | < | // we're in the same cell and the global index of the | 
| 1367 | < | // j2 cutoff group is less than the j1 cutoff group | 
| 1359 | > | if (m2v.x() >= nCells_.x()) { | 
| 1360 | > | m2v.x() = 0; | 
| 1361 | > | } else if (m2v.x() < 0) { | 
| 1362 | > | m2v.x() = nCells_.x() - 1; | 
| 1363 | > | } | 
| 1364 | > |  | 
| 1365 | > | if (m2v.y() >= nCells_.y()) { | 
| 1366 | > | m2v.y() = 0; | 
| 1367 | > | } else if (m2v.y() < 0) { | 
| 1368 | > | m2v.y() = nCells_.y() - 1; | 
| 1369 | > | } | 
| 1370 | > |  | 
| 1371 | > | if (m2v.z() >= nCells_.z()) { | 
| 1372 | > | m2v.z() = 0; | 
| 1373 | > | } else if (m2v.z() < 0) { | 
| 1374 | > | m2v.z() = nCells_.z() - 1; | 
| 1375 | > | } | 
| 1376 |  |  | 
| 1377 | < | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 1377 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1378 | > |  | 
| 1379 | > | #ifdef IS_MPI | 
| 1380 | > | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1381 | > | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1382 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1383 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1384 | > |  | 
| 1385 | > | // In parallel, we need to visit *all* pairs of row | 
| 1386 | > | // & column indicies and will divide labor in the | 
| 1387 | > | // force evaluation later. | 
| 1388 |  | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1389 |  | snap_->wrapVector(dr); | 
| 1390 |  | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1391 |  | if (dr.lengthSquare() < cuts.third) { | 
| 1392 |  | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1393 | < | } | 
| 1393 | > | } | 
| 1394 |  | } | 
| 1395 |  | } | 
| 1080 | – | } | 
| 1396 |  | #else | 
| 1397 | + | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1398 | + | j1 != cellList_[m1].end(); ++j1) { | 
| 1399 | + | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1400 | + | j2 != cellList_[m2].end(); ++j2) { | 
| 1401 | + |  | 
| 1402 | + | // Always do this if we're in different cells or if | 
| 1403 | + | // we're in the same cell and the global index of | 
| 1404 | + | // the j2 cutoff group is greater than or equal to | 
| 1405 | + | // the j1 cutoff group.  Note that Rappaport's code | 
| 1406 | + | // has a "less than" conditional here, but that | 
| 1407 | + | // deals with atom-by-atom computation.  OpenMD | 
| 1408 | + | // allows atoms within a single cutoff group to | 
| 1409 | + | // interact with each other. | 
| 1410 |  |  | 
| 1083 | – | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1084 | – | j1 != cellList_[m1].end(); ++j1) { | 
| 1085 | – | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1086 | – | j2 != cellList_[m2].end(); ++j2) { | 
| 1411 |  |  | 
| 1088 | – | // Always do this if we're in different cells or if | 
| 1089 | – | // we're in the same cell and the global index of the | 
| 1090 | – | // j2 cutoff group is less than the j1 cutoff group | 
| 1412 |  |  | 
| 1413 | < | if (m2 != m1 || (*j2) < (*j1)) { | 
| 1414 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1415 | < | snap_->wrapVector(dr); | 
| 1416 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1417 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1418 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1413 | > | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1414 | > |  | 
| 1415 | > | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1416 | > | snap_->wrapVector(dr); | 
| 1417 | > | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1418 | > | if (dr.lengthSquare() < cuts.third) { | 
| 1419 | > | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1420 | > | } | 
| 1421 |  | } | 
| 1422 |  | } | 
| 1423 |  | } | 
| 1101 | – | } | 
| 1424 |  | #endif | 
| 1425 | + | } | 
| 1426 |  | } | 
| 1427 |  | } | 
| 1428 |  | } | 
| 1429 | + | } else { | 
| 1430 | + | // branch to do all cutoff group pairs | 
| 1431 | + | #ifdef IS_MPI | 
| 1432 | + | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1433 | + | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1434 | + | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1435 | + | snap_->wrapVector(dr); | 
| 1436 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1437 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1438 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1439 | + | } | 
| 1440 | + | } | 
| 1441 | + | } | 
| 1442 | + | #else | 
| 1443 | + | // include all groups here. | 
| 1444 | + | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1445 | + | // include self group interactions j2 == j1 | 
| 1446 | + | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1447 | + | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1448 | + | snap_->wrapVector(dr); | 
| 1449 | + | cuts = getGroupCutoffs( j1, j2 ); | 
| 1450 | + | if (dr.lengthSquare() < cuts.third) { | 
| 1451 | + | neighborList.push_back(make_pair(j1, j2)); | 
| 1452 | + | } | 
| 1453 | + | } | 
| 1454 | + | } | 
| 1455 | + | #endif | 
| 1456 |  | } | 
| 1457 | < |  | 
| 1457 | > |  | 
| 1458 |  | // save the local cutoff group positions for the check that is | 
| 1459 |  | // done on each loop: | 
| 1460 |  | saved_CG_positions_.clear(); |