| 50 |  |  | 
| 51 |  | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  |  | 
| 53 | < | // In a parallel computation, row and colum scans must visit all | 
| 54 | < | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | < | // are used when the processor can see all pairs) | 
| 56 | < | #ifdef IS_MPI | 
| 53 | > | // Row and colum scans must visit all surrounding cells | 
| 54 |  | cellOffsets_.clear(); | 
| 55 |  | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 56 |  | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 79 |  | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 80 |  | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 81 |  | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | – | #endif | 
| 82 |  | } | 
| 83 |  |  | 
| 84 |  |  | 
| 302 |  | groupList_[i].push_back(j); | 
| 303 |  | } | 
| 304 |  | } | 
| 305 | < | } | 
| 310 | < |  | 
| 311 | < |  | 
| 312 | < | createGtypeCutoffMap(); | 
| 313 | < |  | 
| 305 | > | } | 
| 306 |  | } | 
| 315 | – |  | 
| 316 | – | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 317 | – |  | 
| 318 | – | GrCut.clear(); | 
| 319 | – | GrCutSq.clear(); | 
| 320 | – | GrlistSq.clear(); | 
| 321 | – |  | 
| 322 | – | RealType tol = 1e-6; | 
| 323 | – | largestRcut_ = 0.0; | 
| 324 | – | int atid; | 
| 325 | – | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 326 | – |  | 
| 327 | – | map<int, RealType> atypeCutoff; | 
| 328 | – |  | 
| 329 | – | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 330 | – | at != atypes.end(); ++at){ | 
| 331 | – | atid = (*at)->getIdent(); | 
| 332 | – | if (userChoseCutoff_) | 
| 333 | – | atypeCutoff[atid] = userCutoff_; | 
| 334 | – | else | 
| 335 | – | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 336 | – | } | 
| 337 | – |  | 
| 338 | – | vector<RealType> gTypeCutoffs; | 
| 339 | – | // first we do a single loop over the cutoff groups to find the | 
| 340 | – | // largest cutoff for any atypes present in this group. | 
| 341 | – | #ifdef IS_MPI | 
| 342 | – | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 343 | – | groupRowToGtype.resize(nGroupsInRow_); | 
| 344 | – | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 345 | – | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 346 | – | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 347 | – | ia != atomListRow.end(); ++ia) { | 
| 348 | – | int atom1 = (*ia); | 
| 349 | – | atid = identsRow[atom1]; | 
| 350 | – | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 351 | – | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 352 | – | } | 
| 353 | – | } | 
| 354 | – |  | 
| 355 | – | bool gTypeFound = false; | 
| 356 | – | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 357 | – | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 358 | – | groupRowToGtype[cg1] = gt; | 
| 359 | – | gTypeFound = true; | 
| 360 | – | } | 
| 361 | – | } | 
| 362 | – | if (!gTypeFound) { | 
| 363 | – | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 364 | – | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 365 | – | } | 
| 366 | – |  | 
| 367 | – | } | 
| 368 | – | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 369 | – | groupColToGtype.resize(nGroupsInCol_); | 
| 370 | – | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 371 | – | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 372 | – | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 373 | – | jb != atomListCol.end(); ++jb) { | 
| 374 | – | int atom2 = (*jb); | 
| 375 | – | atid = identsCol[atom2]; | 
| 376 | – | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 377 | – | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 378 | – | } | 
| 379 | – | } | 
| 380 | – | bool gTypeFound = false; | 
| 381 | – | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 382 | – | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 383 | – | groupColToGtype[cg2] = gt; | 
| 384 | – | gTypeFound = true; | 
| 385 | – | } | 
| 386 | – | } | 
| 387 | – | if (!gTypeFound) { | 
| 388 | – | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 389 | – | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 390 | – | } | 
| 391 | – | } | 
| 392 | – | #else | 
| 393 | – |  | 
| 394 | – | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 395 | – | groupToGtype.resize(nGroups_); | 
| 396 | – | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 397 | – | groupCutoff[cg1] = 0.0; | 
| 398 | – | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 399 | – | for (vector<int>::iterator ia = atomList.begin(); | 
| 400 | – | ia != atomList.end(); ++ia) { | 
| 401 | – | int atom1 = (*ia); | 
| 402 | – | atid = idents[atom1]; | 
| 403 | – | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 404 | – | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 405 | – | } | 
| 406 | – |  | 
| 407 | – | bool gTypeFound = false; | 
| 408 | – | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 409 | – | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 410 | – | groupToGtype[cg1] = gt; | 
| 411 | – | gTypeFound = true; | 
| 412 | – | } | 
| 413 | – | } | 
| 414 | – | if (!gTypeFound) { | 
| 415 | – | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 416 | – | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 417 | – | } | 
| 418 | – | } | 
| 419 | – | #endif | 
| 420 | – |  | 
| 421 | – | // Now we find the maximum group cutoff value present in the simulation | 
| 422 | – |  | 
| 423 | – | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 424 | – | gTypeCutoffs.end()); | 
| 425 | – |  | 
| 426 | – | #ifdef IS_MPI | 
| 427 | – | MPI_Allreduce(MPI_IN_PLACE, &groupMax, 1, MPI_REALTYPE, | 
| 428 | – | MPI_MAX, MPI_COMM_WORLD); | 
| 429 | – | #endif | 
| 307 |  |  | 
| 431 | – | RealType tradRcut = groupMax; | 
| 432 | – |  | 
| 433 | – | GrCut.resize( gTypeCutoffs.size() ); | 
| 434 | – | GrCutSq.resize( gTypeCutoffs.size() ); | 
| 435 | – | GrlistSq.resize( gTypeCutoffs.size() ); | 
| 436 | – |  | 
| 437 | – |  | 
| 438 | – | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 439 | – | GrCut[i].resize( gTypeCutoffs.size() , 0.0); | 
| 440 | – | GrCutSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 441 | – | GrlistSq[i].resize( gTypeCutoffs.size(), 0.0 ); | 
| 442 | – |  | 
| 443 | – | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 444 | – | RealType thisRcut; | 
| 445 | – | switch(cutoffPolicy_) { | 
| 446 | – | case TRADITIONAL: | 
| 447 | – | thisRcut = tradRcut; | 
| 448 | – | break; | 
| 449 | – | case MIX: | 
| 450 | – | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 451 | – | break; | 
| 452 | – | case MAX: | 
| 453 | – | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 454 | – | break; | 
| 455 | – | default: | 
| 456 | – | sprintf(painCave.errMsg, | 
| 457 | – | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 458 | – | "hit an unknown cutoff policy!\n"); | 
| 459 | – | painCave.severity = OPENMD_ERROR; | 
| 460 | – | painCave.isFatal = 1; | 
| 461 | – | simError(); | 
| 462 | – | break; | 
| 463 | – | } | 
| 464 | – |  | 
| 465 | – | GrCut[i][j] = thisRcut; | 
| 466 | – | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 467 | – | GrCutSq[i][j] = thisRcut * thisRcut; | 
| 468 | – | GrlistSq[i][j] = pow(thisRcut + skinThickness_, 2); | 
| 469 | – |  | 
| 470 | – | // pair<int,int> key = make_pair(i,j); | 
| 471 | – | // gTypeCutoffMap[key].first = thisRcut; | 
| 472 | – | // gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 473 | – | // sanity check | 
| 474 | – |  | 
| 475 | – | if (userChoseCutoff_) { | 
| 476 | – | if (abs(GrCut[i][j] - userCutoff_) > 0.0001) { | 
| 477 | – | sprintf(painCave.errMsg, | 
| 478 | – | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 479 | – | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 480 | – | painCave.severity = OPENMD_ERROR; | 
| 481 | – | painCave.isFatal = 1; | 
| 482 | – | simError(); | 
| 483 | – | } | 
| 484 | – | } | 
| 485 | – | } | 
| 486 | – | } | 
| 487 | – | } | 
| 488 | – |  | 
| 489 | – | void ForceMatrixDecomposition::getGroupCutoffs(int &cg1, int &cg2, RealType &rcut, RealType &rcutsq, RealType &rlistsq) { | 
| 490 | – | int i, j; | 
| 491 | – | #ifdef IS_MPI | 
| 492 | – | i = groupRowToGtype[cg1]; | 
| 493 | – | j = groupColToGtype[cg2]; | 
| 494 | – | #else | 
| 495 | – | i = groupToGtype[cg1]; | 
| 496 | – | j = groupToGtype[cg2]; | 
| 497 | – | #endif | 
| 498 | – | rcut = GrCut[i][j]; | 
| 499 | – | rcutsq = GrCutSq[i][j]; | 
| 500 | – | rlistsq = GrlistSq[i][j]; | 
| 501 | – | return; | 
| 502 | – | //return gTypeCutoffMap[make_pair(i,j)]; | 
| 503 | – | } | 
| 504 | – |  | 
| 308 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 309 |  | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 310 |  | if (toposForAtom[atom1][j] == atom2) | 
| 436 |  |  | 
| 437 |  |  | 
| 438 |  | void ForceMatrixDecomposition::distributeData()  { | 
| 439 | + |  | 
| 440 | + | #ifdef IS_MPI | 
| 441 | + |  | 
| 442 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 443 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 638 | – | #ifdef IS_MPI | 
| 444 |  |  | 
| 445 | + | bool needsCG = true; | 
| 446 | + | if(info_->getNCutoffGroups() != info_->getNAtoms()) | 
| 447 | + | needsCG = false; | 
| 448 | + |  | 
| 449 |  | // gather up the atomic positions | 
| 450 |  | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 451 |  | atomRowData.position); | 
| 454 |  |  | 
| 455 |  | // gather up the cutoff group positions | 
| 456 |  |  | 
| 457 | < | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 458 | < | cgRowData.position); | 
| 457 | > | if (needsCG) { | 
| 458 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 459 | > | cgRowData.position); | 
| 460 | > |  | 
| 461 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 462 | > | cgColData.position); | 
| 463 | > | } | 
| 464 |  |  | 
| 651 | – | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 652 | – | cgColData.position); | 
| 465 |  |  | 
| 654 | – |  | 
| 655 | – |  | 
| 466 |  | if (needVelocities_) { | 
| 467 |  | // gather up the atomic velocities | 
| 468 |  | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 469 |  | atomColData.velocity); | 
| 470 | < |  | 
| 471 | < | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 472 | < | cgColData.velocity); | 
| 470 | > |  | 
| 471 | > | if (needsCG) { | 
| 472 | > | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 473 | > | cgColData.velocity); | 
| 474 | > | } | 
| 475 |  | } | 
| 476 |  |  | 
| 477 |  |  | 
| 513 |  | * data structures. | 
| 514 |  | */ | 
| 515 |  | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 516 | + | #ifdef IS_MPI | 
| 517 | + |  | 
| 518 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 519 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 520 | < | #ifdef IS_MPI | 
| 707 | < |  | 
| 520 | > |  | 
| 521 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 522 |  |  | 
| 523 |  | AtomPlanRealRow->scatter(atomRowData.density, | 
| 552 |  | * row and column-indexed data structures | 
| 553 |  | */ | 
| 554 |  | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 555 | + | #ifdef IS_MPI | 
| 556 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 557 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 558 | < | #ifdef IS_MPI | 
| 558 | > |  | 
| 559 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 560 |  | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 561 |  | atomRowData.functional); | 
| 574 |  |  | 
| 575 |  |  | 
| 576 |  | void ForceMatrixDecomposition::collectData() { | 
| 577 | + | #ifdef IS_MPI | 
| 578 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 579 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 580 | < | #ifdef IS_MPI | 
| 580 | > |  | 
| 581 |  | int n = snap_->atomData.force.size(); | 
| 582 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 583 |  |  | 
| 785 |  | * functional) loops onto local data structures. | 
| 786 |  | */ | 
| 787 |  | void ForceMatrixDecomposition::collectSelfData() { | 
| 788 | + |  | 
| 789 | + | #ifdef IS_MPI | 
| 790 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 791 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 792 |  |  | 
| 976 | – | #ifdef IS_MPI | 
| 793 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 794 |  | RealType ploc1 = embeddingPot[ii]; | 
| 795 |  | RealType ploc2 = 0.0; | 
| 806 |  |  | 
| 807 |  | } | 
| 808 |  |  | 
| 993 | – |  | 
| 994 | – |  | 
| 809 |  | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 810 |  | #ifdef IS_MPI | 
| 811 |  | return nAtomsInRow_; | 
| 833 |  | #endif | 
| 834 |  | } | 
| 835 |  |  | 
| 836 | < | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 836 | > | inline Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, | 
| 837 | > | int cg2){ | 
| 838 | > |  | 
| 839 |  | Vector3d d; | 
| 1024 | – |  | 
| 840 |  | #ifdef IS_MPI | 
| 841 |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 842 |  | #else | 
| 866 |  | } | 
| 867 |  |  | 
| 868 |  |  | 
| 869 | < | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 870 | < |  | 
| 869 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, | 
| 870 | > | int cg1) { | 
| 871 |  | Vector3d d; | 
| 872 |  |  | 
| 873 |  | #ifdef IS_MPI | 
| 881 |  | return d; | 
| 882 |  | } | 
| 883 |  |  | 
| 884 | < | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 884 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, | 
| 885 | > | int cg2) { | 
| 886 |  | Vector3d d; | 
| 887 |  |  | 
| 888 |  | #ifdef IS_MPI | 
| 913 |  |  | 
| 914 |  | } | 
| 915 |  |  | 
| 916 | < | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 916 | > | inline Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, | 
| 917 | > | int atom2){ | 
| 918 |  | Vector3d d; | 
| 919 |  |  | 
| 920 |  | #ifdef IS_MPI | 
| 936 |  | * We need to exclude some overcounted interactions that result from | 
| 937 |  | * the parallel decomposition. | 
| 938 |  | */ | 
| 939 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 939 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, | 
| 940 | > | int cg1, int cg2) { | 
| 941 |  | int unique_id_1, unique_id_2; | 
| 942 |  |  | 
| 943 |  | #ifdef IS_MPI | 
| 1014 |  |  | 
| 1015 |  | // filling interaction blocks with pointers | 
| 1016 |  | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1017 | < | int atom1, int atom2) { | 
| 1017 | > | int atom1, int atom2, | 
| 1018 | > | bool newAtom1) { | 
| 1019 |  |  | 
| 1020 |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1021 | < |  | 
| 1021 | > |  | 
| 1022 | > | if (newAtom1) { | 
| 1023 | > |  | 
| 1024 |  | #ifdef IS_MPI | 
| 1025 | < | //idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1026 | < | idat.atid1 = identsRow[atom1]; | 
| 1025 | > | idat.atid1 = identsRow[atom1]; | 
| 1026 | > | idat.atid2 = identsCol[atom2]; | 
| 1027 | > |  | 
| 1028 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1029 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1030 | > | } else { | 
| 1031 | > | idat.sameRegion = false; | 
| 1032 | > | } | 
| 1033 | > |  | 
| 1034 | > | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1035 | > | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1036 | > | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1037 | > | } | 
| 1038 | > |  | 
| 1039 | > | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1040 | > | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1041 | > | idat.t2 = &(atomColData.torque[atom2]); | 
| 1042 | > | } | 
| 1043 | > |  | 
| 1044 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1045 | > | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1046 | > | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1047 | > | } | 
| 1048 | > |  | 
| 1049 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1050 | > | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1051 | > | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1052 | > | } | 
| 1053 | > |  | 
| 1054 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1055 | > | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1056 | > | idat.rho2 = &(atomColData.density[atom2]); | 
| 1057 | > | } | 
| 1058 | > |  | 
| 1059 | > | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1060 | > | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1061 | > | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1062 | > | } | 
| 1063 | > |  | 
| 1064 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1065 | > | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1066 | > | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1067 | > | } | 
| 1068 | > |  | 
| 1069 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1070 | > | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1071 | > | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1072 | > | } | 
| 1073 | > |  | 
| 1074 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1075 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1076 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1077 | > | } | 
| 1078 | > |  | 
| 1079 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1080 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1081 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1082 | > | } | 
| 1083 | > |  | 
| 1084 | > | #else | 
| 1085 | > |  | 
| 1086 | > | idat.atid1 = idents[atom1]; | 
| 1087 | > | idat.atid2 = idents[atom2]; | 
| 1088 | > |  | 
| 1089 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1090 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1091 | > | } else { | 
| 1092 | > | idat.sameRegion = false; | 
| 1093 | > | } | 
| 1094 | > |  | 
| 1095 | > | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1096 | > | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1097 | > | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1098 | > | } | 
| 1099 | > |  | 
| 1100 | > | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1101 | > | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1102 | > | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1103 | > | } | 
| 1104 | > |  | 
| 1105 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1106 | > | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1107 | > | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1108 | > | } | 
| 1109 | > |  | 
| 1110 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1111 | > | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1112 | > | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1113 | > | } | 
| 1114 | > |  | 
| 1115 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1116 | > | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1117 | > | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1118 | > | } | 
| 1119 | > |  | 
| 1120 | > | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1121 | > | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1122 | > | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1123 | > | } | 
| 1124 | > |  | 
| 1125 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1126 | > | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1127 | > | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1128 | > | } | 
| 1129 | > |  | 
| 1130 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1131 | > | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1132 | > | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1133 | > | } | 
| 1134 | > |  | 
| 1135 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1136 | > | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1137 | > | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1138 | > | } | 
| 1139 | > |  | 
| 1140 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1141 | > | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1142 | > | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1143 | > | } | 
| 1144 | > | #endif | 
| 1145 | > |  | 
| 1146 | > | } else { | 
| 1147 | > | // atom1 is not new, so don't bother updating properties of that atom: | 
| 1148 | > | #ifdef IS_MPI | 
| 1149 |  | idat.atid2 = identsCol[atom2]; | 
| 1150 |  |  | 
| 1151 |  | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1155 |  | } | 
| 1156 |  |  | 
| 1157 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1215 | – | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1158 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1159 |  | } | 
| 1160 |  |  | 
| 1161 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1220 | – | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1162 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 |  | } | 
| 1164 |  |  | 
| 1165 |  | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1225 | – | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1166 |  | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1167 |  | } | 
| 1168 |  |  | 
| 1169 |  | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1230 | – | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1170 |  | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1171 |  | } | 
| 1172 |  |  | 
| 1173 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1235 | – | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1174 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1175 |  | } | 
| 1176 |  |  | 
| 1177 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1240 | – | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1178 |  | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1179 |  | } | 
| 1180 |  |  | 
| 1181 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1245 | – | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1182 |  | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1183 |  | } | 
| 1184 |  |  | 
| 1185 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1250 | – | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1186 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1187 |  | } | 
| 1188 |  |  | 
| 1189 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1255 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1190 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1191 |  | } | 
| 1192 |  |  | 
| 1193 | < | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1260 | < | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1193 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1194 |  | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1195 |  | } | 
| 1196 |  |  | 
| 1197 | < | #else | 
| 1265 | < |  | 
| 1266 | < | //idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1267 | < | idat.atid1 = idents[atom1]; | 
| 1197 | > | #else | 
| 1198 |  | idat.atid2 = idents[atom2]; | 
| 1199 |  |  | 
| 1200 |  | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1204 |  | } | 
| 1205 |  |  | 
| 1206 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1277 | – | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1207 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1208 |  | } | 
| 1209 |  |  | 
| 1210 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1282 | – | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1211 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1212 |  | } | 
| 1213 |  |  | 
| 1214 |  | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1287 | – | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1215 |  | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1216 |  | } | 
| 1217 |  |  | 
| 1218 |  | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1292 | – | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1219 |  | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1220 |  | } | 
| 1221 |  |  | 
| 1222 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1297 | – | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1223 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1224 |  | } | 
| 1225 |  |  | 
| 1226 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1302 | – | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1227 |  | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1228 |  | } | 
| 1229 |  |  | 
| 1230 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1307 | – | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1231 |  | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1232 |  | } | 
| 1233 |  |  | 
| 1234 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1312 | – | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1235 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1236 |  | } | 
| 1237 |  |  | 
| 1238 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1317 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1239 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1240 |  | } | 
| 1241 |  |  | 
| 1242 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1322 | – | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1243 |  | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1244 |  | } | 
| 1245 |  |  | 
| 1246 |  | #endif | 
| 1247 | + | } | 
| 1248 |  | } | 
| 1328 | – |  | 
| 1249 |  |  | 
| 1250 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1250 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, | 
| 1251 | > | int atom1, int atom2) { | 
| 1252 |  | #ifdef IS_MPI | 
| 1253 |  | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1254 |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1311 |  | /* | 
| 1312 |  | * buildNeighborList | 
| 1313 |  | * | 
| 1314 | < | * first element of pair is row-indexed CutoffGroup | 
| 1315 | < | * second element of pair is column-indexed CutoffGroup | 
| 1314 | > | * Constructs the Verlet neighbor list for a force-matrix | 
| 1315 | > | * decomposition.  In this case, each processor is responsible for | 
| 1316 | > | * row-site interactions with column-sites. | 
| 1317 | > | * | 
| 1318 | > | * neighborList is returned as a packed array of neighboring | 
| 1319 | > | * column-ordered CutoffGroups.  The starting position in | 
| 1320 | > | * neighborList for each row-ordered CutoffGroup is given by the | 
| 1321 | > | * returned vector point. | 
| 1322 |  | */ | 
| 1323 | < | void ForceMatrixDecomposition::buildNeighborList(vector<pair<int,int> >& neighborList) { | 
| 1324 | < |  | 
| 1323 | > | void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, | 
| 1324 | > | vector<int>& point) { | 
| 1325 |  | neighborList.clear(); | 
| 1326 | < | groupCutoffs cuts; | 
| 1326 | > | point.clear(); | 
| 1327 | > | int len = 0; | 
| 1328 | > |  | 
| 1329 |  | bool doAllPairs = false; | 
| 1330 |  |  | 
| 1402 | – | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1403 | – | RealType rcut, rcutsq, rlistsq; | 
| 1331 |  | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1332 |  | Mat3x3d box; | 
| 1333 |  | Mat3x3d invBox; | 
| 1339 |  | #ifdef IS_MPI | 
| 1340 |  | cellListRow_.clear(); | 
| 1341 |  | cellListCol_.clear(); | 
| 1342 | + | point.resize(nGroupsInRow_+1); | 
| 1343 |  | #else | 
| 1344 |  | cellList_.clear(); | 
| 1345 | + | point.resize(nGroups_+1); | 
| 1346 |  | #endif | 
| 1347 |  |  | 
| 1348 |  | if (!usePeriodicBoundaryConditions_) { | 
| 1353 |  | invBox = snap_->getInvHmat(); | 
| 1354 |  | } | 
| 1355 |  |  | 
| 1356 | < | Vector3d boxX = box.getColumn(0); | 
| 1357 | < | Vector3d boxY = box.getColumn(1); | 
| 1358 | < | Vector3d boxZ = box.getColumn(2); | 
| 1356 | > | Vector3d A = box.getColumn(0); | 
| 1357 | > | Vector3d B = box.getColumn(1); | 
| 1358 | > | Vector3d C = box.getColumn(2); | 
| 1359 | > |  | 
| 1360 | > | // Required for triclinic cells | 
| 1361 | > | Vector3d AxB = cross(A, B); | 
| 1362 | > | Vector3d BxC = cross(B, C); | 
| 1363 | > | Vector3d CxA = cross(C, A); | 
| 1364 | > |  | 
| 1365 | > | // unit vectors perpendicular to the faces of the triclinic cell: | 
| 1366 | > | AxB.normalize(); | 
| 1367 | > | BxC.normalize(); | 
| 1368 | > | CxA.normalize(); | 
| 1369 | > |  | 
| 1370 | > | // A set of perpendicular lengths in triclinic cells: | 
| 1371 | > | RealType Wa = abs(dot(A, BxC)); | 
| 1372 | > | RealType Wb = abs(dot(B, CxA)); | 
| 1373 | > | RealType Wc = abs(dot(C, AxB)); | 
| 1374 |  |  | 
| 1375 | < | nCells_.x() = int( boxX.length() / rList_ ); | 
| 1376 | < | nCells_.y() = int( boxY.length() / rList_ ); | 
| 1377 | < | nCells_.z() = int( boxZ.length() / rList_ ); | 
| 1375 | > | nCells_.x() = int( Wa / rList_ ); | 
| 1376 | > | nCells_.y() = int( Wb / rList_ ); | 
| 1377 | > | nCells_.z() = int( Wc / rList_ ); | 
| 1378 |  |  | 
| 1379 |  | // handle small boxes where the cell offsets can end up repeating cells | 
| 1436 | – |  | 
| 1380 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1381 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1382 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1391 |  | #endif | 
| 1392 |  |  | 
| 1393 |  | if (!doAllPairs) { | 
| 1394 | + |  | 
| 1395 |  | #ifdef IS_MPI | 
| 1396 |  |  | 
| 1397 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1450 |  | // add this cutoff group to the list of groups in this cell; | 
| 1451 |  | cellListCol_[cellIndex].push_back(i); | 
| 1452 |  | } | 
| 1453 | < |  | 
| 1453 | > |  | 
| 1454 |  | #else | 
| 1455 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1456 |  | rs = snap_->cgData.position[i]; | 
| 1483 |  |  | 
| 1484 |  | #endif | 
| 1485 |  |  | 
| 1486 | < | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1487 | < | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1488 | < | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1489 | < | Vector3i m1v(m1x, m1y, m1z); | 
| 1546 | < | int m1 = Vlinear(m1v, nCells_); | 
| 1547 | < |  | 
| 1548 | < | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1549 | < | os != cellOffsets_.end(); ++os) { | 
| 1550 | < |  | 
| 1551 | < | Vector3i m2v = m1v + (*os); | 
| 1552 | < |  | 
| 1486 | > | #ifdef IS_MPI | 
| 1487 | > | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1488 | > | rs = cgRowData.position[j1]; | 
| 1489 | > | #else | 
| 1490 |  |  | 
| 1491 | < | if (m2v.x() >= nCells_.x()) { | 
| 1492 | < | m2v.x() = 0; | 
| 1493 | < | } else if (m2v.x() < 0) { | 
| 1494 | < | m2v.x() = nCells_.x() - 1; | 
| 1495 | < | } | 
| 1496 | < |  | 
| 1497 | < | if (m2v.y() >= nCells_.y()) { | 
| 1498 | < | m2v.y() = 0; | 
| 1499 | < | } else if (m2v.y() < 0) { | 
| 1500 | < | m2v.y() = nCells_.y() - 1; | 
| 1501 | < | } | 
| 1502 | < |  | 
| 1503 | < | if (m2v.z() >= nCells_.z()) { | 
| 1504 | < | m2v.z() = 0; | 
| 1505 | < | } else if (m2v.z() < 0) { | 
| 1506 | < | m2v.z() = nCells_.z() - 1; | 
| 1507 | < | } | 
| 1508 | < |  | 
| 1509 | < | int m2 = Vlinear (m2v, nCells_); | 
| 1491 | > | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1492 | > | rs = snap_->cgData.position[j1]; | 
| 1493 | > | #endif | 
| 1494 | > | point[j1] = len; | 
| 1495 | > |  | 
| 1496 | > | // scaled positions relative to the box vectors | 
| 1497 | > | scaled = invBox * rs; | 
| 1498 | > |  | 
| 1499 | > | // wrap the vector back into the unit box by subtracting integer box | 
| 1500 | > | // numbers | 
| 1501 | > | for (int j = 0; j < 3; j++) { | 
| 1502 | > | scaled[j] -= roundMe(scaled[j]); | 
| 1503 | > | scaled[j] += 0.5; | 
| 1504 | > | // Handle the special case when an object is exactly on the | 
| 1505 | > | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1506 | > | // scaled coordinate of 0.0) | 
| 1507 | > | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1508 | > | } | 
| 1509 | > |  | 
| 1510 | > | // find xyz-indices of cell that cutoffGroup is in. | 
| 1511 | > | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1512 | > | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1513 | > | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1514 | > |  | 
| 1515 | > | // find single index of this cell: | 
| 1516 | > | int m1 = Vlinear(whichCell, nCells_); | 
| 1517 | > |  | 
| 1518 | > | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1519 | > | os != cellOffsets_.end(); ++os) { | 
| 1520 |  |  | 
| 1521 | + | Vector3i m2v = whichCell + (*os); | 
| 1522 | + |  | 
| 1523 | + | if (m2v.x() >= nCells_.x()) { | 
| 1524 | + | m2v.x() = 0; | 
| 1525 | + | } else if (m2v.x() < 0) { | 
| 1526 | + | m2v.x() = nCells_.x() - 1; | 
| 1527 | + | } | 
| 1528 | + |  | 
| 1529 | + | if (m2v.y() >= nCells_.y()) { | 
| 1530 | + | m2v.y() = 0; | 
| 1531 | + | } else if (m2v.y() < 0) { | 
| 1532 | + | m2v.y() = nCells_.y() - 1; | 
| 1533 | + | } | 
| 1534 | + |  | 
| 1535 | + | if (m2v.z() >= nCells_.z()) { | 
| 1536 | + | m2v.z() = 0; | 
| 1537 | + | } else if (m2v.z() < 0) { | 
| 1538 | + | m2v.z() = nCells_.z() - 1; | 
| 1539 | + | } | 
| 1540 | + | int m2 = Vlinear (m2v, nCells_); | 
| 1541 |  | #ifdef IS_MPI | 
| 1542 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1543 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1544 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1545 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1546 | < |  | 
| 1547 | < | // In parallel, we need to visit *all* pairs of row | 
| 1548 | < | // & column indicies and will divide labor in the | 
| 1549 | < | // force evaluation later. | 
| 1550 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1551 | < | if (usePeriodicBoundaryConditions_) { | 
| 1552 | < | snap_->wrapVector(dr); | 
| 1553 | < | } | 
| 1554 | < | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1555 | < | if (dr.lengthSquare() < rlistsq) { | 
| 1556 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1590 | < | } | 
| 1591 | < | } | 
| 1592 | < | } | 
| 1542 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1543 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1544 | > |  | 
| 1545 | > | // In parallel, we need to visit *all* pairs of row | 
| 1546 | > | // & column indicies and will divide labor in the | 
| 1547 | > | // force evaluation later. | 
| 1548 | > | dr = cgColData.position[(*j2)] - rs; | 
| 1549 | > | if (usePeriodicBoundaryConditions_) { | 
| 1550 | > | snap_->wrapVector(dr); | 
| 1551 | > | } | 
| 1552 | > | if (dr.lengthSquare() < rListSq_) { | 
| 1553 | > | neighborList.push_back( (*j2) ); | 
| 1554 | > | ++len; | 
| 1555 | > | } | 
| 1556 | > | } | 
| 1557 |  | #else | 
| 1558 | < | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1559 | < | j1 != cellList_[m1].end(); ++j1) { | 
| 1560 | < | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1561 | < | j2 != cellList_[m2].end(); ++j2) { | 
| 1562 | < |  | 
| 1563 | < | // Always do this if we're in different cells or if | 
| 1564 | < | // we're in the same cell and the global index of | 
| 1565 | < | // the j2 cutoff group is greater than or equal to | 
| 1566 | < | // the j1 cutoff group.  Note that Rappaport's code | 
| 1567 | < | // has a "less than" conditional here, but that | 
| 1568 | < | // deals with atom-by-atom computation.  OpenMD | 
| 1569 | < | // allows atoms within a single cutoff group to | 
| 1570 | < | // interact with each other. | 
| 1571 | < |  | 
| 1572 | < | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1573 | < |  | 
| 1574 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1611 | < | if (usePeriodicBoundaryConditions_) { | 
| 1612 | < | snap_->wrapVector(dr); | 
| 1613 | < | } | 
| 1614 | < | getGroupCutoffs( (*j1), (*j2), rcut, rcutsq, rlistsq ); | 
| 1615 | < | if (dr.lengthSquare() < rlistsq) { | 
| 1616 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1617 | < | } | 
| 1618 | < | } | 
| 1619 | < | } | 
| 1558 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1559 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1560 | > |  | 
| 1561 | > | // Always do this if we're in different cells or if | 
| 1562 | > | // we're in the same cell and the global index of | 
| 1563 | > | // the j2 cutoff group is greater than or equal to | 
| 1564 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1565 | > | // has a "less than" conditional here, but that | 
| 1566 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1567 | > | // allows atoms within a single cutoff group to | 
| 1568 | > | // interact with each other. | 
| 1569 | > |  | 
| 1570 | > | if ( (*j2) >= j1 ) { | 
| 1571 | > |  | 
| 1572 | > | dr = snap_->cgData.position[(*j2)] - rs; | 
| 1573 | > | if (usePeriodicBoundaryConditions_) { | 
| 1574 | > | snap_->wrapVector(dr); | 
| 1575 |  | } | 
| 1576 | < | #endif | 
| 1576 | > | if ( dr.lengthSquare() < rListSq_) { | 
| 1577 | > | neighborList.push_back( (*j2) ); | 
| 1578 | > | ++len; | 
| 1579 | > | } | 
| 1580 |  | } | 
| 1581 | < | } | 
| 1581 | > | } | 
| 1582 | > | #endif | 
| 1583 |  | } | 
| 1584 | < | } | 
| 1584 | > | } | 
| 1585 |  | } else { | 
| 1586 |  | // branch to do all cutoff group pairs | 
| 1587 |  | #ifdef IS_MPI | 
| 1588 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1589 | + | point[j1] = len; | 
| 1590 | + | rs = cgRowData.position[j1]; | 
| 1591 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1592 | < | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1592 | > | dr = cgColData.position[j2] - rs; | 
| 1593 |  | if (usePeriodicBoundaryConditions_) { | 
| 1594 |  | snap_->wrapVector(dr); | 
| 1595 |  | } | 
| 1596 | < | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq); | 
| 1597 | < | if (dr.lengthSquare() < rlistsq) { | 
| 1598 | < | neighborList.push_back(make_pair(j1, j2)); | 
| 1596 | > | if (dr.lengthSquare() < rListSq_) { | 
| 1597 | > | neighborList.push_back( j2 ); | 
| 1598 | > | ++len; | 
| 1599 |  | } | 
| 1600 |  | } | 
| 1601 |  | } | 
| 1602 |  | #else | 
| 1603 |  | // include all groups here. | 
| 1604 |  | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1605 | + | point[j1] = len; | 
| 1606 | + | rs = snap_->cgData.position[j1]; | 
| 1607 |  | // include self group interactions j2 == j1 | 
| 1608 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1609 | < | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1609 | > | dr = snap_->cgData.position[j2] - rs; | 
| 1610 |  | if (usePeriodicBoundaryConditions_) { | 
| 1611 |  | snap_->wrapVector(dr); | 
| 1612 |  | } | 
| 1613 | < | getGroupCutoffs( j1, j2, rcut, rcutsq, rlistsq ); | 
| 1614 | < | if (dr.lengthSquare() < rlistsq) { | 
| 1615 | < | neighborList.push_back(make_pair(j1, j2)); | 
| 1613 | > | if (dr.lengthSquare() < rListSq_) { | 
| 1614 | > | neighborList.push_back( j2 ); | 
| 1615 | > | ++len; | 
| 1616 |  | } | 
| 1617 |  | } | 
| 1618 |  | } | 
| 1619 |  | #endif | 
| 1620 |  | } | 
| 1621 | < |  | 
| 1621 | > |  | 
| 1622 | > | #ifdef IS_MPI | 
| 1623 | > | point[nGroupsInRow_] = len; | 
| 1624 | > | #else | 
| 1625 | > | point[nGroups_] = len; | 
| 1626 | > | #endif | 
| 1627 | > |  | 
| 1628 |  | // save the local cutoff group positions for the check that is | 
| 1629 |  | // done on each loop: | 
| 1630 |  | saved_CG_positions_.clear(); | 
| 1631 | + | saved_CG_positions_.reserve(nGroups_); | 
| 1632 |  | for (int i = 0; i < nGroups_; i++) | 
| 1633 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1634 |  | } |