| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
#include "parallel/ForceMatrixDecomposition.hpp" |
| 43 |
|
#include "math/SquareMatrix3.hpp" |
| 54 |
|
// surrounding cells (not just the 14 upper triangular blocks that |
| 55 |
|
// are used when the processor can see all pairs) |
| 56 |
|
#ifdef IS_MPI |
| 57 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
| 57 |
< |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
| 58 |
< |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
| 59 |
< |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
| 60 |
< |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
| 61 |
< |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
| 57 |
> |
cellOffsets_.clear(); |
| 58 |
|
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
| 59 |
|
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
| 60 |
< |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
| 60 |
> |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
| 61 |
> |
cellOffsets_.push_back( Vector3i(-1, 0,-1) ); |
| 62 |
> |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
| 63 |
|
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
| 66 |
– |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
| 67 |
– |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
| 64 |
|
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
| 65 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
| 66 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
| 67 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
| 68 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
| 69 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
| 70 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
| 71 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 0) ); |
| 72 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 0) ); |
| 73 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 0) ); |
| 74 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 0) ); |
| 75 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 0) ); |
| 76 |
+ |
cellOffsets_.push_back( Vector3i(-1,-1, 1) ); |
| 77 |
+ |
cellOffsets_.push_back( Vector3i( 0,-1, 1) ); |
| 78 |
+ |
cellOffsets_.push_back( Vector3i( 1,-1, 1) ); |
| 79 |
+ |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
| 80 |
+ |
cellOffsets_.push_back( Vector3i( 0, 0, 1) ); |
| 81 |
+ |
cellOffsets_.push_back( Vector3i( 1, 0, 1) ); |
| 82 |
+ |
cellOffsets_.push_back( Vector3i(-1, 1, 1) ); |
| 83 |
+ |
cellOffsets_.push_back( Vector3i( 0, 1, 1) ); |
| 84 |
+ |
cellOffsets_.push_back( Vector3i( 1, 1, 1) ); |
| 85 |
|
#endif |
| 86 |
|
} |
| 87 |
|
|
| 170 |
|
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 171 |
|
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 172 |
|
|
| 157 |
– |
cerr << "Atoms in Local:\n"; |
| 158 |
– |
for (int i = 0; i < AtomLocalToGlobal.size(); i++) { |
| 159 |
– |
cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
| 160 |
– |
} |
| 161 |
– |
cerr << "Atoms in Row:\n"; |
| 162 |
– |
for (int i = 0; i < AtomRowToGlobal.size(); i++) { |
| 163 |
– |
cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
| 164 |
– |
} |
| 165 |
– |
cerr << "Atoms in Col:\n"; |
| 166 |
– |
for (int i = 0; i < AtomColToGlobal.size(); i++) { |
| 167 |
– |
cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
| 168 |
– |
} |
| 169 |
– |
|
| 173 |
|
cgRowToGlobal.resize(nGroupsInRow_); |
| 174 |
|
cgColToGlobal.resize(nGroupsInCol_); |
| 175 |
|
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 176 |
|
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 174 |
– |
|
| 175 |
– |
cerr << "Gruops in Local:\n"; |
| 176 |
– |
for (int i = 0; i < cgLocalToGlobal.size(); i++) { |
| 177 |
– |
cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
| 178 |
– |
} |
| 179 |
– |
cerr << "Groups in Row:\n"; |
| 180 |
– |
for (int i = 0; i < cgRowToGlobal.size(); i++) { |
| 181 |
– |
cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
| 182 |
– |
} |
| 183 |
– |
cerr << "Groups in Col:\n"; |
| 184 |
– |
for (int i = 0; i < cgColToGlobal.size(); i++) { |
| 185 |
– |
cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
| 186 |
– |
} |
| 177 |
|
|
| 188 |
– |
|
| 178 |
|
massFactorsRow.resize(nAtomsInRow_); |
| 179 |
|
massFactorsCol.resize(nAtomsInCol_); |
| 180 |
|
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
| 234 |
|
} |
| 235 |
|
} |
| 236 |
|
|
| 237 |
< |
#endif |
| 249 |
< |
|
| 250 |
< |
// allocate memory for the parallel objects |
| 251 |
< |
atypesLocal.resize(nLocal_); |
| 252 |
< |
|
| 253 |
< |
for (int i = 0; i < nLocal_; i++) |
| 254 |
< |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 255 |
< |
|
| 256 |
< |
groupList_.clear(); |
| 257 |
< |
groupList_.resize(nGroups_); |
| 258 |
< |
for (int i = 0; i < nGroups_; i++) { |
| 259 |
< |
int gid = cgLocalToGlobal[i]; |
| 260 |
< |
for (int j = 0; j < nLocal_; j++) { |
| 261 |
< |
int aid = AtomLocalToGlobal[j]; |
| 262 |
< |
if (globalGroupMembership[aid] == gid) { |
| 263 |
< |
groupList_[i].push_back(j); |
| 264 |
< |
} |
| 265 |
< |
} |
| 266 |
< |
} |
| 267 |
< |
|
| 237 |
> |
#else |
| 238 |
|
excludesForAtom.clear(); |
| 239 |
|
excludesForAtom.resize(nLocal_); |
| 240 |
|
toposForAtom.clear(); |
| 267 |
|
} |
| 268 |
|
} |
| 269 |
|
} |
| 270 |
< |
|
| 270 |
> |
#endif |
| 271 |
> |
|
| 272 |
> |
// allocate memory for the parallel objects |
| 273 |
> |
atypesLocal.resize(nLocal_); |
| 274 |
> |
|
| 275 |
> |
for (int i = 0; i < nLocal_; i++) |
| 276 |
> |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
| 277 |
> |
|
| 278 |
> |
groupList_.clear(); |
| 279 |
> |
groupList_.resize(nGroups_); |
| 280 |
> |
for (int i = 0; i < nGroups_; i++) { |
| 281 |
> |
int gid = cgLocalToGlobal[i]; |
| 282 |
> |
for (int j = 0; j < nLocal_; j++) { |
| 283 |
> |
int aid = AtomLocalToGlobal[j]; |
| 284 |
> |
if (globalGroupMembership[aid] == gid) { |
| 285 |
> |
groupList_[i].push_back(j); |
| 286 |
> |
} |
| 287 |
> |
} |
| 288 |
> |
} |
| 289 |
> |
|
| 290 |
> |
|
| 291 |
|
createGtypeCutoffMap(); |
| 292 |
|
|
| 293 |
|
} |
| 537 |
|
fill(snap_->atomData.density.begin(), |
| 538 |
|
snap_->atomData.density.end(), 0.0); |
| 539 |
|
} |
| 540 |
+ |
|
| 541 |
|
if (storageLayout_ & DataStorage::dslFunctional) { |
| 542 |
|
fill(snap_->atomData.functional.begin(), |
| 543 |
|
snap_->atomData.functional.end(), 0.0); |
| 544 |
|
} |
| 545 |
+ |
|
| 546 |
|
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 547 |
|
fill(snap_->atomData.functionalDerivative.begin(), |
| 548 |
|
snap_->atomData.functionalDerivative.end(), 0.0); |
| 549 |
|
} |
| 550 |
+ |
|
| 551 |
|
if (storageLayout_ & DataStorage::dslSkippedCharge) { |
| 552 |
|
fill(snap_->atomData.skippedCharge.begin(), |
| 553 |
|
snap_->atomData.skippedCharge.end(), 0.0); |
| 554 |
|
} |
| 562 |
– |
|
| 555 |
|
} |
| 556 |
|
|
| 557 |
|
|
| 568 |
|
|
| 569 |
|
// gather up the cutoff group positions |
| 570 |
|
|
| 579 |
– |
cerr << "before gather\n"; |
| 580 |
– |
for (int i = 0; i < snap_->cgData.position.size(); i++) { |
| 581 |
– |
cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
| 582 |
– |
} |
| 583 |
– |
|
| 571 |
|
cgPlanVectorRow->gather(snap_->cgData.position, |
| 572 |
|
cgRowData.position); |
| 573 |
|
|
| 587 |
– |
cerr << "after gather\n"; |
| 588 |
– |
for (int i = 0; i < cgRowData.position.size(); i++) { |
| 589 |
– |
cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
| 590 |
– |
} |
| 591 |
– |
|
| 574 |
|
cgPlanVectorColumn->gather(snap_->cgData.position, |
| 575 |
|
cgColData.position); |
| 594 |
– |
for (int i = 0; i < cgColData.position.size(); i++) { |
| 595 |
– |
cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
| 596 |
– |
} |
| 576 |
|
|
| 577 |
|
|
| 578 |
|
// if needed, gather the atomic rotation matrices |
| 687 |
|
} |
| 688 |
|
|
| 689 |
|
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
| 690 |
< |
for (int i = 0; i < ns; i++) |
| 690 |
> |
for (int i = 0; i < ns; i++) |
| 691 |
|
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
| 692 |
+ |
|
| 693 |
|
} |
| 694 |
|
|
| 695 |
|
nLocal_ = snap_->getNumberOfAtoms(); |
| 711 |
|
|
| 712 |
|
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
| 713 |
|
pairwisePot += pot_temp[ii]; |
| 714 |
+ |
|
| 715 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 716 |
+ |
RealType ploc1 = pairwisePot[ii]; |
| 717 |
+ |
RealType ploc2 = 0.0; |
| 718 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 719 |
+ |
pairwisePot[ii] = ploc2; |
| 720 |
+ |
} |
| 721 |
+ |
|
| 722 |
+ |
for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { |
| 723 |
+ |
RealType ploc1 = embeddingPot[ii]; |
| 724 |
+ |
RealType ploc2 = 0.0; |
| 725 |
+ |
MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); |
| 726 |
+ |
embeddingPot[ii] = ploc2; |
| 727 |
+ |
} |
| 728 |
+ |
|
| 729 |
|
#endif |
| 730 |
|
|
| 736 |
– |
cerr << "pairwisePot = " << pairwisePot << "\n"; |
| 731 |
|
} |
| 732 |
|
|
| 733 |
|
int ForceMatrixDecomposition::getNAtomsInRow() { |
| 762 |
|
|
| 763 |
|
#ifdef IS_MPI |
| 764 |
|
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
| 771 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
| 772 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
| 765 |
|
#else |
| 766 |
|
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
| 775 |
– |
cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
| 776 |
– |
cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
| 767 |
|
#endif |
| 768 |
|
|
| 769 |
|
snap_->wrapVector(d); |
| 838 |
|
*/ |
| 839 |
|
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
| 840 |
|
int unique_id_1, unique_id_2; |
| 841 |
< |
|
| 852 |
< |
|
| 853 |
< |
cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
| 841 |
> |
|
| 842 |
|
#ifdef IS_MPI |
| 843 |
|
// in MPI, we have to look up the unique IDs for each atom |
| 844 |
|
unique_id_1 = AtomRowToGlobal[atom1]; |
| 845 |
|
unique_id_2 = AtomColToGlobal[atom2]; |
| 846 |
+ |
#else |
| 847 |
+ |
unique_id_1 = AtomLocalToGlobal[atom1]; |
| 848 |
+ |
unique_id_2 = AtomLocalToGlobal[atom2]; |
| 849 |
+ |
#endif |
| 850 |
|
|
| 859 |
– |
cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
| 860 |
– |
// this situation should only arise in MPI simulations |
| 851 |
|
if (unique_id_1 == unique_id_2) return true; |
| 852 |
< |
|
| 852 |
> |
|
| 853 |
> |
#ifdef IS_MPI |
| 854 |
|
// this prevents us from doing the pair on multiple processors |
| 855 |
|
if (unique_id_1 < unique_id_2) { |
| 856 |
|
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
| 857 |
|
} else { |
| 858 |
< |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 858 |
> |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
| 859 |
|
} |
| 860 |
|
#endif |
| 861 |
+ |
|
| 862 |
|
return false; |
| 863 |
|
} |
| 864 |
|
|
| 872 |
|
* field) must still be handled for these pairs. |
| 873 |
|
*/ |
| 874 |
|
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
| 875 |
< |
int unique_id_2; |
| 876 |
< |
#ifdef IS_MPI |
| 877 |
< |
// in MPI, we have to look up the unique IDs for the row atom. |
| 886 |
< |
unique_id_2 = AtomColToGlobal[atom2]; |
| 887 |
< |
#else |
| 888 |
< |
// in the normal loop, the atom numbers are unique |
| 889 |
< |
unique_id_2 = atom2; |
| 890 |
< |
#endif |
| 875 |
> |
|
| 876 |
> |
// excludesForAtom was constructed to use row/column indices in the MPI |
| 877 |
> |
// version, and to use local IDs in the non-MPI version: |
| 878 |
|
|
| 879 |
|
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); |
| 880 |
|
i != excludesForAtom[atom1].end(); ++i) { |
| 881 |
< |
if ( (*i) == unique_id_2 ) return true; |
| 881 |
> |
if ( (*i) == atom2 ) return true; |
| 882 |
|
} |
| 883 |
|
|
| 884 |
|
return false; |
| 953 |
|
} |
| 954 |
|
|
| 955 |
|
#else |
| 956 |
+ |
|
| 957 |
+ |
|
| 958 |
+ |
// cerr << "atoms = " << atom1 << " " << atom2 << "\n"; |
| 959 |
+ |
// cerr << "pos1 = " << snap_->atomData.position[atom1] << "\n"; |
| 960 |
+ |
// cerr << "pos2 = " << snap_->atomData.position[atom2] << "\n"; |
| 961 |
|
|
| 962 |
|
idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); |
| 963 |
|
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
| 1008 |
|
|
| 1009 |
|
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
| 1010 |
|
#ifdef IS_MPI |
| 1011 |
< |
pot_row[atom1] += 0.5 * *(idat.pot); |
| 1012 |
< |
pot_col[atom2] += 0.5 * *(idat.pot); |
| 1011 |
> |
pot_row[atom1] += RealType(0.5) * *(idat.pot); |
| 1012 |
> |
pot_col[atom2] += RealType(0.5) * *(idat.pot); |
| 1013 |
|
|
| 1014 |
|
atomRowData.force[atom1] += *(idat.f1); |
| 1015 |
|
atomColData.force[atom2] -= *(idat.f1); |
| 1123 |
|
// add this cutoff group to the list of groups in this cell; |
| 1124 |
|
cellListCol_[cellIndex].push_back(i); |
| 1125 |
|
} |
| 1126 |
+ |
|
| 1127 |
|
#else |
| 1128 |
|
for (int i = 0; i < nGroups_; i++) { |
| 1129 |
|
rs = snap_->cgData.position[i]; |
| 1149 |
|
// add this cutoff group to the list of groups in this cell; |
| 1150 |
|
cellList_[cellIndex].push_back(i); |
| 1151 |
|
} |
| 1152 |
+ |
|
| 1153 |
|
#endif |
| 1154 |
|
|
| 1155 |
|
for (int m1z = 0; m1z < nCells_.z(); m1z++) { |
| 1162 |
|
os != cellOffsets_.end(); ++os) { |
| 1163 |
|
|
| 1164 |
|
Vector3i m2v = m1v + (*os); |
| 1165 |
< |
|
| 1165 |
> |
|
| 1166 |
> |
|
| 1167 |
|
if (m2v.x() >= nCells_.x()) { |
| 1168 |
|
m2v.x() = 0; |
| 1169 |
|
} else if (m2v.x() < 0) { |
| 1181 |
|
} else if (m2v.z() < 0) { |
| 1182 |
|
m2v.z() = nCells_.z() - 1; |
| 1183 |
|
} |
| 1184 |
< |
|
| 1184 |
> |
|
| 1185 |
|
int m2 = Vlinear (m2v, nCells_); |
| 1186 |
|
|
| 1187 |
|
#ifdef IS_MPI |
| 1190 |
|
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
| 1191 |
|
j2 != cellListCol_[m2].end(); ++j2) { |
| 1192 |
|
|
| 1193 |
< |
// In parallel, we need to visit *all* pairs of row & |
| 1194 |
< |
// column indicies and will truncate later on. |
| 1193 |
> |
// In parallel, we need to visit *all* pairs of row |
| 1194 |
> |
// & column indicies and will divide labor in the |
| 1195 |
> |
// force evaluation later. |
| 1196 |
|
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
| 1197 |
|
snap_->wrapVector(dr); |
| 1198 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1202 |
|
} |
| 1203 |
|
} |
| 1204 |
|
#else |
| 1209 |
– |
|
| 1205 |
|
for (vector<int>::iterator j1 = cellList_[m1].begin(); |
| 1206 |
|
j1 != cellList_[m1].end(); ++j1) { |
| 1207 |
|
for (vector<int>::iterator j2 = cellList_[m2].begin(); |
| 1208 |
|
j2 != cellList_[m2].end(); ++j2) { |
| 1209 |
< |
|
| 1209 |
> |
|
| 1210 |
|
// Always do this if we're in different cells or if |
| 1211 |
< |
// we're in the same cell and the global index of the |
| 1212 |
< |
// j2 cutoff group is less than the j1 cutoff group |
| 1213 |
< |
|
| 1214 |
< |
if (m2 != m1 || (*j2) < (*j1)) { |
| 1211 |
> |
// we're in the same cell and the global index of |
| 1212 |
> |
// the j2 cutoff group is greater than or equal to |
| 1213 |
> |
// the j1 cutoff group. Note that Rappaport's code |
| 1214 |
> |
// has a "less than" conditional here, but that |
| 1215 |
> |
// deals with atom-by-atom computation. OpenMD |
| 1216 |
> |
// allows atoms within a single cutoff group to |
| 1217 |
> |
// interact with each other. |
| 1218 |
> |
|
| 1219 |
> |
|
| 1220 |
> |
|
| 1221 |
> |
if (m2 != m1 || (*j2) >= (*j1) ) { |
| 1222 |
> |
|
| 1223 |
|
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
| 1224 |
|
snap_->wrapVector(dr); |
| 1225 |
|
cuts = getGroupCutoffs( (*j1), (*j2) ); |
| 1238 |
|
// branch to do all cutoff group pairs |
| 1239 |
|
#ifdef IS_MPI |
| 1240 |
|
for (int j1 = 0; j1 < nGroupsInRow_; j1++) { |
| 1241 |
< |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1241 |
> |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) { |
| 1242 |
|
dr = cgColData.position[j2] - cgRowData.position[j1]; |
| 1243 |
|
snap_->wrapVector(dr); |
| 1244 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1246 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1247 |
|
} |
| 1248 |
|
} |
| 1249 |
< |
} |
| 1249 |
> |
} |
| 1250 |
|
#else |
| 1251 |
< |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) { |
| 1252 |
< |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) { |
| 1251 |
> |
// include all groups here. |
| 1252 |
> |
for (int j1 = 0; j1 < nGroups_; j1++) { |
| 1253 |
> |
// include self group interactions j2 == j1 |
| 1254 |
> |
for (int j2 = j1; j2 < nGroups_; j2++) { |
| 1255 |
|
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
| 1256 |
|
snap_->wrapVector(dr); |
| 1257 |
|
cuts = getGroupCutoffs( j1, j2 ); |
| 1258 |
|
if (dr.lengthSquare() < cuts.third) { |
| 1259 |
|
neighborList.push_back(make_pair(j1, j2)); |
| 1260 |
|
} |
| 1261 |
< |
} |
| 1262 |
< |
} |
| 1261 |
> |
} |
| 1262 |
> |
} |
| 1263 |
|
#endif |
| 1264 |
|
} |
| 1265 |
|
|