| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 | #include "math/SquareMatrix3.hpp" | 
| 44 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 45 | #include "brains/SnapshotManager.hpp" | 
| 46 | #include "brains/PairList.hpp" | 
| 47 |  | 
| 48 | using namespace std; | 
| 49 | namespace OpenMD { | 
| 50 |  | 
| 51 | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  | 
| 53 | // Row and colum scans must visit all surrounding cells | 
| 54 | cellOffsets_.clear(); | 
| 55 | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 56 | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 57 | cellOffsets_.push_back( Vector3i( 1,-1,-1) ); | 
| 58 | cellOffsets_.push_back( Vector3i(-1, 0,-1) ); | 
| 59 | cellOffsets_.push_back( Vector3i( 0, 0,-1) ); | 
| 60 | cellOffsets_.push_back( Vector3i( 1, 0,-1) ); | 
| 61 | cellOffsets_.push_back( Vector3i(-1, 1,-1) ); | 
| 62 | cellOffsets_.push_back( Vector3i( 0, 1,-1) ); | 
| 63 | cellOffsets_.push_back( Vector3i( 1, 1,-1) ); | 
| 64 | cellOffsets_.push_back( Vector3i(-1,-1, 0) ); | 
| 65 | cellOffsets_.push_back( Vector3i( 0,-1, 0) ); | 
| 66 | cellOffsets_.push_back( Vector3i( 1,-1, 0) ); | 
| 67 | cellOffsets_.push_back( Vector3i(-1, 0, 0) ); | 
| 68 | cellOffsets_.push_back( Vector3i( 0, 0, 0) ); | 
| 69 | cellOffsets_.push_back( Vector3i( 1, 0, 0) ); | 
| 70 | cellOffsets_.push_back( Vector3i(-1, 1, 0) ); | 
| 71 | cellOffsets_.push_back( Vector3i( 0, 1, 0) ); | 
| 72 | cellOffsets_.push_back( Vector3i( 1, 1, 0) ); | 
| 73 | cellOffsets_.push_back( Vector3i(-1,-1, 1) ); | 
| 74 | cellOffsets_.push_back( Vector3i( 0,-1, 1) ); | 
| 75 | cellOffsets_.push_back( Vector3i( 1,-1, 1) ); | 
| 76 | cellOffsets_.push_back( Vector3i(-1, 0, 1) ); | 
| 77 | cellOffsets_.push_back( Vector3i( 0, 0, 1) ); | 
| 78 | cellOffsets_.push_back( Vector3i( 1, 0, 1) ); | 
| 79 | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 80 | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 81 | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 82 | } | 
| 83 |  | 
| 84 |  | 
| 85 | /** | 
| 86 | * distributeInitialData is essentially a copy of the older fortran | 
| 87 | * SimulationSetup | 
| 88 | */ | 
| 89 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 90 | snap_ = sman_->getCurrentSnapshot(); | 
| 91 | storageLayout_ = sman_->getStorageLayout(); | 
| 92 | ff_ = info_->getForceField(); | 
| 93 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 94 |  | 
| 95 | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 96 | // gather the information for atomtype IDs (atids): | 
| 97 | idents = info_->getIdentArray(); | 
| 98 | regions = info_->getRegions(); | 
| 99 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 100 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 101 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 102 |  | 
| 103 | massFactors = info_->getMassFactors(); | 
| 104 |  | 
| 105 | PairList* excludes = info_->getExcludedInteractions(); | 
| 106 | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 107 | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 108 | PairList* oneFour = info_->getOneFourInteractions(); | 
| 109 |  | 
| 110 | if (needVelocities_) | 
| 111 | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 112 | DataStorage::dslVelocity); | 
| 113 | else | 
| 114 | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 115 |  | 
| 116 | #ifdef IS_MPI | 
| 117 |  | 
| 118 | MPI_Comm row = rowComm.getComm(); | 
| 119 | MPI_Comm col = colComm.getComm(); | 
| 120 |  | 
| 121 | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 122 | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 123 | AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); | 
| 124 | AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); | 
| 125 | AtomPlanPotRow = new Plan<potVec>(row, nLocal_); | 
| 126 |  | 
| 127 | AtomPlanIntColumn = new Plan<int>(col, nLocal_); | 
| 128 | AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); | 
| 129 | AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); | 
| 130 | AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); | 
| 131 | AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); | 
| 132 |  | 
| 133 | cgPlanIntRow = new Plan<int>(row, nGroups_); | 
| 134 | cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); | 
| 135 | cgPlanIntColumn = new Plan<int>(col, nGroups_); | 
| 136 | cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); | 
| 137 |  | 
| 138 | nAtomsInRow_ = AtomPlanIntRow->getSize(); | 
| 139 | nAtomsInCol_ = AtomPlanIntColumn->getSize(); | 
| 140 | nGroupsInRow_ = cgPlanIntRow->getSize(); | 
| 141 | nGroupsInCol_ = cgPlanIntColumn->getSize(); | 
| 142 |  | 
| 143 | // Modify the data storage objects with the correct layouts and sizes: | 
| 144 | atomRowData.resize(nAtomsInRow_); | 
| 145 | atomRowData.setStorageLayout(storageLayout_); | 
| 146 | atomColData.resize(nAtomsInCol_); | 
| 147 | atomColData.setStorageLayout(storageLayout_); | 
| 148 | cgRowData.resize(nGroupsInRow_); | 
| 149 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 150 | cgColData.resize(nGroupsInCol_); | 
| 151 | if (needVelocities_) | 
| 152 | // we only need column velocities if we need them. | 
| 153 | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 154 | DataStorage::dslVelocity); | 
| 155 | else | 
| 156 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 157 |  | 
| 158 | identsRow.resize(nAtomsInRow_); | 
| 159 | identsCol.resize(nAtomsInCol_); | 
| 160 |  | 
| 161 | AtomPlanIntRow->gather(idents, identsRow); | 
| 162 | AtomPlanIntColumn->gather(idents, identsCol); | 
| 163 |  | 
| 164 | regionsRow.resize(nAtomsInRow_); | 
| 165 | regionsCol.resize(nAtomsInCol_); | 
| 166 |  | 
| 167 | AtomPlanIntRow->gather(regions, regionsRow); | 
| 168 | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 169 |  | 
| 170 | // allocate memory for the parallel objects | 
| 171 | atypesRow.resize(nAtomsInRow_); | 
| 172 | atypesCol.resize(nAtomsInCol_); | 
| 173 |  | 
| 174 | for (int i = 0; i < nAtomsInRow_; i++) | 
| 175 | atypesRow[i] = ff_->getAtomType(identsRow[i]); | 
| 176 | for (int i = 0; i < nAtomsInCol_; i++) | 
| 177 | atypesCol[i] = ff_->getAtomType(identsCol[i]); | 
| 178 |  | 
| 179 | pot_row.resize(nAtomsInRow_); | 
| 180 | pot_col.resize(nAtomsInCol_); | 
| 181 |  | 
| 182 | expot_row.resize(nAtomsInRow_); | 
| 183 | expot_col.resize(nAtomsInCol_); | 
| 184 |  | 
| 185 | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 186 | AtomColToGlobal.resize(nAtomsInCol_); | 
| 187 | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 188 | AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 189 |  | 
| 190 | cgRowToGlobal.resize(nGroupsInRow_); | 
| 191 | cgColToGlobal.resize(nGroupsInCol_); | 
| 192 | cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 193 | cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 194 |  | 
| 195 | massFactorsRow.resize(nAtomsInRow_); | 
| 196 | massFactorsCol.resize(nAtomsInCol_); | 
| 197 | AtomPlanRealRow->gather(massFactors, massFactorsRow); | 
| 198 | AtomPlanRealColumn->gather(massFactors, massFactorsCol); | 
| 199 |  | 
| 200 | groupListRow_.clear(); | 
| 201 | groupListRow_.resize(nGroupsInRow_); | 
| 202 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 203 | int gid = cgRowToGlobal[i]; | 
| 204 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 205 | int aid = AtomRowToGlobal[j]; | 
| 206 | if (globalGroupMembership[aid] == gid) | 
| 207 | groupListRow_[i].push_back(j); | 
| 208 | } | 
| 209 | } | 
| 210 |  | 
| 211 | groupListCol_.clear(); | 
| 212 | groupListCol_.resize(nGroupsInCol_); | 
| 213 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 214 | int gid = cgColToGlobal[i]; | 
| 215 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 216 | int aid = AtomColToGlobal[j]; | 
| 217 | if (globalGroupMembership[aid] == gid) | 
| 218 | groupListCol_[i].push_back(j); | 
| 219 | } | 
| 220 | } | 
| 221 |  | 
| 222 | excludesForAtom.clear(); | 
| 223 | excludesForAtom.resize(nAtomsInRow_); | 
| 224 | toposForAtom.clear(); | 
| 225 | toposForAtom.resize(nAtomsInRow_); | 
| 226 | topoDist.clear(); | 
| 227 | topoDist.resize(nAtomsInRow_); | 
| 228 | for (int i = 0; i < nAtomsInRow_; i++) { | 
| 229 | int iglob = AtomRowToGlobal[i]; | 
| 230 |  | 
| 231 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 232 | int jglob = AtomColToGlobal[j]; | 
| 233 |  | 
| 234 | if (excludes->hasPair(iglob, jglob)) | 
| 235 | excludesForAtom[i].push_back(j); | 
| 236 |  | 
| 237 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 238 | toposForAtom[i].push_back(j); | 
| 239 | topoDist[i].push_back(1); | 
| 240 | } else { | 
| 241 | if (oneThree->hasPair(iglob, jglob)) { | 
| 242 | toposForAtom[i].push_back(j); | 
| 243 | topoDist[i].push_back(2); | 
| 244 | } else { | 
| 245 | if (oneFour->hasPair(iglob, jglob)) { | 
| 246 | toposForAtom[i].push_back(j); | 
| 247 | topoDist[i].push_back(3); | 
| 248 | } | 
| 249 | } | 
| 250 | } | 
| 251 | } | 
| 252 | } | 
| 253 |  | 
| 254 | #else | 
| 255 | excludesForAtom.clear(); | 
| 256 | excludesForAtom.resize(nLocal_); | 
| 257 | toposForAtom.clear(); | 
| 258 | toposForAtom.resize(nLocal_); | 
| 259 | topoDist.clear(); | 
| 260 | topoDist.resize(nLocal_); | 
| 261 |  | 
| 262 | for (int i = 0; i < nLocal_; i++) { | 
| 263 | int iglob = AtomLocalToGlobal[i]; | 
| 264 |  | 
| 265 | for (int j = 0; j < nLocal_; j++) { | 
| 266 | int jglob = AtomLocalToGlobal[j]; | 
| 267 |  | 
| 268 | if (excludes->hasPair(iglob, jglob)) | 
| 269 | excludesForAtom[i].push_back(j); | 
| 270 |  | 
| 271 | if (oneTwo->hasPair(iglob, jglob)) { | 
| 272 | toposForAtom[i].push_back(j); | 
| 273 | topoDist[i].push_back(1); | 
| 274 | } else { | 
| 275 | if (oneThree->hasPair(iglob, jglob)) { | 
| 276 | toposForAtom[i].push_back(j); | 
| 277 | topoDist[i].push_back(2); | 
| 278 | } else { | 
| 279 | if (oneFour->hasPair(iglob, jglob)) { | 
| 280 | toposForAtom[i].push_back(j); | 
| 281 | topoDist[i].push_back(3); | 
| 282 | } | 
| 283 | } | 
| 284 | } | 
| 285 | } | 
| 286 | } | 
| 287 | #endif | 
| 288 |  | 
| 289 | // allocate memory for the parallel objects | 
| 290 | atypesLocal.resize(nLocal_); | 
| 291 |  | 
| 292 | for (int i = 0; i < nLocal_; i++) | 
| 293 | atypesLocal[i] = ff_->getAtomType(idents[i]); | 
| 294 |  | 
| 295 | groupList_.clear(); | 
| 296 | groupList_.resize(nGroups_); | 
| 297 | for (int i = 0; i < nGroups_; i++) { | 
| 298 | int gid = cgLocalToGlobal[i]; | 
| 299 | for (int j = 0; j < nLocal_; j++) { | 
| 300 | int aid = AtomLocalToGlobal[j]; | 
| 301 | if (globalGroupMembership[aid] == gid) { | 
| 302 | groupList_[i].push_back(j); | 
| 303 | } | 
| 304 | } | 
| 305 | } | 
| 306 | } | 
| 307 |  | 
| 308 | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 309 | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 310 | if (toposForAtom[atom1][j] == atom2) | 
| 311 | return topoDist[atom1][j]; | 
| 312 | } | 
| 313 | return 0; | 
| 314 | } | 
| 315 |  | 
| 316 | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 317 | pairwisePot = 0.0; | 
| 318 | embeddingPot = 0.0; | 
| 319 | excludedPot = 0.0; | 
| 320 | excludedSelfPot = 0.0; | 
| 321 |  | 
| 322 | #ifdef IS_MPI | 
| 323 | if (storageLayout_ & DataStorage::dslForce) { | 
| 324 | fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); | 
| 325 | fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); | 
| 326 | } | 
| 327 |  | 
| 328 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 329 | fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); | 
| 330 | fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); | 
| 331 | } | 
| 332 |  | 
| 333 | fill(pot_row.begin(), pot_row.end(), | 
| 334 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 335 |  | 
| 336 | fill(pot_col.begin(), pot_col.end(), | 
| 337 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 338 |  | 
| 339 | fill(expot_row.begin(), expot_row.end(), | 
| 340 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 341 |  | 
| 342 | fill(expot_col.begin(), expot_col.end(), | 
| 343 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 344 |  | 
| 345 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 346 | fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), | 
| 347 | 0.0); | 
| 348 | fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), | 
| 349 | 0.0); | 
| 350 | } | 
| 351 |  | 
| 352 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 353 | fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); | 
| 354 | fill(atomColData.density.begin(), atomColData.density.end(), 0.0); | 
| 355 | } | 
| 356 |  | 
| 357 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 358 | fill(atomRowData.functional.begin(), atomRowData.functional.end(), | 
| 359 | 0.0); | 
| 360 | fill(atomColData.functional.begin(), atomColData.functional.end(), | 
| 361 | 0.0); | 
| 362 | } | 
| 363 |  | 
| 364 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 365 | fill(atomRowData.functionalDerivative.begin(), | 
| 366 | atomRowData.functionalDerivative.end(), 0.0); | 
| 367 | fill(atomColData.functionalDerivative.begin(), | 
| 368 | atomColData.functionalDerivative.end(), 0.0); | 
| 369 | } | 
| 370 |  | 
| 371 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 372 | fill(atomRowData.skippedCharge.begin(), | 
| 373 | atomRowData.skippedCharge.end(), 0.0); | 
| 374 | fill(atomColData.skippedCharge.begin(), | 
| 375 | atomColData.skippedCharge.end(), 0.0); | 
| 376 | } | 
| 377 |  | 
| 378 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 379 | fill(atomRowData.flucQFrc.begin(), | 
| 380 | atomRowData.flucQFrc.end(), 0.0); | 
| 381 | fill(atomColData.flucQFrc.begin(), | 
| 382 | atomColData.flucQFrc.end(), 0.0); | 
| 383 | } | 
| 384 |  | 
| 385 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 386 | fill(atomRowData.electricField.begin(), | 
| 387 | atomRowData.electricField.end(), V3Zero); | 
| 388 | fill(atomColData.electricField.begin(), | 
| 389 | atomColData.electricField.end(), V3Zero); | 
| 390 | } | 
| 391 |  | 
| 392 | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 393 | fill(atomRowData.sitePotential.begin(), | 
| 394 | atomRowData.sitePotential.end(), 0.0); | 
| 395 | fill(atomColData.sitePotential.begin(), | 
| 396 | atomColData.sitePotential.end(), 0.0); | 
| 397 | } | 
| 398 |  | 
| 399 | #endif | 
| 400 | // even in parallel, we need to zero out the local arrays: | 
| 401 |  | 
| 402 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 403 | fill(snap_->atomData.particlePot.begin(), | 
| 404 | snap_->atomData.particlePot.end(), 0.0); | 
| 405 | } | 
| 406 |  | 
| 407 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 408 | fill(snap_->atomData.density.begin(), | 
| 409 | snap_->atomData.density.end(), 0.0); | 
| 410 | } | 
| 411 |  | 
| 412 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 413 | fill(snap_->atomData.functional.begin(), | 
| 414 | snap_->atomData.functional.end(), 0.0); | 
| 415 | } | 
| 416 |  | 
| 417 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 418 | fill(snap_->atomData.functionalDerivative.begin(), | 
| 419 | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 420 | } | 
| 421 |  | 
| 422 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 423 | fill(snap_->atomData.skippedCharge.begin(), | 
| 424 | snap_->atomData.skippedCharge.end(), 0.0); | 
| 425 | } | 
| 426 |  | 
| 427 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 428 | fill(snap_->atomData.electricField.begin(), | 
| 429 | snap_->atomData.electricField.end(), V3Zero); | 
| 430 | } | 
| 431 | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 432 | fill(snap_->atomData.sitePotential.begin(), | 
| 433 | snap_->atomData.sitePotential.end(), 0.0); | 
| 434 | } | 
| 435 | } | 
| 436 |  | 
| 437 |  | 
| 438 | void ForceMatrixDecomposition::distributeData()  { | 
| 439 |  | 
| 440 | #ifdef IS_MPI | 
| 441 |  | 
| 442 | snap_ = sman_->getCurrentSnapshot(); | 
| 443 | storageLayout_ = sman_->getStorageLayout(); | 
| 444 |  | 
| 445 | bool needsCG = true; | 
| 446 | if(info_->getNCutoffGroups() != info_->getNAtoms()) | 
| 447 | needsCG = false; | 
| 448 |  | 
| 449 | // gather up the atomic positions | 
| 450 | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 451 | atomRowData.position); | 
| 452 | AtomPlanVectorColumn->gather(snap_->atomData.position, | 
| 453 | atomColData.position); | 
| 454 |  | 
| 455 | // gather up the cutoff group positions | 
| 456 |  | 
| 457 | if (needsCG) { | 
| 458 | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 459 | cgRowData.position); | 
| 460 |  | 
| 461 | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 462 | cgColData.position); | 
| 463 | } | 
| 464 |  | 
| 465 |  | 
| 466 | if (needVelocities_) { | 
| 467 | // gather up the atomic velocities | 
| 468 | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 469 | atomColData.velocity); | 
| 470 |  | 
| 471 | if (needsCG) { | 
| 472 | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 473 | cgColData.velocity); | 
| 474 | } | 
| 475 | } | 
| 476 |  | 
| 477 |  | 
| 478 | // if needed, gather the atomic rotation matrices | 
| 479 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 480 | AtomPlanMatrixRow->gather(snap_->atomData.aMat, | 
| 481 | atomRowData.aMat); | 
| 482 | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 483 | atomColData.aMat); | 
| 484 | } | 
| 485 |  | 
| 486 | // if needed, gather the atomic eletrostatic information | 
| 487 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 488 | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 489 | atomRowData.dipole); | 
| 490 | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 491 | atomColData.dipole); | 
| 492 | } | 
| 493 |  | 
| 494 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 495 | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 496 | atomRowData.quadrupole); | 
| 497 | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 498 | atomColData.quadrupole); | 
| 499 | } | 
| 500 |  | 
| 501 | // if needed, gather the atomic fluctuating charge values | 
| 502 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 503 | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 504 | atomRowData.flucQPos); | 
| 505 | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 506 | atomColData.flucQPos); | 
| 507 | } | 
| 508 |  | 
| 509 | #endif | 
| 510 | } | 
| 511 |  | 
| 512 | /* collects information obtained during the pre-pair loop onto local | 
| 513 | * data structures. | 
| 514 | */ | 
| 515 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 516 | #ifdef IS_MPI | 
| 517 |  | 
| 518 | snap_ = sman_->getCurrentSnapshot(); | 
| 519 | storageLayout_ = sman_->getStorageLayout(); | 
| 520 |  | 
| 521 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 522 |  | 
| 523 | AtomPlanRealRow->scatter(atomRowData.density, | 
| 524 | snap_->atomData.density); | 
| 525 |  | 
| 526 | int n = snap_->atomData.density.size(); | 
| 527 | vector<RealType> rho_tmp(n, 0.0); | 
| 528 | AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); | 
| 529 | for (int i = 0; i < n; i++) | 
| 530 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 531 | } | 
| 532 |  | 
| 533 | // this isn't necessary if we don't have polarizable atoms, but | 
| 534 | // we'll leave it here for now. | 
| 535 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 536 |  | 
| 537 | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 538 | snap_->atomData.electricField); | 
| 539 |  | 
| 540 | int n = snap_->atomData.electricField.size(); | 
| 541 | vector<Vector3d> field_tmp(n, V3Zero); | 
| 542 | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 543 | field_tmp); | 
| 544 | for (int i = 0; i < n; i++) | 
| 545 | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 546 | } | 
| 547 | #endif | 
| 548 | } | 
| 549 |  | 
| 550 | /* | 
| 551 | * redistributes information obtained during the pre-pair loop out to | 
| 552 | * row and column-indexed data structures | 
| 553 | */ | 
| 554 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 555 | #ifdef IS_MPI | 
| 556 | snap_ = sman_->getCurrentSnapshot(); | 
| 557 | storageLayout_ = sman_->getStorageLayout(); | 
| 558 |  | 
| 559 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 560 | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 561 | atomRowData.functional); | 
| 562 | AtomPlanRealColumn->gather(snap_->atomData.functional, | 
| 563 | atomColData.functional); | 
| 564 | } | 
| 565 |  | 
| 566 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 567 | AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, | 
| 568 | atomRowData.functionalDerivative); | 
| 569 | AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 570 | atomColData.functionalDerivative); | 
| 571 | } | 
| 572 | #endif | 
| 573 | } | 
| 574 |  | 
| 575 |  | 
| 576 | void ForceMatrixDecomposition::collectData() { | 
| 577 | #ifdef IS_MPI | 
| 578 | snap_ = sman_->getCurrentSnapshot(); | 
| 579 | storageLayout_ = sman_->getStorageLayout(); | 
| 580 |  | 
| 581 | int n = snap_->atomData.force.size(); | 
| 582 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 583 |  | 
| 584 | AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 585 | for (int i = 0; i < n; i++) { | 
| 586 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 587 | frc_tmp[i] = 0.0; | 
| 588 | } | 
| 589 |  | 
| 590 | AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 591 | for (int i = 0; i < n; i++) { | 
| 592 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 593 | } | 
| 594 |  | 
| 595 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 596 |  | 
| 597 | int nt = snap_->atomData.torque.size(); | 
| 598 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 599 |  | 
| 600 | AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 601 | for (int i = 0; i < nt; i++) { | 
| 602 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 603 | trq_tmp[i] = 0.0; | 
| 604 | } | 
| 605 |  | 
| 606 | AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 607 | for (int i = 0; i < nt; i++) | 
| 608 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 609 | } | 
| 610 |  | 
| 611 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 612 |  | 
| 613 | int ns = snap_->atomData.skippedCharge.size(); | 
| 614 | vector<RealType> skch_tmp(ns, 0.0); | 
| 615 |  | 
| 616 | AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); | 
| 617 | for (int i = 0; i < ns; i++) { | 
| 618 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 619 | skch_tmp[i] = 0.0; | 
| 620 | } | 
| 621 |  | 
| 622 | AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); | 
| 623 | for (int i = 0; i < ns; i++) | 
| 624 | snap_->atomData.skippedCharge[i] += skch_tmp[i]; | 
| 625 |  | 
| 626 | } | 
| 627 |  | 
| 628 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 629 |  | 
| 630 | int nq = snap_->atomData.flucQFrc.size(); | 
| 631 | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 632 |  | 
| 633 | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 634 | for (int i = 0; i < nq; i++) { | 
| 635 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 636 | fqfrc_tmp[i] = 0.0; | 
| 637 | } | 
| 638 |  | 
| 639 | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 640 | for (int i = 0; i < nq; i++) | 
| 641 | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 642 |  | 
| 643 | } | 
| 644 |  | 
| 645 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 646 |  | 
| 647 | int nef = snap_->atomData.electricField.size(); | 
| 648 | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 649 |  | 
| 650 | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 651 | for (int i = 0; i < nef; i++) { | 
| 652 | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 653 | efield_tmp[i] = 0.0; | 
| 654 | } | 
| 655 |  | 
| 656 | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 657 | for (int i = 0; i < nef; i++) | 
| 658 | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 659 | } | 
| 660 |  | 
| 661 | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 662 |  | 
| 663 | int nsp = snap_->atomData.sitePotential.size(); | 
| 664 | vector<RealType> sp_tmp(nsp, 0.0); | 
| 665 |  | 
| 666 | AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); | 
| 667 | for (int i = 0; i < nsp; i++) { | 
| 668 | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 669 | sp_tmp[i] = 0.0; | 
| 670 | } | 
| 671 |  | 
| 672 | AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); | 
| 673 | for (int i = 0; i < nsp; i++) | 
| 674 | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 675 | } | 
| 676 |  | 
| 677 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 678 |  | 
| 679 | vector<potVec> pot_temp(nLocal_, | 
| 680 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 681 | vector<potVec> expot_temp(nLocal_, | 
| 682 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 683 |  | 
| 684 | // scatter/gather pot_row into the members of my column | 
| 685 |  | 
| 686 | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 687 | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 688 |  | 
| 689 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 690 | pairwisePot += pot_temp[ii]; | 
| 691 |  | 
| 692 | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 693 | excludedPot += expot_temp[ii]; | 
| 694 |  | 
| 695 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 696 | // This is the pairwise contribution to the particle pot.  The | 
| 697 | // embedding contribution is added in each of the low level | 
| 698 | // non-bonded routines.  In single processor, this is done in | 
| 699 | // unpackInteractionData, not in collectData. | 
| 700 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 701 | for (int i = 0; i < nLocal_; i++) { | 
| 702 | // factor of two is because the total potential terms are divided | 
| 703 | // by 2 in parallel due to row/ column scatter | 
| 704 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 705 | } | 
| 706 | } | 
| 707 | } | 
| 708 |  | 
| 709 | fill(pot_temp.begin(), pot_temp.end(), | 
| 710 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 711 | fill(expot_temp.begin(), expot_temp.end(), | 
| 712 | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 713 |  | 
| 714 | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 715 | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 716 |  | 
| 717 | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 718 | pairwisePot += pot_temp[ii]; | 
| 719 |  | 
| 720 | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 721 | excludedPot += expot_temp[ii]; | 
| 722 |  | 
| 723 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 724 | // This is the pairwise contribution to the particle pot.  The | 
| 725 | // embedding contribution is added in each of the low level | 
| 726 | // non-bonded routines.  In single processor, this is done in | 
| 727 | // unpackInteractionData, not in collectData. | 
| 728 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 729 | for (int i = 0; i < nLocal_; i++) { | 
| 730 | // factor of two is because the total potential terms are divided | 
| 731 | // by 2 in parallel due to row/ column scatter | 
| 732 | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 733 | } | 
| 734 | } | 
| 735 | } | 
| 736 |  | 
| 737 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 738 | int npp = snap_->atomData.particlePot.size(); | 
| 739 | vector<RealType> ppot_temp(npp, 0.0); | 
| 740 |  | 
| 741 | // This is the direct or embedding contribution to the particle | 
| 742 | // pot. | 
| 743 |  | 
| 744 | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 745 | for (int i = 0; i < npp; i++) { | 
| 746 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 747 | } | 
| 748 |  | 
| 749 | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 750 |  | 
| 751 | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 752 | for (int i = 0; i < npp; i++) { | 
| 753 | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 754 | } | 
| 755 | } | 
| 756 |  | 
| 757 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 758 | RealType ploc1 = pairwisePot[ii]; | 
| 759 | RealType ploc2 = 0.0; | 
| 760 | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 761 | pairwisePot[ii] = ploc2; | 
| 762 | } | 
| 763 |  | 
| 764 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 765 | RealType ploc1 = excludedPot[ii]; | 
| 766 | RealType ploc2 = 0.0; | 
| 767 | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 768 | excludedPot[ii] = ploc2; | 
| 769 | } | 
| 770 |  | 
| 771 | // Here be dragons. | 
| 772 | MPI_Comm col = colComm.getComm(); | 
| 773 |  | 
| 774 | MPI_Allreduce(MPI_IN_PLACE, | 
| 775 | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 776 | MPI_REALTYPE, MPI_SUM, col); | 
| 777 |  | 
| 778 |  | 
| 779 | #endif | 
| 780 |  | 
| 781 | } | 
| 782 |  | 
| 783 | /** | 
| 784 | * Collects information obtained during the post-pair (and embedding | 
| 785 | * functional) loops onto local data structures. | 
| 786 | */ | 
| 787 | void ForceMatrixDecomposition::collectSelfData() { | 
| 788 |  | 
| 789 | #ifdef IS_MPI | 
| 790 | snap_ = sman_->getCurrentSnapshot(); | 
| 791 | storageLayout_ = sman_->getStorageLayout(); | 
| 792 |  | 
| 793 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 794 | RealType ploc1 = embeddingPot[ii]; | 
| 795 | RealType ploc2 = 0.0; | 
| 796 | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 797 | embeddingPot[ii] = ploc2; | 
| 798 | } | 
| 799 | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 800 | RealType ploc1 = excludedSelfPot[ii]; | 
| 801 | RealType ploc2 = 0.0; | 
| 802 | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 803 | excludedSelfPot[ii] = ploc2; | 
| 804 | } | 
| 805 | #endif | 
| 806 |  | 
| 807 | } | 
| 808 |  | 
| 809 | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 810 | #ifdef IS_MPI | 
| 811 | return nAtomsInRow_; | 
| 812 | #else | 
| 813 | return nLocal_; | 
| 814 | #endif | 
| 815 | } | 
| 816 |  | 
| 817 | /** | 
| 818 | * returns the list of atoms belonging to this group. | 
| 819 | */ | 
| 820 | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 821 | #ifdef IS_MPI | 
| 822 | return groupListRow_[cg1]; | 
| 823 | #else | 
| 824 | return groupList_[cg1]; | 
| 825 | #endif | 
| 826 | } | 
| 827 |  | 
| 828 | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 829 | #ifdef IS_MPI | 
| 830 | return groupListCol_[cg2]; | 
| 831 | #else | 
| 832 | return groupList_[cg2]; | 
| 833 | #endif | 
| 834 | } | 
| 835 |  | 
| 836 | inline Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, | 
| 837 | int cg2){ | 
| 838 |  | 
| 839 | Vector3d d; | 
| 840 | #ifdef IS_MPI | 
| 841 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 842 | #else | 
| 843 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 844 | #endif | 
| 845 |  | 
| 846 | if (usePeriodicBoundaryConditions_) { | 
| 847 | snap_->wrapVector(d); | 
| 848 | } | 
| 849 | return d; | 
| 850 | } | 
| 851 |  | 
| 852 | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 853 | #ifdef IS_MPI | 
| 854 | return cgColData.velocity[cg2]; | 
| 855 | #else | 
| 856 | return snap_->cgData.velocity[cg2]; | 
| 857 | #endif | 
| 858 | } | 
| 859 |  | 
| 860 | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 861 | #ifdef IS_MPI | 
| 862 | return atomColData.velocity[atom2]; | 
| 863 | #else | 
| 864 | return snap_->atomData.velocity[atom2]; | 
| 865 | #endif | 
| 866 | } | 
| 867 |  | 
| 868 |  | 
| 869 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, | 
| 870 | int cg1) { | 
| 871 | Vector3d d; | 
| 872 |  | 
| 873 | #ifdef IS_MPI | 
| 874 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 875 | #else | 
| 876 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 877 | #endif | 
| 878 | if (usePeriodicBoundaryConditions_) { | 
| 879 | snap_->wrapVector(d); | 
| 880 | } | 
| 881 | return d; | 
| 882 | } | 
| 883 |  | 
| 884 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, | 
| 885 | int cg2) { | 
| 886 | Vector3d d; | 
| 887 |  | 
| 888 | #ifdef IS_MPI | 
| 889 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 890 | #else | 
| 891 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 892 | #endif | 
| 893 | if (usePeriodicBoundaryConditions_) { | 
| 894 | snap_->wrapVector(d); | 
| 895 | } | 
| 896 | return d; | 
| 897 | } | 
| 898 |  | 
| 899 | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 900 | #ifdef IS_MPI | 
| 901 | return massFactorsRow[atom1]; | 
| 902 | #else | 
| 903 | return massFactors[atom1]; | 
| 904 | #endif | 
| 905 | } | 
| 906 |  | 
| 907 | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 908 | #ifdef IS_MPI | 
| 909 | return massFactorsCol[atom2]; | 
| 910 | #else | 
| 911 | return massFactors[atom2]; | 
| 912 | #endif | 
| 913 |  | 
| 914 | } | 
| 915 |  | 
| 916 | inline Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, | 
| 917 | int atom2){ | 
| 918 | Vector3d d; | 
| 919 |  | 
| 920 | #ifdef IS_MPI | 
| 921 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 922 | #else | 
| 923 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 924 | #endif | 
| 925 | if (usePeriodicBoundaryConditions_) { | 
| 926 | snap_->wrapVector(d); | 
| 927 | } | 
| 928 | return d; | 
| 929 | } | 
| 930 |  | 
| 931 | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 932 | return excludesForAtom[atom1]; | 
| 933 | } | 
| 934 |  | 
| 935 | /** | 
| 936 | * We need to exclude some overcounted interactions that result from | 
| 937 | * the parallel decomposition. | 
| 938 | */ | 
| 939 | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, | 
| 940 | int cg1, int cg2) { | 
| 941 | int unique_id_1, unique_id_2; | 
| 942 |  | 
| 943 | #ifdef IS_MPI | 
| 944 | // in MPI, we have to look up the unique IDs for each atom | 
| 945 | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 946 | unique_id_2 = AtomColToGlobal[atom2]; | 
| 947 | // group1 = cgRowToGlobal[cg1]; | 
| 948 | // group2 = cgColToGlobal[cg2]; | 
| 949 | #else | 
| 950 | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 951 | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 952 | int group1 = cgLocalToGlobal[cg1]; | 
| 953 | int group2 = cgLocalToGlobal[cg2]; | 
| 954 | #endif | 
| 955 |  | 
| 956 | if (unique_id_1 == unique_id_2) return true; | 
| 957 |  | 
| 958 | #ifdef IS_MPI | 
| 959 | // this prevents us from doing the pair on multiple processors | 
| 960 | if (unique_id_1 < unique_id_2) { | 
| 961 | if ((unique_id_1 + unique_id_2) % 2 == 0) return true; | 
| 962 | } else { | 
| 963 | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 964 | } | 
| 965 | #endif | 
| 966 |  | 
| 967 | #ifndef IS_MPI | 
| 968 | if (group1 == group2) { | 
| 969 | if (unique_id_1 < unique_id_2) return true; | 
| 970 | } | 
| 971 | #endif | 
| 972 |  | 
| 973 | return false; | 
| 974 | } | 
| 975 |  | 
| 976 | /** | 
| 977 | * We need to handle the interactions for atoms who are involved in | 
| 978 | * the same rigid body as well as some short range interactions | 
| 979 | * (bonds, bends, torsions) differently from other interactions. | 
| 980 | * We'll still visit the pairwise routines, but with a flag that | 
| 981 | * tells those routines to exclude the pair from direct long range | 
| 982 | * interactions.  Some indirect interactions (notably reaction | 
| 983 | * field) must still be handled for these pairs. | 
| 984 | */ | 
| 985 | bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { | 
| 986 |  | 
| 987 | // excludesForAtom was constructed to use row/column indices in the MPI | 
| 988 | // version, and to use local IDs in the non-MPI version: | 
| 989 |  | 
| 990 | for (vector<int>::iterator i = excludesForAtom[atom1].begin(); | 
| 991 | i != excludesForAtom[atom1].end(); ++i) { | 
| 992 | if ( (*i) == atom2 ) return true; | 
| 993 | } | 
| 994 |  | 
| 995 | return false; | 
| 996 | } | 
| 997 |  | 
| 998 |  | 
| 999 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 1000 | #ifdef IS_MPI | 
| 1001 | atomRowData.force[atom1] += fg; | 
| 1002 | #else | 
| 1003 | snap_->atomData.force[atom1] += fg; | 
| 1004 | #endif | 
| 1005 | } | 
| 1006 |  | 
| 1007 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 1008 | #ifdef IS_MPI | 
| 1009 | atomColData.force[atom2] += fg; | 
| 1010 | #else | 
| 1011 | snap_->atomData.force[atom2] += fg; | 
| 1012 | #endif | 
| 1013 | } | 
| 1014 |  | 
| 1015 | // filling interaction blocks with pointers | 
| 1016 | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1017 | int atom1, int atom2, | 
| 1018 | bool newAtom1) { | 
| 1019 |  | 
| 1020 | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1021 |  | 
| 1022 | if (newAtom1) { | 
| 1023 |  | 
| 1024 | #ifdef IS_MPI | 
| 1025 | idat.atid1 = identsRow[atom1]; | 
| 1026 | idat.atid2 = identsCol[atom2]; | 
| 1027 |  | 
| 1028 | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1029 | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1030 | } else { | 
| 1031 | idat.sameRegion = false; | 
| 1032 | } | 
| 1033 |  | 
| 1034 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1035 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1036 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1037 | } | 
| 1038 |  | 
| 1039 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1040 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1041 | idat.t2 = &(atomColData.torque[atom2]); | 
| 1042 | } | 
| 1043 |  | 
| 1044 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1045 | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1046 | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1047 | } | 
| 1048 |  | 
| 1049 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1050 | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1051 | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1052 | } | 
| 1053 |  | 
| 1054 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1055 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1056 | idat.rho2 = &(atomColData.density[atom2]); | 
| 1057 | } | 
| 1058 |  | 
| 1059 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1060 | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1061 | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1062 | } | 
| 1063 |  | 
| 1064 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1065 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1066 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1067 | } | 
| 1068 |  | 
| 1069 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1070 | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1071 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1072 | } | 
| 1073 |  | 
| 1074 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1075 | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1076 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1077 | } | 
| 1078 |  | 
| 1079 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1080 | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1081 | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1082 | } | 
| 1083 |  | 
| 1084 | #else | 
| 1085 |  | 
| 1086 | idat.atid1 = idents[atom1]; | 
| 1087 | idat.atid2 = idents[atom2]; | 
| 1088 |  | 
| 1089 | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1090 | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1091 | } else { | 
| 1092 | idat.sameRegion = false; | 
| 1093 | } | 
| 1094 |  | 
| 1095 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1096 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1097 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1098 | } | 
| 1099 |  | 
| 1100 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1101 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1102 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1103 | } | 
| 1104 |  | 
| 1105 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1106 | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1107 | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1108 | } | 
| 1109 |  | 
| 1110 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1111 | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1112 | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1113 | } | 
| 1114 |  | 
| 1115 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1116 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1117 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1118 | } | 
| 1119 |  | 
| 1120 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1121 | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1122 | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1123 | } | 
| 1124 |  | 
| 1125 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1126 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1127 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1128 | } | 
| 1129 |  | 
| 1130 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1131 | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1132 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1133 | } | 
| 1134 |  | 
| 1135 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1136 | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1137 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1138 | } | 
| 1139 |  | 
| 1140 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1141 | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1142 | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1143 | } | 
| 1144 | #endif | 
| 1145 |  | 
| 1146 | } else { | 
| 1147 | // atom1 is not new, so don't bother updating properties of that atom: | 
| 1148 | #ifdef IS_MPI | 
| 1149 | idat.atid2 = identsCol[atom2]; | 
| 1150 |  | 
| 1151 | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1152 | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1153 | } else { | 
| 1154 | idat.sameRegion = false; | 
| 1155 | } | 
| 1156 |  | 
| 1157 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1158 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1159 | } | 
| 1160 |  | 
| 1161 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1162 | idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 | } | 
| 1164 |  | 
| 1165 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1166 | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1167 | } | 
| 1168 |  | 
| 1169 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1170 | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1171 | } | 
| 1172 |  | 
| 1173 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1174 | idat.rho2 = &(atomColData.density[atom2]); | 
| 1175 | } | 
| 1176 |  | 
| 1177 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1178 | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1179 | } | 
| 1180 |  | 
| 1181 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1182 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1183 | } | 
| 1184 |  | 
| 1185 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1186 | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1187 | } | 
| 1188 |  | 
| 1189 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1190 | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1191 | } | 
| 1192 |  | 
| 1193 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1194 | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1195 | } | 
| 1196 |  | 
| 1197 | #else | 
| 1198 | idat.atid2 = idents[atom2]; | 
| 1199 |  | 
| 1200 | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1201 | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1202 | } else { | 
| 1203 | idat.sameRegion = false; | 
| 1204 | } | 
| 1205 |  | 
| 1206 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1207 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1208 | } | 
| 1209 |  | 
| 1210 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1211 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1212 | } | 
| 1213 |  | 
| 1214 | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1215 | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1216 | } | 
| 1217 |  | 
| 1218 | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1219 | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1220 | } | 
| 1221 |  | 
| 1222 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1223 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1224 | } | 
| 1225 |  | 
| 1226 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1227 | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1228 | } | 
| 1229 |  | 
| 1230 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1231 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1232 | } | 
| 1233 |  | 
| 1234 | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1235 | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1236 | } | 
| 1237 |  | 
| 1238 | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1239 | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1240 | } | 
| 1241 |  | 
| 1242 | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1243 | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1244 | } | 
| 1245 |  | 
| 1246 | #endif | 
| 1247 | } | 
| 1248 | } | 
| 1249 |  | 
| 1250 | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, | 
| 1251 | int atom1, int atom2) { | 
| 1252 | #ifdef IS_MPI | 
| 1253 | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1254 | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1255 | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1256 | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1257 |  | 
| 1258 | atomRowData.force[atom1] += *(idat.f1); | 
| 1259 | atomColData.force[atom2] -= *(idat.f1); | 
| 1260 |  | 
| 1261 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1262 | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1263 | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1264 | } | 
| 1265 |  | 
| 1266 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1267 | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1268 | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1269 | } | 
| 1270 |  | 
| 1271 | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1272 | atomRowData.sitePotential[atom1] += *(idat.sPot1); | 
| 1273 | atomColData.sitePotential[atom2] += *(idat.sPot2); | 
| 1274 | } | 
| 1275 |  | 
| 1276 | #else | 
| 1277 | pairwisePot += *(idat.pot); | 
| 1278 | excludedPot += *(idat.excludedPot); | 
| 1279 |  | 
| 1280 | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1281 | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1282 |  | 
| 1283 | if (idat.doParticlePot) { | 
| 1284 | // This is the pairwise contribution to the particle pot.  The | 
| 1285 | // embedding contribution is added in each of the low level | 
| 1286 | // non-bonded routines.  In parallel, this calculation is done | 
| 1287 | // in collectData, not in unpackInteractionData. | 
| 1288 | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1289 | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1290 | } | 
| 1291 |  | 
| 1292 | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1293 | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1294 | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1295 | } | 
| 1296 |  | 
| 1297 | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1298 | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1299 | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1300 | } | 
| 1301 |  | 
| 1302 | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1303 | snap_->atomData.sitePotential[atom1] += *(idat.sPot1); | 
| 1304 | snap_->atomData.sitePotential[atom2] += *(idat.sPot2); | 
| 1305 | } | 
| 1306 |  | 
| 1307 | #endif | 
| 1308 |  | 
| 1309 | } | 
| 1310 |  | 
| 1311 | /* | 
| 1312 | * buildNeighborList | 
| 1313 | * | 
| 1314 | * Constructs the Verlet neighbor list for a force-matrix | 
| 1315 | * decomposition.  In this case, each processor is responsible for | 
| 1316 | * row-site interactions with column-sites. | 
| 1317 | * | 
| 1318 | * neighborList is returned as a packed array of neighboring | 
| 1319 | * column-ordered CutoffGroups.  The starting position in | 
| 1320 | * neighborList for each row-ordered CutoffGroup is given by the | 
| 1321 | * returned vector point. | 
| 1322 | */ | 
| 1323 | void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, | 
| 1324 | vector<int>& point) { | 
| 1325 | neighborList.clear(); | 
| 1326 | point.clear(); | 
| 1327 | int len = 0; | 
| 1328 |  | 
| 1329 | bool doAllPairs = false; | 
| 1330 |  | 
| 1331 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1332 | Mat3x3d box; | 
| 1333 | Mat3x3d invBox; | 
| 1334 |  | 
| 1335 | Vector3d rs, scaled, dr; | 
| 1336 | Vector3i whichCell; | 
| 1337 | int cellIndex; | 
| 1338 |  | 
| 1339 | #ifdef IS_MPI | 
| 1340 | cellListRow_.clear(); | 
| 1341 | cellListCol_.clear(); | 
| 1342 | point.resize(nGroupsInRow_+1); | 
| 1343 | #else | 
| 1344 | cellList_.clear(); | 
| 1345 | point.resize(nGroups_+1); | 
| 1346 | #endif | 
| 1347 |  | 
| 1348 | if (!usePeriodicBoundaryConditions_) { | 
| 1349 | box = snap_->getBoundingBox(); | 
| 1350 | invBox = snap_->getInvBoundingBox(); | 
| 1351 | } else { | 
| 1352 | box = snap_->getHmat(); | 
| 1353 | invBox = snap_->getInvHmat(); | 
| 1354 | } | 
| 1355 |  | 
| 1356 | Vector3d A = box.getColumn(0); | 
| 1357 | Vector3d B = box.getColumn(1); | 
| 1358 | Vector3d C = box.getColumn(2); | 
| 1359 |  | 
| 1360 | // Required for triclinic cells | 
| 1361 | Vector3d AxB = cross(A, B); | 
| 1362 | Vector3d BxC = cross(B, C); | 
| 1363 | Vector3d CxA = cross(C, A); | 
| 1364 |  | 
| 1365 | // unit vectors perpendicular to the faces of the triclinic cell: | 
| 1366 | AxB.normalize(); | 
| 1367 | BxC.normalize(); | 
| 1368 | CxA.normalize(); | 
| 1369 |  | 
| 1370 | // A set of perpendicular lengths in triclinic cells: | 
| 1371 | RealType Wa = abs(dot(A, BxC)); | 
| 1372 | RealType Wb = abs(dot(B, CxA)); | 
| 1373 | RealType Wc = abs(dot(C, AxB)); | 
| 1374 |  | 
| 1375 | nCells_.x() = int( Wa / rList_ ); | 
| 1376 | nCells_.y() = int( Wb / rList_ ); | 
| 1377 | nCells_.z() = int( Wc / rList_ ); | 
| 1378 |  | 
| 1379 | // handle small boxes where the cell offsets can end up repeating cells | 
| 1380 | if (nCells_.x() < 3) doAllPairs = true; | 
| 1381 | if (nCells_.y() < 3) doAllPairs = true; | 
| 1382 | if (nCells_.z() < 3) doAllPairs = true; | 
| 1383 |  | 
| 1384 | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1385 |  | 
| 1386 | #ifdef IS_MPI | 
| 1387 | cellListRow_.resize(nCtot); | 
| 1388 | cellListCol_.resize(nCtot); | 
| 1389 | #else | 
| 1390 | cellList_.resize(nCtot); | 
| 1391 | #endif | 
| 1392 |  | 
| 1393 | if (!doAllPairs) { | 
| 1394 |  | 
| 1395 | #ifdef IS_MPI | 
| 1396 |  | 
| 1397 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1398 | rs = cgRowData.position[i]; | 
| 1399 |  | 
| 1400 | // scaled positions relative to the box vectors | 
| 1401 | scaled = invBox * rs; | 
| 1402 |  | 
| 1403 | // wrap the vector back into the unit box by subtracting integer box | 
| 1404 | // numbers | 
| 1405 | for (int j = 0; j < 3; j++) { | 
| 1406 | scaled[j] -= roundMe(scaled[j]); | 
| 1407 | scaled[j] += 0.5; | 
| 1408 | // Handle the special case when an object is exactly on the | 
| 1409 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1410 | // scaled coordinate of 0.0) | 
| 1411 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1412 | } | 
| 1413 |  | 
| 1414 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1415 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1416 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1417 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1418 |  | 
| 1419 | // find single index of this cell: | 
| 1420 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1421 |  | 
| 1422 | // add this cutoff group to the list of groups in this cell; | 
| 1423 | cellListRow_[cellIndex].push_back(i); | 
| 1424 | } | 
| 1425 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 1426 | rs = cgColData.position[i]; | 
| 1427 |  | 
| 1428 | // scaled positions relative to the box vectors | 
| 1429 | scaled = invBox * rs; | 
| 1430 |  | 
| 1431 | // wrap the vector back into the unit box by subtracting integer box | 
| 1432 | // numbers | 
| 1433 | for (int j = 0; j < 3; j++) { | 
| 1434 | scaled[j] -= roundMe(scaled[j]); | 
| 1435 | scaled[j] += 0.5; | 
| 1436 | // Handle the special case when an object is exactly on the | 
| 1437 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1438 | // scaled coordinate of 0.0) | 
| 1439 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1440 | } | 
| 1441 |  | 
| 1442 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1443 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1444 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1445 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1446 |  | 
| 1447 | // find single index of this cell: | 
| 1448 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1449 |  | 
| 1450 | // add this cutoff group to the list of groups in this cell; | 
| 1451 | cellListCol_[cellIndex].push_back(i); | 
| 1452 | } | 
| 1453 |  | 
| 1454 | #else | 
| 1455 | for (int i = 0; i < nGroups_; i++) { | 
| 1456 | rs = snap_->cgData.position[i]; | 
| 1457 |  | 
| 1458 | // scaled positions relative to the box vectors | 
| 1459 | scaled = invBox * rs; | 
| 1460 |  | 
| 1461 | // wrap the vector back into the unit box by subtracting integer box | 
| 1462 | // numbers | 
| 1463 | for (int j = 0; j < 3; j++) { | 
| 1464 | scaled[j] -= roundMe(scaled[j]); | 
| 1465 | scaled[j] += 0.5; | 
| 1466 | // Handle the special case when an object is exactly on the | 
| 1467 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1468 | // scaled coordinate of 0.0) | 
| 1469 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1470 | } | 
| 1471 |  | 
| 1472 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1473 | whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1474 | whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1475 | whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1476 |  | 
| 1477 | // find single index of this cell: | 
| 1478 | cellIndex = Vlinear(whichCell, nCells_); | 
| 1479 |  | 
| 1480 | // add this cutoff group to the list of groups in this cell; | 
| 1481 | cellList_[cellIndex].push_back(i); | 
| 1482 | } | 
| 1483 |  | 
| 1484 | #endif | 
| 1485 |  | 
| 1486 | #ifdef IS_MPI | 
| 1487 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1488 | rs = cgRowData.position[j1]; | 
| 1489 | #else | 
| 1490 |  | 
| 1491 | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1492 | rs = snap_->cgData.position[j1]; | 
| 1493 | #endif | 
| 1494 | point[j1] = len; | 
| 1495 |  | 
| 1496 | // scaled positions relative to the box vectors | 
| 1497 | scaled = invBox * rs; | 
| 1498 |  | 
| 1499 | // wrap the vector back into the unit box by subtracting integer box | 
| 1500 | // numbers | 
| 1501 | for (int j = 0; j < 3; j++) { | 
| 1502 | scaled[j] -= roundMe(scaled[j]); | 
| 1503 | scaled[j] += 0.5; | 
| 1504 | // Handle the special case when an object is exactly on the | 
| 1505 | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1506 | // scaled coordinate of 0.0) | 
| 1507 | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1508 | } | 
| 1509 |  | 
| 1510 | // find xyz-indices of cell that cutoffGroup is in. | 
| 1511 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1512 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1513 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1514 |  | 
| 1515 | // find single index of this cell: | 
| 1516 | int m1 = Vlinear(whichCell, nCells_); | 
| 1517 |  | 
| 1518 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1519 | os != cellOffsets_.end(); ++os) { | 
| 1520 |  | 
| 1521 | Vector3i m2v = whichCell + (*os); | 
| 1522 |  | 
| 1523 | if (m2v.x() >= nCells_.x()) { | 
| 1524 | m2v.x() = 0; | 
| 1525 | } else if (m2v.x() < 0) { | 
| 1526 | m2v.x() = nCells_.x() - 1; | 
| 1527 | } | 
| 1528 |  | 
| 1529 | if (m2v.y() >= nCells_.y()) { | 
| 1530 | m2v.y() = 0; | 
| 1531 | } else if (m2v.y() < 0) { | 
| 1532 | m2v.y() = nCells_.y() - 1; | 
| 1533 | } | 
| 1534 |  | 
| 1535 | if (m2v.z() >= nCells_.z()) { | 
| 1536 | m2v.z() = 0; | 
| 1537 | } else if (m2v.z() < 0) { | 
| 1538 | m2v.z() = nCells_.z() - 1; | 
| 1539 | } | 
| 1540 | int m2 = Vlinear (m2v, nCells_); | 
| 1541 | #ifdef IS_MPI | 
| 1542 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1543 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1544 |  | 
| 1545 | // In parallel, we need to visit *all* pairs of row | 
| 1546 | // & column indicies and will divide labor in the | 
| 1547 | // force evaluation later. | 
| 1548 | dr = cgColData.position[(*j2)] - rs; | 
| 1549 | if (usePeriodicBoundaryConditions_) { | 
| 1550 | snap_->wrapVector(dr); | 
| 1551 | } | 
| 1552 | if (dr.lengthSquare() < rListSq_) { | 
| 1553 | neighborList.push_back( (*j2) ); | 
| 1554 | ++len; | 
| 1555 | } | 
| 1556 | } | 
| 1557 | #else | 
| 1558 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1559 | j2 != cellList_[m2].end(); ++j2) { | 
| 1560 |  | 
| 1561 | // Always do this if we're in different cells or if | 
| 1562 | // we're in the same cell and the global index of | 
| 1563 | // the j2 cutoff group is greater than or equal to | 
| 1564 | // the j1 cutoff group.  Note that Rappaport's code | 
| 1565 | // has a "less than" conditional here, but that | 
| 1566 | // deals with atom-by-atom computation.  OpenMD | 
| 1567 | // allows atoms within a single cutoff group to | 
| 1568 | // interact with each other. | 
| 1569 |  | 
| 1570 | if ( (*j2) >= j1 ) { | 
| 1571 |  | 
| 1572 | dr = snap_->cgData.position[(*j2)] - rs; | 
| 1573 | if (usePeriodicBoundaryConditions_) { | 
| 1574 | snap_->wrapVector(dr); | 
| 1575 | } | 
| 1576 | if ( dr.lengthSquare() < rListSq_) { | 
| 1577 | neighborList.push_back( (*j2) ); | 
| 1578 | ++len; | 
| 1579 | } | 
| 1580 | } | 
| 1581 | } | 
| 1582 | #endif | 
| 1583 | } | 
| 1584 | } | 
| 1585 | } else { | 
| 1586 | // branch to do all cutoff group pairs | 
| 1587 | #ifdef IS_MPI | 
| 1588 | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1589 | point[j1] = len; | 
| 1590 | rs = cgRowData.position[j1]; | 
| 1591 | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1592 | dr = cgColData.position[j2] - rs; | 
| 1593 | if (usePeriodicBoundaryConditions_) { | 
| 1594 | snap_->wrapVector(dr); | 
| 1595 | } | 
| 1596 | if (dr.lengthSquare() < rListSq_) { | 
| 1597 | neighborList.push_back( j2 ); | 
| 1598 | ++len; | 
| 1599 | } | 
| 1600 | } | 
| 1601 | } | 
| 1602 | #else | 
| 1603 | // include all groups here. | 
| 1604 | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1605 | point[j1] = len; | 
| 1606 | rs = snap_->cgData.position[j1]; | 
| 1607 | // include self group interactions j2 == j1 | 
| 1608 | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1609 | dr = snap_->cgData.position[j2] - rs; | 
| 1610 | if (usePeriodicBoundaryConditions_) { | 
| 1611 | snap_->wrapVector(dr); | 
| 1612 | } | 
| 1613 | if (dr.lengthSquare() < rListSq_) { | 
| 1614 | neighborList.push_back( j2 ); | 
| 1615 | ++len; | 
| 1616 | } | 
| 1617 | } | 
| 1618 | } | 
| 1619 | #endif | 
| 1620 | } | 
| 1621 |  | 
| 1622 | #ifdef IS_MPI | 
| 1623 | point[nGroupsInRow_] = len; | 
| 1624 | #else | 
| 1625 | point[nGroups_] = len; | 
| 1626 | #endif | 
| 1627 |  | 
| 1628 | // save the local cutoff group positions for the check that is | 
| 1629 | // done on each loop: | 
| 1630 | saved_CG_positions_.clear(); | 
| 1631 | saved_CG_positions_.reserve(nGroups_); | 
| 1632 | for (int i = 0; i < nGroups_; i++) | 
| 1633 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1634 | } | 
| 1635 | } //end namespace OpenMD |