| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 43 |  | #include "math/SquareMatrix3.hpp" | 
| 95 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 96 |  | ff_ = info_->getForceField(); | 
| 97 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 98 | < |  | 
| 98 | > |  | 
| 99 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 100 |  | // gather the information for atomtype IDs (atids): | 
| 101 |  | idents = info_->getIdentArray(); | 
| 109 |  | PairList* oneTwo = info_->getOneTwoInteractions(); | 
| 110 |  | PairList* oneThree = info_->getOneThreeInteractions(); | 
| 111 |  | PairList* oneFour = info_->getOneFourInteractions(); | 
| 112 | < |  | 
| 112 | > |  | 
| 113 | > | if (needVelocities_) | 
| 114 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition | | 
| 115 | > | DataStorage::dslVelocity); | 
| 116 | > | else | 
| 117 | > | snap_->cgData.setStorageLayout(DataStorage::dslPosition); | 
| 118 | > |  | 
| 119 |  | #ifdef IS_MPI | 
| 120 |  |  | 
| 121 |  | MPI::Intracomm row = rowComm.getComm(); | 
| 151 |  | cgRowData.resize(nGroupsInRow_); | 
| 152 |  | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 153 |  | cgColData.resize(nGroupsInCol_); | 
| 154 | < | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 155 | < |  | 
| 154 | > | if (needVelocities_) | 
| 155 | > | // we only need column velocities if we need them. | 
| 156 | > | cgColData.setStorageLayout(DataStorage::dslPosition | | 
| 157 | > | DataStorage::dslVelocity); | 
| 158 | > | else | 
| 159 | > | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 160 | > |  | 
| 161 |  | identsRow.resize(nAtomsInRow_); | 
| 162 |  | identsCol.resize(nAtomsInCol_); | 
| 163 |  |  | 
| 176 |  | pot_row.resize(nAtomsInRow_); | 
| 177 |  | pot_col.resize(nAtomsInCol_); | 
| 178 |  |  | 
| 179 | + | expot_row.resize(nAtomsInRow_); | 
| 180 | + | expot_col.resize(nAtomsInCol_); | 
| 181 | + |  | 
| 182 |  | AtomRowToGlobal.resize(nAtomsInRow_); | 
| 183 |  | AtomColToGlobal.resize(nAtomsInCol_); | 
| 184 |  | AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 310 |  |  | 
| 311 |  | RealType tol = 1e-6; | 
| 312 |  | largestRcut_ = 0.0; | 
| 298 | – | RealType rc; | 
| 313 |  | int atid; | 
| 314 |  | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 |  |  | 
| 394 |  | } | 
| 395 |  |  | 
| 396 |  | bool gTypeFound = false; | 
| 397 | < | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 397 | > | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 |  | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 |  | groupToGtype[cg1] = gt; | 
| 400 |  | gTypeFound = true; | 
| 419 |  |  | 
| 420 |  | RealType tradRcut = groupMax; | 
| 421 |  |  | 
| 422 | < | for (int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | < | for (int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 422 | > | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | > | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 |  | RealType thisRcut; | 
| 425 |  | switch(cutoffPolicy_) { | 
| 426 |  | case TRADITIONAL: | 
| 463 |  | } | 
| 464 |  | } | 
| 465 |  |  | 
| 452 | – |  | 
| 466 |  | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 |  | int i, j; | 
| 468 |  | #ifdef IS_MPI | 
| 476 |  | } | 
| 477 |  |  | 
| 478 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 479 | < | for (int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 479 | > | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 480 |  | if (toposForAtom[atom1][j] == atom2) | 
| 481 |  | return topoDist[atom1][j]; | 
| 482 |  | } | 
| 486 |  | void ForceMatrixDecomposition::zeroWorkArrays() { | 
| 487 |  | pairwisePot = 0.0; | 
| 488 |  | embeddingPot = 0.0; | 
| 489 | + | excludedPot = 0.0; | 
| 490 | + | excludedSelfPot = 0.0; | 
| 491 |  |  | 
| 492 |  | #ifdef IS_MPI | 
| 493 |  | if (storageLayout_ & DataStorage::dslForce) { | 
| 504 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 505 |  |  | 
| 506 |  | fill(pot_col.begin(), pot_col.end(), | 
| 507 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 508 | + |  | 
| 509 | + | fill(expot_row.begin(), expot_row.end(), | 
| 510 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 511 | + |  | 
| 512 | + | fill(expot_col.begin(), expot_col.end(), | 
| 513 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 514 |  |  | 
| 515 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 545 |  | atomColData.skippedCharge.end(), 0.0); | 
| 546 |  | } | 
| 547 |  |  | 
| 548 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 549 | + | fill(atomRowData.flucQFrc.begin(), | 
| 550 | + | atomRowData.flucQFrc.end(), 0.0); | 
| 551 | + | fill(atomColData.flucQFrc.begin(), | 
| 552 | + | atomColData.flucQFrc.end(), 0.0); | 
| 553 | + | } | 
| 554 | + |  | 
| 555 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 556 | + | fill(atomRowData.electricField.begin(), | 
| 557 | + | atomRowData.electricField.end(), V3Zero); | 
| 558 | + | fill(atomColData.electricField.begin(), | 
| 559 | + | atomColData.electricField.end(), V3Zero); | 
| 560 | + | } | 
| 561 | + |  | 
| 562 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 563 | + | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 564 | + | 0.0); | 
| 565 | + | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 566 | + | 0.0); | 
| 567 | + | } | 
| 568 | + |  | 
| 569 |  | #endif | 
| 570 |  | // even in parallel, we need to zero out the local arrays: | 
| 571 |  |  | 
| 578 |  | fill(snap_->atomData.density.begin(), | 
| 579 |  | snap_->atomData.density.end(), 0.0); | 
| 580 |  | } | 
| 581 | + |  | 
| 582 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 583 |  | fill(snap_->atomData.functional.begin(), | 
| 584 |  | snap_->atomData.functional.end(), 0.0); | 
| 585 |  | } | 
| 586 | + |  | 
| 587 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 588 |  | fill(snap_->atomData.functionalDerivative.begin(), | 
| 589 |  | snap_->atomData.functionalDerivative.end(), 0.0); | 
| 590 |  | } | 
| 591 | + |  | 
| 592 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 593 |  | fill(snap_->atomData.skippedCharge.begin(), | 
| 594 |  | snap_->atomData.skippedCharge.end(), 0.0); | 
| 595 |  | } | 
| 596 | < |  | 
| 596 | > |  | 
| 597 | > | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 598 | > | fill(snap_->atomData.electricField.begin(), | 
| 599 | > | snap_->atomData.electricField.end(), V3Zero); | 
| 600 | > | } | 
| 601 |  | } | 
| 602 |  |  | 
| 603 |  |  | 
| 620 |  | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 621 |  | cgColData.position); | 
| 622 |  |  | 
| 623 | + |  | 
| 624 | + |  | 
| 625 | + | if (needVelocities_) { | 
| 626 | + | // gather up the atomic velocities | 
| 627 | + | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 628 | + | atomColData.velocity); | 
| 629 | + |  | 
| 630 | + | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 631 | + | cgColData.velocity); | 
| 632 | + | } | 
| 633 | + |  | 
| 634 |  |  | 
| 635 |  | // if needed, gather the atomic rotation matrices | 
| 636 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 648 |  | atomColData.electroFrame); | 
| 649 |  | } | 
| 650 |  |  | 
| 651 | + | // if needed, gather the atomic fluctuating charge values | 
| 652 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 653 | + | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 654 | + | atomRowData.flucQPos); | 
| 655 | + | AtomPlanRealColumn->gather(snap_->atomData.flucQPos, | 
| 656 | + | atomColData.flucQPos); | 
| 657 | + | } | 
| 658 | + |  | 
| 659 |  | #endif | 
| 660 |  | } | 
| 661 |  |  | 
| 678 |  | for (int i = 0; i < n; i++) | 
| 679 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 680 |  | } | 
| 681 | + |  | 
| 682 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 683 | + |  | 
| 684 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 685 | + | snap_->atomData.electricField); | 
| 686 | + |  | 
| 687 | + | int n = snap_->atomData.electricField.size(); | 
| 688 | + | vector<Vector3d> field_tmp(n, V3Zero); | 
| 689 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 690 | + | for (int i = 0; i < n; i++) | 
| 691 | + | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 692 | + | } | 
| 693 |  | #endif | 
| 694 |  | } | 
| 695 |  |  | 
| 769 |  |  | 
| 770 |  | } | 
| 771 |  |  | 
| 772 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 773 | + |  | 
| 774 | + | int nq = snap_->atomData.flucQFrc.size(); | 
| 775 | + | vector<RealType> fqfrc_tmp(nq, 0.0); | 
| 776 | + |  | 
| 777 | + | AtomPlanRealRow->scatter(atomRowData.flucQFrc, fqfrc_tmp); | 
| 778 | + | for (int i = 0; i < nq; i++) { | 
| 779 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 780 | + | fqfrc_tmp[i] = 0.0; | 
| 781 | + | } | 
| 782 | + |  | 
| 783 | + | AtomPlanRealColumn->scatter(atomColData.flucQFrc, fqfrc_tmp); | 
| 784 | + | for (int i = 0; i < nq; i++) | 
| 785 | + | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 786 | + |  | 
| 787 | + | } | 
| 788 | + |  | 
| 789 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 790 |  |  | 
| 791 |  | vector<potVec> pot_temp(nLocal_, | 
| 792 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 793 | + | vector<potVec> expot_temp(nLocal_, | 
| 794 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 795 |  |  | 
| 796 |  | // scatter/gather pot_row into the members of my column | 
| 797 |  |  | 
| 798 |  | AtomPlanPotRow->scatter(pot_row, pot_temp); | 
| 799 | + | AtomPlanPotRow->scatter(expot_row, expot_temp); | 
| 800 |  |  | 
| 801 | < | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 801 | > | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 802 |  | pairwisePot += pot_temp[ii]; | 
| 803 | < |  | 
| 803 | > |  | 
| 804 | > | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 805 | > | excludedPot += expot_temp[ii]; | 
| 806 | > |  | 
| 807 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 808 | > | // This is the pairwise contribution to the particle pot.  The | 
| 809 | > | // embedding contribution is added in each of the low level | 
| 810 | > | // non-bonded routines.  In single processor, this is done in | 
| 811 | > | // unpackInteractionData, not in collectData. | 
| 812 | > | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 813 | > | for (int i = 0; i < nLocal_; i++) { | 
| 814 | > | // factor of two is because the total potential terms are divided | 
| 815 | > | // by 2 in parallel due to row/ column scatter | 
| 816 | > | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 817 | > | } | 
| 818 | > | } | 
| 819 | > | } | 
| 820 | > |  | 
| 821 |  | fill(pot_temp.begin(), pot_temp.end(), | 
| 822 |  | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 823 | + | fill(expot_temp.begin(), expot_temp.end(), | 
| 824 | + | Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); | 
| 825 |  |  | 
| 826 |  | AtomPlanPotColumn->scatter(pot_col, pot_temp); | 
| 827 | + | AtomPlanPotColumn->scatter(expot_col, expot_temp); | 
| 828 |  |  | 
| 829 |  | for (int ii = 0;  ii < pot_temp.size(); ii++ ) | 
| 830 |  | pairwisePot += pot_temp[ii]; | 
| 831 | + |  | 
| 832 | + | for (int ii = 0;  ii < expot_temp.size(); ii++ ) | 
| 833 | + | excludedPot += expot_temp[ii]; | 
| 834 | + |  | 
| 835 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 836 | + | // This is the pairwise contribution to the particle pot.  The | 
| 837 | + | // embedding contribution is added in each of the low level | 
| 838 | + | // non-bonded routines.  In single processor, this is done in | 
| 839 | + | // unpackInteractionData, not in collectData. | 
| 840 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 841 | + | for (int i = 0; i < nLocal_; i++) { | 
| 842 | + | // factor of two is because the total potential terms are divided | 
| 843 | + | // by 2 in parallel due to row/ column scatter | 
| 844 | + | snap_->atomData.particlePot[i] += 2.0 * pot_temp[i](ii); | 
| 845 | + | } | 
| 846 | + | } | 
| 847 | + | } | 
| 848 |  |  | 
| 849 | + | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 850 | + | int npp = snap_->atomData.particlePot.size(); | 
| 851 | + | vector<RealType> ppot_temp(npp, 0.0); | 
| 852 | + |  | 
| 853 | + | // This is the direct or embedding contribution to the particle | 
| 854 | + | // pot. | 
| 855 | + |  | 
| 856 | + | AtomPlanRealRow->scatter(atomRowData.particlePot, ppot_temp); | 
| 857 | + | for (int i = 0; i < npp; i++) { | 
| 858 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 859 | + | } | 
| 860 | + |  | 
| 861 | + | fill(ppot_temp.begin(), ppot_temp.end(), 0.0); | 
| 862 | + |  | 
| 863 | + | AtomPlanRealColumn->scatter(atomColData.particlePot, ppot_temp); | 
| 864 | + | for (int i = 0; i < npp; i++) { | 
| 865 | + | snap_->atomData.particlePot[i] += ppot_temp[i]; | 
| 866 | + | } | 
| 867 | + | } | 
| 868 | + |  | 
| 869 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 870 |  | RealType ploc1 = pairwisePot[ii]; | 
| 871 |  | RealType ploc2 = 0.0; | 
| 874 |  | } | 
| 875 |  |  | 
| 876 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 877 | < | RealType ploc1 = embeddingPot[ii]; | 
| 877 | > | RealType ploc1 = excludedPot[ii]; | 
| 878 |  | RealType ploc2 = 0.0; | 
| 879 |  | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 880 | < | embeddingPot[ii] = ploc2; | 
| 880 | > | excludedPot[ii] = ploc2; | 
| 881 |  | } | 
| 882 |  |  | 
| 883 | + | // Here be dragons. | 
| 884 | + | MPI::Intracomm col = colComm.getComm(); | 
| 885 | + |  | 
| 886 | + | col.Allreduce(MPI::IN_PLACE, | 
| 887 | + | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 888 | + | MPI::REALTYPE, MPI::SUM); | 
| 889 | + |  | 
| 890 | + |  | 
| 891 |  | #endif | 
| 892 |  |  | 
| 893 |  | } | 
| 894 |  |  | 
| 895 | + | /** | 
| 896 | + | * Collects information obtained during the post-pair (and embedding | 
| 897 | + | * functional) loops onto local data structures. | 
| 898 | + | */ | 
| 899 | + | void ForceMatrixDecomposition::collectSelfData() { | 
| 900 | + | snap_ = sman_->getCurrentSnapshot(); | 
| 901 | + | storageLayout_ = sman_->getStorageLayout(); | 
| 902 | + |  | 
| 903 | + | #ifdef IS_MPI | 
| 904 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 905 | + | RealType ploc1 = embeddingPot[ii]; | 
| 906 | + | RealType ploc2 = 0.0; | 
| 907 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 908 | + | embeddingPot[ii] = ploc2; | 
| 909 | + | } | 
| 910 | + | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 911 | + | RealType ploc1 = excludedSelfPot[ii]; | 
| 912 | + | RealType ploc2 = 0.0; | 
| 913 | + | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 914 | + | excludedSelfPot[ii] = ploc2; | 
| 915 | + | } | 
| 916 | + | #endif | 
| 917 | + |  | 
| 918 | + | } | 
| 919 | + |  | 
| 920 | + |  | 
| 921 | + |  | 
| 922 |  | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 923 |  | #ifdef IS_MPI | 
| 924 |  | return nAtomsInRow_; | 
| 959 |  | return d; | 
| 960 |  | } | 
| 961 |  |  | 
| 962 | + | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 963 | + | #ifdef IS_MPI | 
| 964 | + | return cgColData.velocity[cg2]; | 
| 965 | + | #else | 
| 966 | + | return snap_->cgData.velocity[cg2]; | 
| 967 | + | #endif | 
| 968 | + | } | 
| 969 |  |  | 
| 970 | + | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 971 | + | #ifdef IS_MPI | 
| 972 | + | return atomColData.velocity[atom2]; | 
| 973 | + | #else | 
| 974 | + | return snap_->atomData.velocity[atom2]; | 
| 975 | + | #endif | 
| 976 | + | } | 
| 977 | + |  | 
| 978 | + |  | 
| 979 |  | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 980 |  |  | 
| 981 |  | Vector3d d; | 
| 1041 |  | * We need to exclude some overcounted interactions that result from | 
| 1042 |  | * the parallel decomposition. | 
| 1043 |  | */ | 
| 1044 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { | 
| 1045 | < | int unique_id_1, unique_id_2; | 
| 1044 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 1045 | > | int unique_id_1, unique_id_2, group1, group2; | 
| 1046 |  |  | 
| 1047 |  | #ifdef IS_MPI | 
| 1048 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 1049 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 1050 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 1051 | + | group1 = cgRowToGlobal[cg1]; | 
| 1052 | + | group2 = cgColToGlobal[cg2]; | 
| 1053 |  | #else | 
| 1054 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 1055 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 1056 | + | group1 = cgLocalToGlobal[cg1]; | 
| 1057 | + | group2 = cgLocalToGlobal[cg2]; | 
| 1058 |  | #endif | 
| 1059 |  |  | 
| 1060 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1066 |  | } else { | 
| 1067 |  | if ((unique_id_1 + unique_id_2) % 2 == 1) return true; | 
| 1068 |  | } | 
| 1069 | + | #endif | 
| 1070 | + |  | 
| 1071 | + | #ifndef IS_MPI | 
| 1072 | + | if (group1 == group2) { | 
| 1073 | + | if (unique_id_1 < unique_id_2) return true; | 
| 1074 | + | } | 
| 1075 |  | #endif | 
| 1076 |  |  | 
| 1077 |  | return false; | 
| 1167 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1168 |  | } | 
| 1169 |  |  | 
| 1170 | < | #else | 
| 1170 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1171 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1172 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1173 | > | } | 
| 1174 |  |  | 
| 1175 | + | #else | 
| 1176 | + |  | 
| 1177 |  | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 955 | – | //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), | 
| 956 | – | //                         ff_->getAtomType(idents[atom2]) ); | 
| 1178 |  |  | 
| 1179 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1180 |  | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1215 |  | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1216 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1217 |  | } | 
| 1218 | + |  | 
| 1219 | + | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1220 | + | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1221 | + | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1222 | + | } | 
| 1223 | + |  | 
| 1224 |  | #endif | 
| 1225 |  | } | 
| 1226 |  |  | 
| 1227 |  |  | 
| 1228 |  | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1229 |  | #ifdef IS_MPI | 
| 1230 | < | pot_row[atom1] += 0.5 *  *(idat.pot); | 
| 1231 | < | pot_col[atom2] += 0.5 *  *(idat.pot); | 
| 1230 | > | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1231 | > | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1232 | > | expot_row[atom1] += RealType(0.5) *  *(idat.excludedPot); | 
| 1233 | > | expot_col[atom2] += RealType(0.5) *  *(idat.excludedPot); | 
| 1234 |  |  | 
| 1235 |  | atomRowData.force[atom1] += *(idat.f1); | 
| 1236 |  | atomColData.force[atom2] -= *(idat.f1); | 
| 1237 | + |  | 
| 1238 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1239 | + | atomRowData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1240 | + | atomColData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1241 | + | } | 
| 1242 | + |  | 
| 1243 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1244 | + | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1245 | + | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1246 | + | } | 
| 1247 | + |  | 
| 1248 |  | #else | 
| 1249 |  | pairwisePot += *(idat.pot); | 
| 1250 | + | excludedPot += *(idat.excludedPot); | 
| 1251 |  |  | 
| 1252 |  | snap_->atomData.force[atom1] += *(idat.f1); | 
| 1253 |  | snap_->atomData.force[atom2] -= *(idat.f1); | 
| 1254 | + |  | 
| 1255 | + | if (idat.doParticlePot) { | 
| 1256 | + | // This is the pairwise contribution to the particle pot.  The | 
| 1257 | + | // embedding contribution is added in each of the low level | 
| 1258 | + | // non-bonded routines.  In parallel, this calculation is done | 
| 1259 | + | // in collectData, not in unpackInteractionData. | 
| 1260 | + | snap_->atomData.particlePot[atom1] += *(idat.vpair) * *(idat.sw); | 
| 1261 | + | snap_->atomData.particlePot[atom2] += *(idat.vpair) * *(idat.sw); | 
| 1262 | + | } | 
| 1263 | + |  | 
| 1264 | + | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 1265 | + | snap_->atomData.flucQFrc[atom1] -= *(idat.dVdFQ1); | 
| 1266 | + | snap_->atomData.flucQFrc[atom2] -= *(idat.dVdFQ2); | 
| 1267 | + | } | 
| 1268 | + |  | 
| 1269 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1270 | + | snap_->atomData.electricField[atom1] += *(idat.eField1); | 
| 1271 | + | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1272 | + | } | 
| 1273 | + |  | 
| 1274 |  | #endif | 
| 1275 |  |  | 
| 1276 |  | } |