| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | #include "math/SquareMatrix3.hpp" | 
| 43 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 | #include "brains/SnapshotManager.hpp" | 
| 45 |  | 
| 46 | using namespace std; | 
| 47 | namespace OpenMD { | 
| 48 |  | 
| 49 | /** | 
| 50 | * distributeInitialData is essentially a copy of the older fortran | 
| 51 | * SimulationSetup | 
| 52 | */ | 
| 53 |  | 
| 54 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 55 | snap_ = sman_->getCurrentSnapshot(); | 
| 56 | storageLayout_ = sman_->getStorageLayout(); | 
| 57 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 58 | nGroups_ = snap_->getNumberOfCutoffGroups(); | 
| 59 |  | 
| 60 | // gather the information for atomtype IDs (atids): | 
| 61 | vector<int> identsLocal = info_->getIdentArray(); | 
| 62 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 63 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 64 | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 65 | vector<RealType> massFactorsLocal = info_->getMassFactors(); | 
| 66 | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); | 
| 67 |  | 
| 68 | #ifdef IS_MPI | 
| 69 |  | 
| 70 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 71 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 72 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 73 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 74 |  | 
| 75 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 76 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 77 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 78 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 79 |  | 
| 80 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 81 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 82 | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 83 | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 84 |  | 
| 85 | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 86 | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 87 | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 88 | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 89 |  | 
| 90 | // Modify the data storage objects with the correct layouts and sizes: | 
| 91 | atomRowData.resize(nAtomsInRow_); | 
| 92 | atomRowData.setStorageLayout(storageLayout_); | 
| 93 | atomColData.resize(nAtomsInCol_); | 
| 94 | atomColData.setStorageLayout(storageLayout_); | 
| 95 | cgRowData.resize(nGroupsInRow_); | 
| 96 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 97 | cgColData.resize(nGroupsInCol_); | 
| 98 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 99 |  | 
| 100 | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, | 
| 101 | vector<RealType> (nAtomsInRow_, 0.0)); | 
| 102 | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, | 
| 103 | vector<RealType> (nAtomsInCol_, 0.0)); | 
| 104 |  | 
| 105 | identsRow.reserve(nAtomsInRow_); | 
| 106 | identsCol.reserve(nAtomsInCol_); | 
| 107 |  | 
| 108 | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 109 | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 110 |  | 
| 111 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 112 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 113 |  | 
| 114 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 115 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 116 |  | 
| 117 | AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); | 
| 118 | AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); | 
| 119 |  | 
| 120 | groupListRow_.clear(); | 
| 121 | groupListRow_.reserve(nGroupsInRow_); | 
| 122 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 123 | int gid = cgRowToGlobal[i]; | 
| 124 | for (int j = 0; j < nAtomsInRow_; j++) { | 
| 125 | int aid = AtomRowToGlobal[j]; | 
| 126 | if (globalGroupMembership[aid] == gid) | 
| 127 | groupListRow_[i].push_back(j); | 
| 128 | } | 
| 129 | } | 
| 130 |  | 
| 131 | groupListCol_.clear(); | 
| 132 | groupListCol_.reserve(nGroupsInCol_); | 
| 133 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 134 | int gid = cgColToGlobal[i]; | 
| 135 | for (int j = 0; j < nAtomsInCol_; j++) { | 
| 136 | int aid = AtomColToGlobal[j]; | 
| 137 | if (globalGroupMembership[aid] == gid) | 
| 138 | groupListCol_[i].push_back(j); | 
| 139 | } | 
| 140 | } | 
| 141 |  | 
| 142 | #endif | 
| 143 |  | 
| 144 | groupList_.clear(); | 
| 145 | groupList_.reserve(nGroups_); | 
| 146 | for (int i = 0; i < nGroups_; i++) { | 
| 147 | int gid = cgLocalToGlobal[i]; | 
| 148 | for (int j = 0; j < nLocal_; j++) { | 
| 149 | int aid = AtomLocalToGlobal[j]; | 
| 150 | if (globalGroupMembership[aid] == gid) | 
| 151 | groupList_[i].push_back(j); | 
| 152 | } | 
| 153 | } | 
| 154 |  | 
| 155 |  | 
| 156 | // still need: | 
| 157 | // topoDist | 
| 158 | // exclude | 
| 159 |  | 
| 160 | } | 
| 161 |  | 
| 162 |  | 
| 163 |  | 
| 164 | void ForceMatrixDecomposition::distributeData()  { | 
| 165 | snap_ = sman_->getCurrentSnapshot(); | 
| 166 | storageLayout_ = sman_->getStorageLayout(); | 
| 167 | #ifdef IS_MPI | 
| 168 |  | 
| 169 | // gather up the atomic positions | 
| 170 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 171 | atomRowData.position); | 
| 172 | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 173 | atomColData.position); | 
| 174 |  | 
| 175 | // gather up the cutoff group positions | 
| 176 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 177 | cgRowData.position); | 
| 178 | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 179 | cgColData.position); | 
| 180 |  | 
| 181 | // if needed, gather the atomic rotation matrices | 
| 182 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 183 | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 184 | atomRowData.aMat); | 
| 185 | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 186 | atomColData.aMat); | 
| 187 | } | 
| 188 |  | 
| 189 | // if needed, gather the atomic eletrostatic frames | 
| 190 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 191 | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 192 | atomRowData.electroFrame); | 
| 193 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 194 | atomColData.electroFrame); | 
| 195 | } | 
| 196 | #endif | 
| 197 | } | 
| 198 |  | 
| 199 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 200 | snap_ = sman_->getCurrentSnapshot(); | 
| 201 | storageLayout_ = sman_->getStorageLayout(); | 
| 202 | #ifdef IS_MPI | 
| 203 |  | 
| 204 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 205 |  | 
| 206 | AtomCommRealRow->scatter(atomRowData.density, | 
| 207 | snap_->atomData.density); | 
| 208 |  | 
| 209 | int n = snap_->atomData.density.size(); | 
| 210 | std::vector<RealType> rho_tmp(n, 0.0); | 
| 211 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 212 | for (int i = 0; i < n; i++) | 
| 213 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 214 | } | 
| 215 | #endif | 
| 216 | } | 
| 217 |  | 
| 218 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 219 | snap_ = sman_->getCurrentSnapshot(); | 
| 220 | storageLayout_ = sman_->getStorageLayout(); | 
| 221 | #ifdef IS_MPI | 
| 222 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 223 | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 224 | atomRowData.functional); | 
| 225 | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 226 | atomColData.functional); | 
| 227 | } | 
| 228 |  | 
| 229 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 230 | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 231 | atomRowData.functionalDerivative); | 
| 232 | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 233 | atomColData.functionalDerivative); | 
| 234 | } | 
| 235 | #endif | 
| 236 | } | 
| 237 |  | 
| 238 |  | 
| 239 | void ForceMatrixDecomposition::collectData() { | 
| 240 | snap_ = sman_->getCurrentSnapshot(); | 
| 241 | storageLayout_ = sman_->getStorageLayout(); | 
| 242 | #ifdef IS_MPI | 
| 243 | int n = snap_->atomData.force.size(); | 
| 244 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 245 |  | 
| 246 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 247 | for (int i = 0; i < n; i++) { | 
| 248 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 249 | frc_tmp[i] = 0.0; | 
| 250 | } | 
| 251 |  | 
| 252 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 253 | for (int i = 0; i < n; i++) | 
| 254 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 255 |  | 
| 256 |  | 
| 257 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 258 |  | 
| 259 | int nt = snap_->atomData.force.size(); | 
| 260 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 261 |  | 
| 262 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 263 | for (int i = 0; i < n; i++) { | 
| 264 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 265 | trq_tmp[i] = 0.0; | 
| 266 | } | 
| 267 |  | 
| 268 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 269 | for (int i = 0; i < n; i++) | 
| 270 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 271 | } | 
| 272 |  | 
| 273 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 274 |  | 
| 275 | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, | 
| 276 | vector<RealType> (nLocal_, 0.0)); | 
| 277 |  | 
| 278 | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { | 
| 279 | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); | 
| 280 | for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) { | 
| 281 | pot_local[i] += pot_temp[i][ii]; | 
| 282 | } | 
| 283 | } | 
| 284 | #endif | 
| 285 | } | 
| 286 |  | 
| 287 | /** | 
| 288 | * returns the list of atoms belonging to this group. | 
| 289 | */ | 
| 290 | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 291 | #ifdef IS_MPI | 
| 292 | return groupListRow_[cg1]; | 
| 293 | #else | 
| 294 | return groupList_[cg1]; | 
| 295 | #endif | 
| 296 | } | 
| 297 |  | 
| 298 | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 299 | #ifdef IS_MPI | 
| 300 | return groupListCol_[cg2]; | 
| 301 | #else | 
| 302 | return groupList_[cg2]; | 
| 303 | #endif | 
| 304 | } | 
| 305 |  | 
| 306 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 307 | Vector3d d; | 
| 308 |  | 
| 309 | #ifdef IS_MPI | 
| 310 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 311 | #else | 
| 312 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 313 | #endif | 
| 314 |  | 
| 315 | snap_->wrapVector(d); | 
| 316 | return d; | 
| 317 | } | 
| 318 |  | 
| 319 |  | 
| 320 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 321 |  | 
| 322 | Vector3d d; | 
| 323 |  | 
| 324 | #ifdef IS_MPI | 
| 325 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 326 | #else | 
| 327 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 328 | #endif | 
| 329 |  | 
| 330 | snap_->wrapVector(d); | 
| 331 | return d; | 
| 332 | } | 
| 333 |  | 
| 334 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 335 | Vector3d d; | 
| 336 |  | 
| 337 | #ifdef IS_MPI | 
| 338 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 339 | #else | 
| 340 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 341 | #endif | 
| 342 |  | 
| 343 | snap_->wrapVector(d); | 
| 344 | return d; | 
| 345 | } | 
| 346 |  | 
| 347 | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 348 | #ifdef IS_MPI | 
| 349 | return massFactorsRow[atom1]; | 
| 350 | #else | 
| 351 | return massFactorsLocal[atom1]; | 
| 352 | #endif | 
| 353 | } | 
| 354 |  | 
| 355 | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 356 | #ifdef IS_MPI | 
| 357 | return massFactorsCol[atom2]; | 
| 358 | #else | 
| 359 | return massFactorsLocal[atom2]; | 
| 360 | #endif | 
| 361 |  | 
| 362 | } | 
| 363 |  | 
| 364 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 365 | Vector3d d; | 
| 366 |  | 
| 367 | #ifdef IS_MPI | 
| 368 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 369 | #else | 
| 370 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 371 | #endif | 
| 372 |  | 
| 373 | snap_->wrapVector(d); | 
| 374 | return d; | 
| 375 | } | 
| 376 |  | 
| 377 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 378 | #ifdef IS_MPI | 
| 379 | atomRowData.force[atom1] += fg; | 
| 380 | #else | 
| 381 | snap_->atomData.force[atom1] += fg; | 
| 382 | #endif | 
| 383 | } | 
| 384 |  | 
| 385 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 386 | #ifdef IS_MPI | 
| 387 | atomColData.force[atom2] += fg; | 
| 388 | #else | 
| 389 | snap_->atomData.force[atom2] += fg; | 
| 390 | #endif | 
| 391 | } | 
| 392 |  | 
| 393 | // filling interaction blocks with pointers | 
| 394 | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 395 | InteractionData idat; | 
| 396 |  | 
| 397 | #ifdef IS_MPI | 
| 398 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 399 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 400 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 401 | } | 
| 402 |  | 
| 403 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 404 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 405 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 406 | } | 
| 407 |  | 
| 408 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 409 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 410 | idat.t2 = &(atomColData.torque[atom2]); | 
| 411 | } | 
| 412 |  | 
| 413 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 414 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 415 | idat.rho2 = &(atomColData.density[atom2]); | 
| 416 | } | 
| 417 |  | 
| 418 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 419 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 420 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 421 | } | 
| 422 | #else | 
| 423 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 424 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 425 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 426 | } | 
| 427 |  | 
| 428 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 429 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 430 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 431 | } | 
| 432 |  | 
| 433 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 434 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 435 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 436 | } | 
| 437 |  | 
| 438 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 439 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 440 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 441 | } | 
| 442 |  | 
| 443 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 444 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 445 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 446 | } | 
| 447 | #endif | 
| 448 | return idat; | 
| 449 | } | 
| 450 |  | 
| 451 | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 452 |  | 
| 453 | InteractionData idat; | 
| 454 | #ifdef IS_MPI | 
| 455 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 456 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 457 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 458 | } | 
| 459 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 460 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 461 | idat.t2 = &(atomColData.torque[atom2]); | 
| 462 | } | 
| 463 | if (storageLayout_ & DataStorage::dslForce) { | 
| 464 | idat.t1 = &(atomRowData.force[atom1]); | 
| 465 | idat.t2 = &(atomColData.force[atom2]); | 
| 466 | } | 
| 467 | #else | 
| 468 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 469 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 470 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 471 | } | 
| 472 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 473 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 474 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 475 | } | 
| 476 | if (storageLayout_ & DataStorage::dslForce) { | 
| 477 | idat.t1 = &(snap_->atomData.force[atom1]); | 
| 478 | idat.t2 = &(snap_->atomData.force[atom2]); | 
| 479 | } | 
| 480 | #endif | 
| 481 |  | 
| 482 | } | 
| 483 |  | 
| 484 |  | 
| 485 |  | 
| 486 |  | 
| 487 | /* | 
| 488 | * buildNeighborList | 
| 489 | * | 
| 490 | * first element of pair is row-indexed CutoffGroup | 
| 491 | * second element of pair is column-indexed CutoffGroup | 
| 492 | */ | 
| 493 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 494 |  | 
| 495 | vector<pair<int, int> > neighborList; | 
| 496 | #ifdef IS_MPI | 
| 497 | cellListRow_.clear(); | 
| 498 | cellListCol_.clear(); | 
| 499 | #else | 
| 500 | cellList_.clear(); | 
| 501 | #endif | 
| 502 |  | 
| 503 | // dangerous to not do error checking. | 
| 504 | RealType rCut_; | 
| 505 |  | 
| 506 | RealType rList_ = (rCut_ + skinThickness_); | 
| 507 | RealType rl2 = rList_ * rList_; | 
| 508 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 509 | Mat3x3d Hmat = snap_->getHmat(); | 
| 510 | Vector3d Hx = Hmat.getColumn(0); | 
| 511 | Vector3d Hy = Hmat.getColumn(1); | 
| 512 | Vector3d Hz = Hmat.getColumn(2); | 
| 513 |  | 
| 514 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 515 | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 516 | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 517 |  | 
| 518 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 519 | Vector3d rs, scaled, dr; | 
| 520 | Vector3i whichCell; | 
| 521 | int cellIndex; | 
| 522 |  | 
| 523 | #ifdef IS_MPI | 
| 524 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 525 | rs = cgRowData.position[i]; | 
| 526 | // scaled positions relative to the box vectors | 
| 527 | scaled = invHmat * rs; | 
| 528 | // wrap the vector back into the unit box by subtracting integer box | 
| 529 | // numbers | 
| 530 | for (int j = 0; j < 3; j++) | 
| 531 | scaled[j] -= roundMe(scaled[j]); | 
| 532 |  | 
| 533 | // find xyz-indices of cell that cutoffGroup is in. | 
| 534 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 535 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 536 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 537 |  | 
| 538 | // find single index of this cell: | 
| 539 | cellIndex = Vlinear(whichCell, nCells_); | 
| 540 | // add this cutoff group to the list of groups in this cell; | 
| 541 | cellListRow_[cellIndex].push_back(i); | 
| 542 | } | 
| 543 |  | 
| 544 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 545 | rs = cgColData.position[i]; | 
| 546 | // scaled positions relative to the box vectors | 
| 547 | scaled = invHmat * rs; | 
| 548 | // wrap the vector back into the unit box by subtracting integer box | 
| 549 | // numbers | 
| 550 | for (int j = 0; j < 3; j++) | 
| 551 | scaled[j] -= roundMe(scaled[j]); | 
| 552 |  | 
| 553 | // find xyz-indices of cell that cutoffGroup is in. | 
| 554 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 555 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 556 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 557 |  | 
| 558 | // find single index of this cell: | 
| 559 | cellIndex = Vlinear(whichCell, nCells_); | 
| 560 | // add this cutoff group to the list of groups in this cell; | 
| 561 | cellListCol_[cellIndex].push_back(i); | 
| 562 | } | 
| 563 | #else | 
| 564 | for (int i = 0; i < nGroups_; i++) { | 
| 565 | rs = snap_->cgData.position[i]; | 
| 566 | // scaled positions relative to the box vectors | 
| 567 | scaled = invHmat * rs; | 
| 568 | // wrap the vector back into the unit box by subtracting integer box | 
| 569 | // numbers | 
| 570 | for (int j = 0; j < 3; j++) | 
| 571 | scaled[j] -= roundMe(scaled[j]); | 
| 572 |  | 
| 573 | // find xyz-indices of cell that cutoffGroup is in. | 
| 574 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 575 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 576 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 577 |  | 
| 578 | // find single index of this cell: | 
| 579 | cellIndex = Vlinear(whichCell, nCells_); | 
| 580 | // add this cutoff group to the list of groups in this cell; | 
| 581 | cellList_[cellIndex].push_back(i); | 
| 582 | } | 
| 583 | #endif | 
| 584 |  | 
| 585 |  | 
| 586 |  | 
| 587 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 588 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 589 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 590 | Vector3i m1v(m1x, m1y, m1z); | 
| 591 | int m1 = Vlinear(m1v, nCells_); | 
| 592 |  | 
| 593 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 594 | os != cellOffsets_.end(); ++os) { | 
| 595 |  | 
| 596 | Vector3i m2v = m1v + (*os); | 
| 597 |  | 
| 598 | if (m2v.x() >= nCells_.x()) { | 
| 599 | m2v.x() = 0; | 
| 600 | } else if (m2v.x() < 0) { | 
| 601 | m2v.x() = nCells_.x() - 1; | 
| 602 | } | 
| 603 |  | 
| 604 | if (m2v.y() >= nCells_.y()) { | 
| 605 | m2v.y() = 0; | 
| 606 | } else if (m2v.y() < 0) { | 
| 607 | m2v.y() = nCells_.y() - 1; | 
| 608 | } | 
| 609 |  | 
| 610 | if (m2v.z() >= nCells_.z()) { | 
| 611 | m2v.z() = 0; | 
| 612 | } else if (m2v.z() < 0) { | 
| 613 | m2v.z() = nCells_.z() - 1; | 
| 614 | } | 
| 615 |  | 
| 616 | int m2 = Vlinear (m2v, nCells_); | 
| 617 |  | 
| 618 | #ifdef IS_MPI | 
| 619 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 620 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 621 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 622 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 623 |  | 
| 624 | // Always do this if we're in different cells or if | 
| 625 | // we're in the same cell and the global index of the | 
| 626 | // j2 cutoff group is less than the j1 cutoff group | 
| 627 |  | 
| 628 | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 629 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 630 | snap_->wrapVector(dr); | 
| 631 | if (dr.lengthSquare() < rl2) { | 
| 632 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 633 | } | 
| 634 | } | 
| 635 | } | 
| 636 | } | 
| 637 | #else | 
| 638 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 639 | j1 != cellList_[m1].end(); ++j1) { | 
| 640 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 641 | j2 != cellList_[m2].end(); ++j2) { | 
| 642 |  | 
| 643 | // Always do this if we're in different cells or if | 
| 644 | // we're in the same cell and the global index of the | 
| 645 | // j2 cutoff group is less than the j1 cutoff group | 
| 646 |  | 
| 647 | if (m2 != m1 || (*j2) < (*j1)) { | 
| 648 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 649 | snap_->wrapVector(dr); | 
| 650 | if (dr.lengthSquare() < rl2) { | 
| 651 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 652 | } | 
| 653 | } | 
| 654 | } | 
| 655 | } | 
| 656 | #endif | 
| 657 | } | 
| 658 | } | 
| 659 | } | 
| 660 | } | 
| 661 |  | 
| 662 | // save the local cutoff group positions for the check that is | 
| 663 | // done on each loop: | 
| 664 | saved_CG_positions_.clear(); | 
| 665 | for (int i = 0; i < nGroups_; i++) | 
| 666 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 667 |  | 
| 668 | return neighborList; | 
| 669 | } | 
| 670 | } //end namespace OpenMD |