| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 | #include "parallel/ForceMatrixDecomposition.hpp" | 
| 42 | #include "math/SquareMatrix3.hpp" | 
| 43 | #include "nonbonded/NonBondedInteraction.hpp" | 
| 44 | #include "brains/SnapshotManager.hpp" | 
| 45 |  | 
| 46 | using namespace std; | 
| 47 | namespace OpenMD { | 
| 48 |  | 
| 49 | /** | 
| 50 | * distributeInitialData is essentially a copy of the older fortran | 
| 51 | * SimulationSetup | 
| 52 | */ | 
| 53 |  | 
| 54 | void ForceMatrixDecomposition::distributeInitialData() { | 
| 55 | snap_ = sman_->getCurrentSnapshot(); | 
| 56 | storageLayout_ = sman_->getStorageLayout(); | 
| 57 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 58 | nGroups_ = snap_->getNumberOfCutoffGroups(); | 
| 59 |  | 
| 60 | #ifdef IS_MPI | 
| 61 |  | 
| 62 | AtomCommIntRow = new Communicator<Row,int>(nLocal_); | 
| 63 | AtomCommRealRow = new Communicator<Row,RealType>(nLocal_); | 
| 64 | AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_); | 
| 65 | AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_); | 
| 66 |  | 
| 67 | AtomCommIntColumn = new Communicator<Column,int>(nLocal_); | 
| 68 | AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_); | 
| 69 | AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_); | 
| 70 | AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_); | 
| 71 |  | 
| 72 | cgCommIntRow = new Communicator<Row,int>(nGroups_); | 
| 73 | cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_); | 
| 74 | cgCommIntColumn = new Communicator<Column,int>(nGroups_); | 
| 75 | cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_); | 
| 76 |  | 
| 77 | nAtomsInRow_ = AtomCommIntRow->getSize(); | 
| 78 | nAtomsInCol_ = AtomCommIntColumn->getSize(); | 
| 79 | nGroupsInRow_ = cgCommIntRow->getSize(); | 
| 80 | nGroupsInCol_ = cgCommIntColumn->getSize(); | 
| 81 |  | 
| 82 | // Modify the data storage objects with the correct layouts and sizes: | 
| 83 | atomRowData.resize(nAtomsInRow_); | 
| 84 | atomRowData.setStorageLayout(storageLayout_); | 
| 85 | atomColData.resize(nAtomsInCol_); | 
| 86 | atomColData.setStorageLayout(storageLayout_); | 
| 87 | cgRowData.resize(nGroupsInRow_); | 
| 88 | cgRowData.setStorageLayout(DataStorage::dslPosition); | 
| 89 | cgColData.resize(nGroupsInCol_); | 
| 90 | cgColData.setStorageLayout(DataStorage::dslPosition); | 
| 91 |  | 
| 92 | vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, | 
| 93 | vector<RealType> (nAtomsInRow_, 0.0)); | 
| 94 | vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, | 
| 95 | vector<RealType> (nAtomsInCol_, 0.0)); | 
| 96 |  | 
| 97 |  | 
| 98 | vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); | 
| 99 |  | 
| 100 | // gather the information for atomtype IDs (atids): | 
| 101 | vector<int> identsLocal = info_->getIdentArray(); | 
| 102 | identsRow.reserve(nAtomsInRow_); | 
| 103 | identsCol.reserve(nAtomsInCol_); | 
| 104 |  | 
| 105 | AtomCommIntRow->gather(identsLocal, identsRow); | 
| 106 | AtomCommIntColumn->gather(identsLocal, identsCol); | 
| 107 |  | 
| 108 | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 109 | AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); | 
| 110 | AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); | 
| 111 |  | 
| 112 | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 113 | cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); | 
| 114 | cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); | 
| 115 |  | 
| 116 | // still need: | 
| 117 | // topoDist | 
| 118 | // exclude | 
| 119 | #endif | 
| 120 | } | 
| 121 |  | 
| 122 |  | 
| 123 |  | 
| 124 | void ForceMatrixDecomposition::distributeData()  { | 
| 125 | snap_ = sman_->getCurrentSnapshot(); | 
| 126 | storageLayout_ = sman_->getStorageLayout(); | 
| 127 | #ifdef IS_MPI | 
| 128 |  | 
| 129 | // gather up the atomic positions | 
| 130 | AtomCommVectorRow->gather(snap_->atomData.position, | 
| 131 | atomRowData.position); | 
| 132 | AtomCommVectorColumn->gather(snap_->atomData.position, | 
| 133 | atomColData.position); | 
| 134 |  | 
| 135 | // gather up the cutoff group positions | 
| 136 | cgCommVectorRow->gather(snap_->cgData.position, | 
| 137 | cgRowData.position); | 
| 138 | cgCommVectorColumn->gather(snap_->cgData.position, | 
| 139 | cgColData.position); | 
| 140 |  | 
| 141 | // if needed, gather the atomic rotation matrices | 
| 142 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 143 | AtomCommMatrixRow->gather(snap_->atomData.aMat, | 
| 144 | atomRowData.aMat); | 
| 145 | AtomCommMatrixColumn->gather(snap_->atomData.aMat, | 
| 146 | atomColData.aMat); | 
| 147 | } | 
| 148 |  | 
| 149 | // if needed, gather the atomic eletrostatic frames | 
| 150 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 151 | AtomCommMatrixRow->gather(snap_->atomData.electroFrame, | 
| 152 | atomRowData.electroFrame); | 
| 153 | AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 154 | atomColData.electroFrame); | 
| 155 | } | 
| 156 | #endif | 
| 157 | } | 
| 158 |  | 
| 159 | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 160 | snap_ = sman_->getCurrentSnapshot(); | 
| 161 | storageLayout_ = sman_->getStorageLayout(); | 
| 162 | #ifdef IS_MPI | 
| 163 |  | 
| 164 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 165 |  | 
| 166 | AtomCommRealRow->scatter(atomRowData.density, | 
| 167 | snap_->atomData.density); | 
| 168 |  | 
| 169 | int n = snap_->atomData.density.size(); | 
| 170 | std::vector<RealType> rho_tmp(n, 0.0); | 
| 171 | AtomCommRealColumn->scatter(atomColData.density, rho_tmp); | 
| 172 | for (int i = 0; i < n; i++) | 
| 173 | snap_->atomData.density[i] += rho_tmp[i]; | 
| 174 | } | 
| 175 | #endif | 
| 176 | } | 
| 177 |  | 
| 178 | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 179 | snap_ = sman_->getCurrentSnapshot(); | 
| 180 | storageLayout_ = sman_->getStorageLayout(); | 
| 181 | #ifdef IS_MPI | 
| 182 | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 183 | AtomCommRealRow->gather(snap_->atomData.functional, | 
| 184 | atomRowData.functional); | 
| 185 | AtomCommRealColumn->gather(snap_->atomData.functional, | 
| 186 | atomColData.functional); | 
| 187 | } | 
| 188 |  | 
| 189 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 190 | AtomCommRealRow->gather(snap_->atomData.functionalDerivative, | 
| 191 | atomRowData.functionalDerivative); | 
| 192 | AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, | 
| 193 | atomColData.functionalDerivative); | 
| 194 | } | 
| 195 | #endif | 
| 196 | } | 
| 197 |  | 
| 198 |  | 
| 199 | void ForceMatrixDecomposition::collectData() { | 
| 200 | snap_ = sman_->getCurrentSnapshot(); | 
| 201 | storageLayout_ = sman_->getStorageLayout(); | 
| 202 | #ifdef IS_MPI | 
| 203 | int n = snap_->atomData.force.size(); | 
| 204 | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 205 |  | 
| 206 | AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); | 
| 207 | for (int i = 0; i < n; i++) { | 
| 208 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 209 | frc_tmp[i] = 0.0; | 
| 210 | } | 
| 211 |  | 
| 212 | AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); | 
| 213 | for (int i = 0; i < n; i++) | 
| 214 | snap_->atomData.force[i] += frc_tmp[i]; | 
| 215 |  | 
| 216 |  | 
| 217 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 218 |  | 
| 219 | int nt = snap_->atomData.force.size(); | 
| 220 | vector<Vector3d> trq_tmp(nt, V3Zero); | 
| 221 |  | 
| 222 | AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); | 
| 223 | for (int i = 0; i < n; i++) { | 
| 224 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 225 | trq_tmp[i] = 0.0; | 
| 226 | } | 
| 227 |  | 
| 228 | AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); | 
| 229 | for (int i = 0; i < n; i++) | 
| 230 | snap_->atomData.torque[i] += trq_tmp[i]; | 
| 231 | } | 
| 232 |  | 
| 233 | nLocal_ = snap_->getNumberOfAtoms(); | 
| 234 |  | 
| 235 | vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, | 
| 236 | vector<RealType> (nLocal_, 0.0)); | 
| 237 |  | 
| 238 | for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { | 
| 239 | AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); | 
| 240 | for (int ii = 0;  ii < pot_temp[i].size(); ii++ ) { | 
| 241 | pot_local[i] += pot_temp[i][ii]; | 
| 242 | } | 
| 243 | } | 
| 244 | #endif | 
| 245 | } | 
| 246 |  | 
| 247 |  | 
| 248 | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 249 | Vector3d d; | 
| 250 |  | 
| 251 | #ifdef IS_MPI | 
| 252 | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 253 | #else | 
| 254 | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 255 | #endif | 
| 256 |  | 
| 257 | snap_->wrapVector(d); | 
| 258 | return d; | 
| 259 | } | 
| 260 |  | 
| 261 |  | 
| 262 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 263 |  | 
| 264 | Vector3d d; | 
| 265 |  | 
| 266 | #ifdef IS_MPI | 
| 267 | d = cgRowData.position[cg1] - atomRowData.position[atom1]; | 
| 268 | #else | 
| 269 | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 270 | #endif | 
| 271 |  | 
| 272 | snap_->wrapVector(d); | 
| 273 | return d; | 
| 274 | } | 
| 275 |  | 
| 276 | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 277 | Vector3d d; | 
| 278 |  | 
| 279 | #ifdef IS_MPI | 
| 280 | d = cgColData.position[cg2] - atomColData.position[atom2]; | 
| 281 | #else | 
| 282 | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 283 | #endif | 
| 284 |  | 
| 285 | snap_->wrapVector(d); | 
| 286 | return d; | 
| 287 | } | 
| 288 |  | 
| 289 | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 290 | Vector3d d; | 
| 291 |  | 
| 292 | #ifdef IS_MPI | 
| 293 | d = atomColData.position[atom2] - atomRowData.position[atom1]; | 
| 294 | #else | 
| 295 | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 296 | #endif | 
| 297 |  | 
| 298 | snap_->wrapVector(d); | 
| 299 | return d; | 
| 300 | } | 
| 301 |  | 
| 302 | void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ | 
| 303 | #ifdef IS_MPI | 
| 304 | atomRowData.force[atom1] += fg; | 
| 305 | #else | 
| 306 | snap_->atomData.force[atom1] += fg; | 
| 307 | #endif | 
| 308 | } | 
| 309 |  | 
| 310 | void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ | 
| 311 | #ifdef IS_MPI | 
| 312 | atomColData.force[atom2] += fg; | 
| 313 | #else | 
| 314 | snap_->atomData.force[atom2] += fg; | 
| 315 | #endif | 
| 316 | } | 
| 317 |  | 
| 318 | // filling interaction blocks with pointers | 
| 319 | InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { | 
| 320 | InteractionData idat; | 
| 321 |  | 
| 322 | #ifdef IS_MPI | 
| 323 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 324 | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 325 | idat.A2 = &(atomColData.aMat[atom2]); | 
| 326 | } | 
| 327 |  | 
| 328 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 329 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 330 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 331 | } | 
| 332 |  | 
| 333 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 334 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 335 | idat.t2 = &(atomColData.torque[atom2]); | 
| 336 | } | 
| 337 |  | 
| 338 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 339 | idat.rho1 = &(atomRowData.density[atom1]); | 
| 340 | idat.rho2 = &(atomColData.density[atom2]); | 
| 341 | } | 
| 342 |  | 
| 343 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 344 | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 345 | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 346 | } | 
| 347 | #else | 
| 348 | if (storageLayout_ & DataStorage::dslAmat) { | 
| 349 | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 350 | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 351 | } | 
| 352 |  | 
| 353 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 354 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 355 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 356 | } | 
| 357 |  | 
| 358 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 359 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 360 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 361 | } | 
| 362 |  | 
| 363 | if (storageLayout_ & DataStorage::dslDensity) { | 
| 364 | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 365 | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 366 | } | 
| 367 |  | 
| 368 | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 369 | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 370 | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 371 | } | 
| 372 | #endif | 
| 373 | return idat; | 
| 374 | } | 
| 375 |  | 
| 376 | InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ | 
| 377 |  | 
| 378 | InteractionData idat; | 
| 379 | #ifdef IS_MPI | 
| 380 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 381 | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 382 | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 383 | } | 
| 384 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 385 | idat.t1 = &(atomRowData.torque[atom1]); | 
| 386 | idat.t2 = &(atomColData.torque[atom2]); | 
| 387 | } | 
| 388 | if (storageLayout_ & DataStorage::dslForce) { | 
| 389 | idat.t1 = &(atomRowData.force[atom1]); | 
| 390 | idat.t2 = &(atomColData.force[atom2]); | 
| 391 | } | 
| 392 | #else | 
| 393 | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 394 | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 395 | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 396 | } | 
| 397 | if (storageLayout_ & DataStorage::dslTorque) { | 
| 398 | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 399 | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 400 | } | 
| 401 | if (storageLayout_ & DataStorage::dslForce) { | 
| 402 | idat.t1 = &(snap_->atomData.force[atom1]); | 
| 403 | idat.t2 = &(snap_->atomData.force[atom2]); | 
| 404 | } | 
| 405 | #endif | 
| 406 |  | 
| 407 | } | 
| 408 |  | 
| 409 |  | 
| 410 |  | 
| 411 |  | 
| 412 | /* | 
| 413 | * buildNeighborList | 
| 414 | * | 
| 415 | * first element of pair is row-indexed CutoffGroup | 
| 416 | * second element of pair is column-indexed CutoffGroup | 
| 417 | */ | 
| 418 | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 419 |  | 
| 420 | vector<pair<int, int> > neighborList; | 
| 421 | #ifdef IS_MPI | 
| 422 | cellListRow_.clear(); | 
| 423 | cellListCol_.clear(); | 
| 424 | #else | 
| 425 | cellList_.clear(); | 
| 426 | #endif | 
| 427 |  | 
| 428 | // dangerous to not do error checking. | 
| 429 | RealType rCut_; | 
| 430 |  | 
| 431 | RealType rList_ = (rCut_ + skinThickness_); | 
| 432 | RealType rl2 = rList_ * rList_; | 
| 433 | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 434 | Mat3x3d Hmat = snap_->getHmat(); | 
| 435 | Vector3d Hx = Hmat.getColumn(0); | 
| 436 | Vector3d Hy = Hmat.getColumn(1); | 
| 437 | Vector3d Hz = Hmat.getColumn(2); | 
| 438 |  | 
| 439 | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 440 | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 441 | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 442 |  | 
| 443 | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 444 | Vector3d rs, scaled, dr; | 
| 445 | Vector3i whichCell; | 
| 446 | int cellIndex; | 
| 447 |  | 
| 448 | #ifdef IS_MPI | 
| 449 | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 450 | rs = cgRowData.position[i]; | 
| 451 | // scaled positions relative to the box vectors | 
| 452 | scaled = invHmat * rs; | 
| 453 | // wrap the vector back into the unit box by subtracting integer box | 
| 454 | // numbers | 
| 455 | for (int j = 0; j < 3; j++) | 
| 456 | scaled[j] -= roundMe(scaled[j]); | 
| 457 |  | 
| 458 | // find xyz-indices of cell that cutoffGroup is in. | 
| 459 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 460 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 461 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 462 |  | 
| 463 | // find single index of this cell: | 
| 464 | cellIndex = Vlinear(whichCell, nCells_); | 
| 465 | // add this cutoff group to the list of groups in this cell; | 
| 466 | cellListRow_[cellIndex].push_back(i); | 
| 467 | } | 
| 468 |  | 
| 469 | for (int i = 0; i < nGroupsInCol_; i++) { | 
| 470 | rs = cgColData.position[i]; | 
| 471 | // scaled positions relative to the box vectors | 
| 472 | scaled = invHmat * rs; | 
| 473 | // wrap the vector back into the unit box by subtracting integer box | 
| 474 | // numbers | 
| 475 | for (int j = 0; j < 3; j++) | 
| 476 | scaled[j] -= roundMe(scaled[j]); | 
| 477 |  | 
| 478 | // find xyz-indices of cell that cutoffGroup is in. | 
| 479 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 480 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 481 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 482 |  | 
| 483 | // find single index of this cell: | 
| 484 | cellIndex = Vlinear(whichCell, nCells_); | 
| 485 | // add this cutoff group to the list of groups in this cell; | 
| 486 | cellListCol_[cellIndex].push_back(i); | 
| 487 | } | 
| 488 | #else | 
| 489 | for (int i = 0; i < nGroups_; i++) { | 
| 490 | rs = snap_->cgData.position[i]; | 
| 491 | // scaled positions relative to the box vectors | 
| 492 | scaled = invHmat * rs; | 
| 493 | // wrap the vector back into the unit box by subtracting integer box | 
| 494 | // numbers | 
| 495 | for (int j = 0; j < 3; j++) | 
| 496 | scaled[j] -= roundMe(scaled[j]); | 
| 497 |  | 
| 498 | // find xyz-indices of cell that cutoffGroup is in. | 
| 499 | whichCell.x() = nCells_.x() * scaled.x(); | 
| 500 | whichCell.y() = nCells_.y() * scaled.y(); | 
| 501 | whichCell.z() = nCells_.z() * scaled.z(); | 
| 502 |  | 
| 503 | // find single index of this cell: | 
| 504 | cellIndex = Vlinear(whichCell, nCells_); | 
| 505 | // add this cutoff group to the list of groups in this cell; | 
| 506 | cellList_[cellIndex].push_back(i); | 
| 507 | } | 
| 508 | #endif | 
| 509 |  | 
| 510 |  | 
| 511 |  | 
| 512 | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 513 | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 514 | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 515 | Vector3i m1v(m1x, m1y, m1z); | 
| 516 | int m1 = Vlinear(m1v, nCells_); | 
| 517 |  | 
| 518 | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 519 | os != cellOffsets_.end(); ++os) { | 
| 520 |  | 
| 521 | Vector3i m2v = m1v + (*os); | 
| 522 |  | 
| 523 | if (m2v.x() >= nCells_.x()) { | 
| 524 | m2v.x() = 0; | 
| 525 | } else if (m2v.x() < 0) { | 
| 526 | m2v.x() = nCells_.x() - 1; | 
| 527 | } | 
| 528 |  | 
| 529 | if (m2v.y() >= nCells_.y()) { | 
| 530 | m2v.y() = 0; | 
| 531 | } else if (m2v.y() < 0) { | 
| 532 | m2v.y() = nCells_.y() - 1; | 
| 533 | } | 
| 534 |  | 
| 535 | if (m2v.z() >= nCells_.z()) { | 
| 536 | m2v.z() = 0; | 
| 537 | } else if (m2v.z() < 0) { | 
| 538 | m2v.z() = nCells_.z() - 1; | 
| 539 | } | 
| 540 |  | 
| 541 | int m2 = Vlinear (m2v, nCells_); | 
| 542 |  | 
| 543 | #ifdef IS_MPI | 
| 544 | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 545 | j1 != cellListRow_[m1].end(); ++j1) { | 
| 546 | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 547 | j2 != cellListCol_[m2].end(); ++j2) { | 
| 548 |  | 
| 549 | // Always do this if we're in different cells or if | 
| 550 | // we're in the same cell and the global index of the | 
| 551 | // j2 cutoff group is less than the j1 cutoff group | 
| 552 |  | 
| 553 | if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { | 
| 554 | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 555 | snap_->wrapVector(dr); | 
| 556 | if (dr.lengthSquare() < rl2) { | 
| 557 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 558 | } | 
| 559 | } | 
| 560 | } | 
| 561 | } | 
| 562 | #else | 
| 563 | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 564 | j1 != cellList_[m1].end(); ++j1) { | 
| 565 | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 566 | j2 != cellList_[m2].end(); ++j2) { | 
| 567 |  | 
| 568 | // Always do this if we're in different cells or if | 
| 569 | // we're in the same cell and the global index of the | 
| 570 | // j2 cutoff group is less than the j1 cutoff group | 
| 571 |  | 
| 572 | if (m2 != m1 || (*j2) < (*j1)) { | 
| 573 | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 574 | snap_->wrapVector(dr); | 
| 575 | if (dr.lengthSquare() < rl2) { | 
| 576 | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 577 | } | 
| 578 | } | 
| 579 | } | 
| 580 | } | 
| 581 | #endif | 
| 582 | } | 
| 583 | } | 
| 584 | } | 
| 585 | } | 
| 586 |  | 
| 587 | // save the local cutoff group positions for the check that is | 
| 588 | // done on each loop: | 
| 589 | saved_CG_positions_.clear(); | 
| 590 | for (int i = 0; i < nGroups_; i++) | 
| 591 | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 592 |  | 
| 593 | return neighborList; | 
| 594 | } | 
| 595 | } //end namespace OpenMD |