| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 50 |  |  | 
| 51 |  | ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : ForceDecomposition(info, iMan) { | 
| 52 |  |  | 
| 53 | < | // In a parallel computation, row and colum scans must visit all | 
| 54 | < | // surrounding cells (not just the 14 upper triangular blocks that | 
| 55 | < | // are used when the processor can see all pairs) | 
| 56 | < | #ifdef IS_MPI | 
| 53 | > | // Row and colum scans must visit all surrounding cells | 
| 54 |  | cellOffsets_.clear(); | 
| 55 |  | cellOffsets_.push_back( Vector3i(-1,-1,-1) ); | 
| 56 |  | cellOffsets_.push_back( Vector3i( 0,-1,-1) ); | 
| 79 |  | cellOffsets_.push_back( Vector3i(-1, 1, 1) ); | 
| 80 |  | cellOffsets_.push_back( Vector3i( 0, 1, 1) ); | 
| 81 |  | cellOffsets_.push_back( Vector3i( 1, 1, 1) ); | 
| 85 | – | #endif | 
| 82 |  | } | 
| 83 |  |  | 
| 84 |  |  | 
| 95 |  | nGroups_ = info_->getNLocalCutoffGroups(); | 
| 96 |  | // gather the information for atomtype IDs (atids): | 
| 97 |  | idents = info_->getIdentArray(); | 
| 98 | + | regions = info_->getRegions(); | 
| 99 |  | AtomLocalToGlobal = info_->getGlobalAtomIndices(); | 
| 100 |  | cgLocalToGlobal = info_->getGlobalGroupIndices(); | 
| 101 |  | vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); | 
| 115 |  |  | 
| 116 |  | #ifdef IS_MPI | 
| 117 |  |  | 
| 118 | < | MPI::Intracomm row = rowComm.getComm(); | 
| 119 | < | MPI::Intracomm col = colComm.getComm(); | 
| 118 | > | MPI_Comm row = rowComm.getComm(); | 
| 119 | > | MPI_Comm col = colComm.getComm(); | 
| 120 |  |  | 
| 121 |  | AtomPlanIntRow = new Plan<int>(row, nLocal_); | 
| 122 |  | AtomPlanRealRow = new Plan<RealType>(row, nLocal_); | 
| 160 |  |  | 
| 161 |  | AtomPlanIntRow->gather(idents, identsRow); | 
| 162 |  | AtomPlanIntColumn->gather(idents, identsCol); | 
| 163 | + |  | 
| 164 | + | regionsRow.resize(nAtomsInRow_); | 
| 165 | + | regionsCol.resize(nAtomsInCol_); | 
| 166 |  |  | 
| 167 | + | AtomPlanIntRow->gather(regions, regionsRow); | 
| 168 | + | AtomPlanIntColumn->gather(regions, regionsCol); | 
| 169 | + |  | 
| 170 |  | // allocate memory for the parallel objects | 
| 171 |  | atypesRow.resize(nAtomsInRow_); | 
| 172 |  | atypesCol.resize(nAtomsInCol_); | 
| 302 |  | groupList_[i].push_back(j); | 
| 303 |  | } | 
| 304 |  | } | 
| 305 | < | } | 
| 303 | < |  | 
| 304 | < |  | 
| 305 | < | createGtypeCutoffMap(); | 
| 306 | < |  | 
| 305 | > | } | 
| 306 |  | } | 
| 308 | – |  | 
| 309 | – | void ForceMatrixDecomposition::createGtypeCutoffMap() { | 
| 310 | – |  | 
| 311 | – | RealType tol = 1e-6; | 
| 312 | – | largestRcut_ = 0.0; | 
| 313 | – | int atid; | 
| 314 | – | set<AtomType*> atypes = info_->getSimulatedAtomTypes(); | 
| 315 | – |  | 
| 316 | – | map<int, RealType> atypeCutoff; | 
| 317 | – |  | 
| 318 | – | for (set<AtomType*>::iterator at = atypes.begin(); | 
| 319 | – | at != atypes.end(); ++at){ | 
| 320 | – | atid = (*at)->getIdent(); | 
| 321 | – | if (userChoseCutoff_) | 
| 322 | – | atypeCutoff[atid] = userCutoff_; | 
| 323 | – | else | 
| 324 | – | atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); | 
| 325 | – | } | 
| 326 | – |  | 
| 327 | – | vector<RealType> gTypeCutoffs; | 
| 328 | – | // first we do a single loop over the cutoff groups to find the | 
| 329 | – | // largest cutoff for any atypes present in this group. | 
| 330 | – | #ifdef IS_MPI | 
| 331 | – | vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); | 
| 332 | – | groupRowToGtype.resize(nGroupsInRow_); | 
| 333 | – | for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { | 
| 334 | – | vector<int> atomListRow = getAtomsInGroupRow(cg1); | 
| 335 | – | for (vector<int>::iterator ia = atomListRow.begin(); | 
| 336 | – | ia != atomListRow.end(); ++ia) { | 
| 337 | – | int atom1 = (*ia); | 
| 338 | – | atid = identsRow[atom1]; | 
| 339 | – | if (atypeCutoff[atid] > groupCutoffRow[cg1]) { | 
| 340 | – | groupCutoffRow[cg1] = atypeCutoff[atid]; | 
| 341 | – | } | 
| 342 | – | } | 
| 343 | – |  | 
| 344 | – | bool gTypeFound = false; | 
| 345 | – | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 346 | – | if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 347 | – | groupRowToGtype[cg1] = gt; | 
| 348 | – | gTypeFound = true; | 
| 349 | – | } | 
| 350 | – | } | 
| 351 | – | if (!gTypeFound) { | 
| 352 | – | gTypeCutoffs.push_back( groupCutoffRow[cg1] ); | 
| 353 | – | groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 354 | – | } | 
| 355 | – |  | 
| 356 | – | } | 
| 357 | – | vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); | 
| 358 | – | groupColToGtype.resize(nGroupsInCol_); | 
| 359 | – | for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { | 
| 360 | – | vector<int> atomListCol = getAtomsInGroupColumn(cg2); | 
| 361 | – | for (vector<int>::iterator jb = atomListCol.begin(); | 
| 362 | – | jb != atomListCol.end(); ++jb) { | 
| 363 | – | int atom2 = (*jb); | 
| 364 | – | atid = identsCol[atom2]; | 
| 365 | – | if (atypeCutoff[atid] > groupCutoffCol[cg2]) { | 
| 366 | – | groupCutoffCol[cg2] = atypeCutoff[atid]; | 
| 367 | – | } | 
| 368 | – | } | 
| 369 | – | bool gTypeFound = false; | 
| 370 | – | for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 371 | – | if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { | 
| 372 | – | groupColToGtype[cg2] = gt; | 
| 373 | – | gTypeFound = true; | 
| 374 | – | } | 
| 375 | – | } | 
| 376 | – | if (!gTypeFound) { | 
| 377 | – | gTypeCutoffs.push_back( groupCutoffCol[cg2] ); | 
| 378 | – | groupColToGtype[cg2] = gTypeCutoffs.size() - 1; | 
| 379 | – | } | 
| 380 | – | } | 
| 381 | – | #else | 
| 382 | – |  | 
| 383 | – | vector<RealType> groupCutoff(nGroups_, 0.0); | 
| 384 | – | groupToGtype.resize(nGroups_); | 
| 385 | – | for (int cg1 = 0; cg1 < nGroups_; cg1++) { | 
| 386 | – | groupCutoff[cg1] = 0.0; | 
| 387 | – | vector<int> atomList = getAtomsInGroupRow(cg1); | 
| 388 | – | for (vector<int>::iterator ia = atomList.begin(); | 
| 389 | – | ia != atomList.end(); ++ia) { | 
| 390 | – | int atom1 = (*ia); | 
| 391 | – | atid = idents[atom1]; | 
| 392 | – | if (atypeCutoff[atid] > groupCutoff[cg1]) | 
| 393 | – | groupCutoff[cg1] = atypeCutoff[atid]; | 
| 394 | – | } | 
| 395 | – |  | 
| 396 | – | bool gTypeFound = false; | 
| 397 | – | for (unsigned int gt = 0; gt < gTypeCutoffs.size(); gt++) { | 
| 398 | – | if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { | 
| 399 | – | groupToGtype[cg1] = gt; | 
| 400 | – | gTypeFound = true; | 
| 401 | – | } | 
| 402 | – | } | 
| 403 | – | if (!gTypeFound) { | 
| 404 | – | gTypeCutoffs.push_back( groupCutoff[cg1] ); | 
| 405 | – | groupToGtype[cg1] = gTypeCutoffs.size() - 1; | 
| 406 | – | } | 
| 407 | – | } | 
| 408 | – | #endif | 
| 409 | – |  | 
| 410 | – | // Now we find the maximum group cutoff value present in the simulation | 
| 411 | – |  | 
| 412 | – | RealType groupMax = *max_element(gTypeCutoffs.begin(), | 
| 413 | – | gTypeCutoffs.end()); | 
| 414 | – |  | 
| 415 | – | #ifdef IS_MPI | 
| 416 | – | MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, | 
| 417 | – | MPI::MAX); | 
| 418 | – | #endif | 
| 307 |  |  | 
| 420 | – | RealType tradRcut = groupMax; | 
| 421 | – |  | 
| 422 | – | for (unsigned int i = 0; i < gTypeCutoffs.size();  i++) { | 
| 423 | – | for (unsigned int j = 0; j < gTypeCutoffs.size();  j++) { | 
| 424 | – | RealType thisRcut; | 
| 425 | – | switch(cutoffPolicy_) { | 
| 426 | – | case TRADITIONAL: | 
| 427 | – | thisRcut = tradRcut; | 
| 428 | – | break; | 
| 429 | – | case MIX: | 
| 430 | – | thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); | 
| 431 | – | break; | 
| 432 | – | case MAX: | 
| 433 | – | thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); | 
| 434 | – | break; | 
| 435 | – | default: | 
| 436 | – | sprintf(painCave.errMsg, | 
| 437 | – | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 438 | – | "hit an unknown cutoff policy!\n"); | 
| 439 | – | painCave.severity = OPENMD_ERROR; | 
| 440 | – | painCave.isFatal = 1; | 
| 441 | – | simError(); | 
| 442 | – | break; | 
| 443 | – | } | 
| 444 | – |  | 
| 445 | – | pair<int,int> key = make_pair(i,j); | 
| 446 | – | gTypeCutoffMap[key].first = thisRcut; | 
| 447 | – | if (thisRcut > largestRcut_) largestRcut_ = thisRcut; | 
| 448 | – | gTypeCutoffMap[key].second = thisRcut*thisRcut; | 
| 449 | – | gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); | 
| 450 | – | // sanity check | 
| 451 | – |  | 
| 452 | – | if (userChoseCutoff_) { | 
| 453 | – | if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { | 
| 454 | – | sprintf(painCave.errMsg, | 
| 455 | – | "ForceMatrixDecomposition::createGtypeCutoffMap " | 
| 456 | – | "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); | 
| 457 | – | painCave.severity = OPENMD_ERROR; | 
| 458 | – | painCave.isFatal = 1; | 
| 459 | – | simError(); | 
| 460 | – | } | 
| 461 | – | } | 
| 462 | – | } | 
| 463 | – | } | 
| 464 | – | } | 
| 465 | – |  | 
| 466 | – | groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { | 
| 467 | – | int i, j; | 
| 468 | – | #ifdef IS_MPI | 
| 469 | – | i = groupRowToGtype[cg1]; | 
| 470 | – | j = groupColToGtype[cg2]; | 
| 471 | – | #else | 
| 472 | – | i = groupToGtype[cg1]; | 
| 473 | – | j = groupToGtype[cg2]; | 
| 474 | – | #endif | 
| 475 | – | return gTypeCutoffMap[make_pair(i,j)]; | 
| 476 | – | } | 
| 477 | – |  | 
| 308 |  | int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { | 
| 309 |  | for (unsigned int j = 0; j < toposForAtom[atom1].size(); j++) { | 
| 310 |  | if (toposForAtom[atom1][j] == atom2) | 
| 311 |  | return topoDist[atom1][j]; | 
| 312 | < | } | 
| 312 | > | } | 
| 313 |  | return 0; | 
| 314 |  | } | 
| 315 |  |  | 
| 389 |  | atomColData.electricField.end(), V3Zero); | 
| 390 |  | } | 
| 391 |  |  | 
| 392 | < | if (storageLayout_ & DataStorage::dslFlucQForce) { | 
| 393 | < | fill(atomRowData.flucQFrc.begin(), atomRowData.flucQFrc.end(), | 
| 394 | < | 0.0); | 
| 395 | < | fill(atomColData.flucQFrc.begin(), atomColData.flucQFrc.end(), | 
| 396 | < | 0.0); | 
| 392 | > | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 393 | > | fill(atomRowData.sitePotential.begin(), | 
| 394 | > | atomRowData.sitePotential.end(), 0.0); | 
| 395 | > | fill(atomColData.sitePotential.begin(), | 
| 396 | > | atomColData.sitePotential.end(), 0.0); | 
| 397 |  | } | 
| 398 |  |  | 
| 399 |  | #endif | 
| 428 |  | fill(snap_->atomData.electricField.begin(), | 
| 429 |  | snap_->atomData.electricField.end(), V3Zero); | 
| 430 |  | } | 
| 431 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 432 | + | fill(snap_->atomData.sitePotential.begin(), | 
| 433 | + | snap_->atomData.sitePotential.end(), 0.0); | 
| 434 | + | } | 
| 435 |  | } | 
| 436 |  |  | 
| 437 |  |  | 
| 438 |  | void ForceMatrixDecomposition::distributeData()  { | 
| 439 | + |  | 
| 440 | + | #ifdef IS_MPI | 
| 441 | + |  | 
| 442 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 443 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 607 | – | #ifdef IS_MPI | 
| 444 |  |  | 
| 445 | + | bool needsCG = true; | 
| 446 | + | if(info_->getNCutoffGroups() != info_->getNAtoms()) | 
| 447 | + | needsCG = false; | 
| 448 | + |  | 
| 449 |  | // gather up the atomic positions | 
| 450 |  | AtomPlanVectorRow->gather(snap_->atomData.position, | 
| 451 |  | atomRowData.position); | 
| 454 |  |  | 
| 455 |  | // gather up the cutoff group positions | 
| 456 |  |  | 
| 457 | < | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 458 | < | cgRowData.position); | 
| 457 | > | if (needsCG) { | 
| 458 | > | cgPlanVectorRow->gather(snap_->cgData.position, | 
| 459 | > | cgRowData.position); | 
| 460 | > |  | 
| 461 | > | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 462 | > | cgColData.position); | 
| 463 | > | } | 
| 464 |  |  | 
| 620 | – | cgPlanVectorColumn->gather(snap_->cgData.position, | 
| 621 | – | cgColData.position); | 
| 465 |  |  | 
| 623 | – |  | 
| 624 | – |  | 
| 466 |  | if (needVelocities_) { | 
| 467 |  | // gather up the atomic velocities | 
| 468 |  | AtomPlanVectorColumn->gather(snap_->atomData.velocity, | 
| 469 |  | atomColData.velocity); | 
| 470 | < |  | 
| 471 | < | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 472 | < | cgColData.velocity); | 
| 470 | > |  | 
| 471 | > | if (needsCG) { | 
| 472 | > | cgPlanVectorColumn->gather(snap_->cgData.velocity, | 
| 473 | > | cgColData.velocity); | 
| 474 | > | } | 
| 475 |  | } | 
| 476 |  |  | 
| 477 |  |  | 
| 482 |  | AtomPlanMatrixColumn->gather(snap_->atomData.aMat, | 
| 483 |  | atomColData.aMat); | 
| 484 |  | } | 
| 485 | < |  | 
| 486 | < | // if needed, gather the atomic eletrostatic frames | 
| 487 | < | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 488 | < | AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, | 
| 489 | < | atomRowData.electroFrame); | 
| 490 | < | AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, | 
| 491 | < | atomColData.electroFrame); | 
| 485 | > |  | 
| 486 | > | // if needed, gather the atomic eletrostatic information | 
| 487 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 488 | > | AtomPlanVectorRow->gather(snap_->atomData.dipole, | 
| 489 | > | atomRowData.dipole); | 
| 490 | > | AtomPlanVectorColumn->gather(snap_->atomData.dipole, | 
| 491 | > | atomColData.dipole); | 
| 492 |  | } | 
| 493 |  |  | 
| 494 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 495 | + | AtomPlanMatrixRow->gather(snap_->atomData.quadrupole, | 
| 496 | + | atomRowData.quadrupole); | 
| 497 | + | AtomPlanMatrixColumn->gather(snap_->atomData.quadrupole, | 
| 498 | + | atomColData.quadrupole); | 
| 499 | + | } | 
| 500 | + |  | 
| 501 |  | // if needed, gather the atomic fluctuating charge values | 
| 502 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 503 |  | AtomPlanRealRow->gather(snap_->atomData.flucQPos, | 
| 513 |  | * data structures. | 
| 514 |  | */ | 
| 515 |  | void ForceMatrixDecomposition::collectIntermediateData() { | 
| 516 | + | #ifdef IS_MPI | 
| 517 | + |  | 
| 518 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 519 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 520 | < | #ifdef IS_MPI | 
| 669 | < |  | 
| 520 | > |  | 
| 521 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 522 |  |  | 
| 523 |  | AtomPlanRealRow->scatter(atomRowData.density, | 
| 530 |  | snap_->atomData.density[i] += rho_tmp[i]; | 
| 531 |  | } | 
| 532 |  |  | 
| 533 | + | // this isn't necessary if we don't have polarizable atoms, but | 
| 534 | + | // we'll leave it here for now. | 
| 535 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 536 |  |  | 
| 537 |  | AtomPlanVectorRow->scatter(atomRowData.electricField, | 
| 539 |  |  | 
| 540 |  | int n = snap_->atomData.electricField.size(); | 
| 541 |  | vector<Vector3d> field_tmp(n, V3Zero); | 
| 542 | < | AtomPlanVectorColumn->scatter(atomColData.electricField, field_tmp); | 
| 542 | > | AtomPlanVectorColumn->scatter(atomColData.electricField, | 
| 543 | > | field_tmp); | 
| 544 |  | for (int i = 0; i < n; i++) | 
| 545 |  | snap_->atomData.electricField[i] += field_tmp[i]; | 
| 546 |  | } | 
| 552 |  | * row and column-indexed data structures | 
| 553 |  | */ | 
| 554 |  | void ForceMatrixDecomposition::distributeIntermediateData() { | 
| 555 | + | #ifdef IS_MPI | 
| 556 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 557 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 558 | < | #ifdef IS_MPI | 
| 558 | > |  | 
| 559 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 560 |  | AtomPlanRealRow->gather(snap_->atomData.functional, | 
| 561 |  | atomRowData.functional); | 
| 574 |  |  | 
| 575 |  |  | 
| 576 |  | void ForceMatrixDecomposition::collectData() { | 
| 577 | + | #ifdef IS_MPI | 
| 578 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 579 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 580 | < | #ifdef IS_MPI | 
| 580 | > |  | 
| 581 |  | int n = snap_->atomData.force.size(); | 
| 582 |  | vector<Vector3d> frc_tmp(n, V3Zero); | 
| 583 |  |  | 
| 640 |  | for (int i = 0; i < nq; i++) | 
| 641 |  | snap_->atomData.flucQFrc[i] += fqfrc_tmp[i]; | 
| 642 |  |  | 
| 643 | + | } | 
| 644 | + |  | 
| 645 | + | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 646 | + |  | 
| 647 | + | int nef = snap_->atomData.electricField.size(); | 
| 648 | + | vector<Vector3d> efield_tmp(nef, V3Zero); | 
| 649 | + |  | 
| 650 | + | AtomPlanVectorRow->scatter(atomRowData.electricField, efield_tmp); | 
| 651 | + | for (int i = 0; i < nef; i++) { | 
| 652 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 653 | + | efield_tmp[i] = 0.0; | 
| 654 | + | } | 
| 655 | + |  | 
| 656 | + | AtomPlanVectorColumn->scatter(atomColData.electricField, efield_tmp); | 
| 657 | + | for (int i = 0; i < nef; i++) | 
| 658 | + | snap_->atomData.electricField[i] += efield_tmp[i]; | 
| 659 | + | } | 
| 660 | + |  | 
| 661 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 662 | + |  | 
| 663 | + | int nsp = snap_->atomData.sitePotential.size(); | 
| 664 | + | vector<RealType> sp_tmp(nsp, 0.0); | 
| 665 | + |  | 
| 666 | + | AtomPlanRealRow->scatter(atomRowData.sitePotential, sp_tmp); | 
| 667 | + | for (int i = 0; i < nsp; i++) { | 
| 668 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 669 | + | sp_tmp[i] = 0.0; | 
| 670 | + | } | 
| 671 | + |  | 
| 672 | + | AtomPlanRealColumn->scatter(atomColData.sitePotential, sp_tmp); | 
| 673 | + | for (int i = 0; i < nsp; i++) | 
| 674 | + | snap_->atomData.sitePotential[i] += sp_tmp[i]; | 
| 675 |  | } | 
| 676 |  |  | 
| 677 |  | nLocal_ = snap_->getNumberOfAtoms(); | 
| 757 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 758 |  | RealType ploc1 = pairwisePot[ii]; | 
| 759 |  | RealType ploc2 = 0.0; | 
| 760 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 760 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 761 |  | pairwisePot[ii] = ploc2; | 
| 762 |  | } | 
| 763 |  |  | 
| 764 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 765 |  | RealType ploc1 = excludedPot[ii]; | 
| 766 |  | RealType ploc2 = 0.0; | 
| 767 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 767 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 768 |  | excludedPot[ii] = ploc2; | 
| 769 |  | } | 
| 770 |  |  | 
| 771 |  | // Here be dragons. | 
| 772 | < | MPI::Intracomm col = colComm.getComm(); | 
| 772 | > | MPI_Comm col = colComm.getComm(); | 
| 773 |  |  | 
| 774 | < | col.Allreduce(MPI::IN_PLACE, | 
| 774 | > | MPI_Allreduce(MPI_IN_PLACE, | 
| 775 |  | &snap_->frameData.conductiveHeatFlux[0], 3, | 
| 776 | < | MPI::REALTYPE, MPI::SUM); | 
| 776 | > | MPI_REALTYPE, MPI_SUM, col); | 
| 777 |  |  | 
| 778 |  |  | 
| 779 |  | #endif | 
| 785 |  | * functional) loops onto local data structures. | 
| 786 |  | */ | 
| 787 |  | void ForceMatrixDecomposition::collectSelfData() { | 
| 788 | + |  | 
| 789 | + | #ifdef IS_MPI | 
| 790 |  | snap_ = sman_->getCurrentSnapshot(); | 
| 791 |  | storageLayout_ = sman_->getStorageLayout(); | 
| 792 |  |  | 
| 903 | – | #ifdef IS_MPI | 
| 793 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 794 |  | RealType ploc1 = embeddingPot[ii]; | 
| 795 |  | RealType ploc2 = 0.0; | 
| 796 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 796 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 797 |  | embeddingPot[ii] = ploc2; | 
| 798 |  | } | 
| 799 |  | for (int ii = 0; ii < N_INTERACTION_FAMILIES; ii++) { | 
| 800 |  | RealType ploc1 = excludedSelfPot[ii]; | 
| 801 |  | RealType ploc2 = 0.0; | 
| 802 | < | MPI::COMM_WORLD.Allreduce(&ploc1, &ploc2, 1, MPI::REALTYPE, MPI::SUM); | 
| 802 | > | MPI_Allreduce(&ploc1, &ploc2, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); | 
| 803 |  | excludedSelfPot[ii] = ploc2; | 
| 804 |  | } | 
| 805 |  | #endif | 
| 806 |  |  | 
| 807 |  | } | 
| 808 |  |  | 
| 809 | < |  | 
| 921 | < |  | 
| 922 | < | int ForceMatrixDecomposition::getNAtomsInRow() { | 
| 809 | > | int& ForceMatrixDecomposition::getNAtomsInRow() { | 
| 810 |  | #ifdef IS_MPI | 
| 811 |  | return nAtomsInRow_; | 
| 812 |  | #else | 
| 817 |  | /** | 
| 818 |  | * returns the list of atoms belonging to this group. | 
| 819 |  | */ | 
| 820 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 820 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ | 
| 821 |  | #ifdef IS_MPI | 
| 822 |  | return groupListRow_[cg1]; | 
| 823 |  | #else | 
| 825 |  | #endif | 
| 826 |  | } | 
| 827 |  |  | 
| 828 | < | vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 828 | > | vector<int>& ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ | 
| 829 |  | #ifdef IS_MPI | 
| 830 |  | return groupListCol_[cg2]; | 
| 831 |  | #else | 
| 833 |  | #endif | 
| 834 |  | } | 
| 835 |  |  | 
| 836 | < | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ | 
| 836 | > | Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, | 
| 837 | > | int cg2){ | 
| 838 | > |  | 
| 839 |  | Vector3d d; | 
| 951 | – |  | 
| 840 |  | #ifdef IS_MPI | 
| 841 |  | d = cgColData.position[cg2] - cgRowData.position[cg1]; | 
| 842 |  | #else | 
| 843 |  | d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; | 
| 844 |  | #endif | 
| 845 |  |  | 
| 846 | < | snap_->wrapVector(d); | 
| 846 | > | if (usePeriodicBoundaryConditions_) { | 
| 847 | > | snap_->wrapVector(d); | 
| 848 | > | } | 
| 849 |  | return d; | 
| 850 |  | } | 
| 851 |  |  | 
| 852 | < | Vector3d ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 852 | > | Vector3d& ForceMatrixDecomposition::getGroupVelocityColumn(int cg2){ | 
| 853 |  | #ifdef IS_MPI | 
| 854 |  | return cgColData.velocity[cg2]; | 
| 855 |  | #else | 
| 857 |  | #endif | 
| 858 |  | } | 
| 859 |  |  | 
| 860 | < | Vector3d ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 860 | > | Vector3d& ForceMatrixDecomposition::getAtomVelocityColumn(int atom2){ | 
| 861 |  | #ifdef IS_MPI | 
| 862 |  | return atomColData.velocity[atom2]; | 
| 863 |  | #else | 
| 866 |  | } | 
| 867 |  |  | 
| 868 |  |  | 
| 869 | < | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ | 
| 870 | < |  | 
| 869 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, | 
| 870 | > | int cg1) { | 
| 871 |  | Vector3d d; | 
| 872 |  |  | 
| 873 |  | #ifdef IS_MPI | 
| 875 |  | #else | 
| 876 |  | d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; | 
| 877 |  | #endif | 
| 878 | < |  | 
| 879 | < | snap_->wrapVector(d); | 
| 878 | > | if (usePeriodicBoundaryConditions_) { | 
| 879 | > | snap_->wrapVector(d); | 
| 880 | > | } | 
| 881 |  | return d; | 
| 882 |  | } | 
| 883 |  |  | 
| 884 | < | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ | 
| 884 | > | Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, | 
| 885 | > | int cg2) { | 
| 886 |  | Vector3d d; | 
| 887 |  |  | 
| 888 |  | #ifdef IS_MPI | 
| 890 |  | #else | 
| 891 |  | d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; | 
| 892 |  | #endif | 
| 893 | < |  | 
| 894 | < | snap_->wrapVector(d); | 
| 893 | > | if (usePeriodicBoundaryConditions_) { | 
| 894 | > | snap_->wrapVector(d); | 
| 895 | > | } | 
| 896 |  | return d; | 
| 897 |  | } | 
| 898 |  |  | 
| 899 | < | RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 899 | > | RealType& ForceMatrixDecomposition::getMassFactorRow(int atom1) { | 
| 900 |  | #ifdef IS_MPI | 
| 901 |  | return massFactorsRow[atom1]; | 
| 902 |  | #else | 
| 904 |  | #endif | 
| 905 |  | } | 
| 906 |  |  | 
| 907 | < | RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 907 | > | RealType& ForceMatrixDecomposition::getMassFactorColumn(int atom2) { | 
| 908 |  | #ifdef IS_MPI | 
| 909 |  | return massFactorsCol[atom2]; | 
| 910 |  | #else | 
| 913 |  |  | 
| 914 |  | } | 
| 915 |  |  | 
| 916 | < | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ | 
| 916 | > | Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, | 
| 917 | > | int atom2){ | 
| 918 |  | Vector3d d; | 
| 919 |  |  | 
| 920 |  | #ifdef IS_MPI | 
| 922 |  | #else | 
| 923 |  | d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; | 
| 924 |  | #endif | 
| 925 | < |  | 
| 926 | < | snap_->wrapVector(d); | 
| 925 | > | if (usePeriodicBoundaryConditions_) { | 
| 926 | > | snap_->wrapVector(d); | 
| 927 | > | } | 
| 928 |  | return d; | 
| 929 |  | } | 
| 930 |  |  | 
| 931 | < | vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 931 | > | vector<int>& ForceMatrixDecomposition::getExcludesForAtom(int atom1) { | 
| 932 |  | return excludesForAtom[atom1]; | 
| 933 |  | } | 
| 934 |  |  | 
| 936 |  | * We need to exclude some overcounted interactions that result from | 
| 937 |  | * the parallel decomposition. | 
| 938 |  | */ | 
| 939 | < | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, int cg1, int cg2) { | 
| 940 | < | int unique_id_1, unique_id_2, group1, group2; | 
| 939 | > | bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2, | 
| 940 | > | int cg1, int cg2) { | 
| 941 | > | int unique_id_1, unique_id_2; | 
| 942 |  |  | 
| 943 |  | #ifdef IS_MPI | 
| 944 |  | // in MPI, we have to look up the unique IDs for each atom | 
| 945 |  | unique_id_1 = AtomRowToGlobal[atom1]; | 
| 946 |  | unique_id_2 = AtomColToGlobal[atom2]; | 
| 947 | < | group1 = cgRowToGlobal[cg1]; | 
| 948 | < | group2 = cgColToGlobal[cg2]; | 
| 947 | > | // group1 = cgRowToGlobal[cg1]; | 
| 948 | > | // group2 = cgColToGlobal[cg2]; | 
| 949 |  | #else | 
| 950 |  | unique_id_1 = AtomLocalToGlobal[atom1]; | 
| 951 |  | unique_id_2 = AtomLocalToGlobal[atom2]; | 
| 952 | < | group1 = cgLocalToGlobal[cg1]; | 
| 953 | < | group2 = cgLocalToGlobal[cg2]; | 
| 952 | > | int group1 = cgLocalToGlobal[cg1]; | 
| 953 | > | int group2 = cgLocalToGlobal[cg2]; | 
| 954 |  | #endif | 
| 955 |  |  | 
| 956 |  | if (unique_id_1 == unique_id_2) return true; | 
| 1014 |  |  | 
| 1015 |  | // filling interaction blocks with pointers | 
| 1016 |  | void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, | 
| 1017 | < | int atom1, int atom2) { | 
| 1017 | > | int atom1, int atom2, | 
| 1018 | > | bool newAtom1) { | 
| 1019 |  |  | 
| 1020 |  | idat.excluded = excludeAtomPair(atom1, atom2); | 
| 1021 | < |  | 
| 1021 | > |  | 
| 1022 | > | if (newAtom1) { | 
| 1023 | > |  | 
| 1024 |  | #ifdef IS_MPI | 
| 1025 | < | idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); | 
| 1026 | < | //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), | 
| 1027 | < | //                         ff_->getAtomType(identsCol[atom2]) ); | 
| 1028 | < |  | 
| 1025 | > | idat.atid1 = identsRow[atom1]; | 
| 1026 | > | idat.atid2 = identsCol[atom2]; | 
| 1027 | > |  | 
| 1028 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1029 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1030 | > | } else { | 
| 1031 | > | idat.sameRegion = false; | 
| 1032 | > | } | 
| 1033 | > |  | 
| 1034 | > | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1035 | > | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1036 | > | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1037 | > | } | 
| 1038 | > |  | 
| 1039 | > | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1040 | > | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1041 | > | idat.t2 = &(atomColData.torque[atom2]); | 
| 1042 | > | } | 
| 1043 | > |  | 
| 1044 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1045 | > | idat.dipole1 = &(atomRowData.dipole[atom1]); | 
| 1046 | > | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1047 | > | } | 
| 1048 | > |  | 
| 1049 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1050 | > | idat.quadrupole1 = &(atomRowData.quadrupole[atom1]); | 
| 1051 | > | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1052 | > | } | 
| 1053 | > |  | 
| 1054 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1055 | > | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1056 | > | idat.rho2 = &(atomColData.density[atom2]); | 
| 1057 | > | } | 
| 1058 | > |  | 
| 1059 | > | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1060 | > | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1061 | > | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1062 | > | } | 
| 1063 | > |  | 
| 1064 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1065 | > | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1066 | > | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1067 | > | } | 
| 1068 | > |  | 
| 1069 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1070 | > | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1071 | > | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1072 | > | } | 
| 1073 | > |  | 
| 1074 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1075 | > | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1076 | > | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1077 | > | } | 
| 1078 | > |  | 
| 1079 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1080 | > | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1081 | > | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1082 | > | } | 
| 1083 | > |  | 
| 1084 | > | #else | 
| 1085 | > |  | 
| 1086 | > | idat.atid1 = idents[atom1]; | 
| 1087 | > | idat.atid2 = idents[atom2]; | 
| 1088 | > |  | 
| 1089 | > | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1090 | > | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1091 | > | } else { | 
| 1092 | > | idat.sameRegion = false; | 
| 1093 | > | } | 
| 1094 | > |  | 
| 1095 | > | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1096 | > | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1097 | > | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1098 | > | } | 
| 1099 | > |  | 
| 1100 | > | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1101 | > | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1102 | > | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1103 | > | } | 
| 1104 | > |  | 
| 1105 | > | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1106 | > | idat.dipole1 = &(snap_->atomData.dipole[atom1]); | 
| 1107 | > | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1108 | > | } | 
| 1109 | > |  | 
| 1110 | > | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1111 | > | idat.quadrupole1 = &(snap_->atomData.quadrupole[atom1]); | 
| 1112 | > | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1113 | > | } | 
| 1114 | > |  | 
| 1115 | > | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1116 | > | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1117 | > | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1118 | > | } | 
| 1119 | > |  | 
| 1120 | > | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1121 | > | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1122 | > | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1123 | > | } | 
| 1124 | > |  | 
| 1125 | > | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1126 | > | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1127 | > | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1128 | > | } | 
| 1129 | > |  | 
| 1130 | > | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1131 | > | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1132 | > | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1133 | > | } | 
| 1134 | > |  | 
| 1135 | > | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1136 | > | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1137 | > | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1138 | > | } | 
| 1139 | > |  | 
| 1140 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1141 | > | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1142 | > | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1143 | > | } | 
| 1144 | > | #endif | 
| 1145 | > |  | 
| 1146 | > | } else { | 
| 1147 | > | // atom1 is not new, so don't bother updating properties of that atom: | 
| 1148 | > | #ifdef IS_MPI | 
| 1149 | > | idat.atid2 = identsCol[atom2]; | 
| 1150 | > |  | 
| 1151 | > | if (regionsRow[atom1] >= 0 && regionsCol[atom2] >= 0) { | 
| 1152 | > | idat.sameRegion = (regionsRow[atom1] == regionsCol[atom2]); | 
| 1153 | > | } else { | 
| 1154 | > | idat.sameRegion = false; | 
| 1155 | > | } | 
| 1156 | > |  | 
| 1157 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1131 | – | idat.A1 = &(atomRowData.aMat[atom1]); | 
| 1158 |  | idat.A2 = &(atomColData.aMat[atom2]); | 
| 1159 |  | } | 
| 1160 |  |  | 
| 1135 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1136 | – | idat.eFrame1 = &(atomRowData.electroFrame[atom1]); | 
| 1137 | – | idat.eFrame2 = &(atomColData.electroFrame[atom2]); | 
| 1138 | – | } | 
| 1139 | – |  | 
| 1161 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1141 | – | idat.t1 = &(atomRowData.torque[atom1]); | 
| 1162 |  | idat.t2 = &(atomColData.torque[atom2]); | 
| 1163 |  | } | 
| 1164 |  |  | 
| 1165 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1166 | + | idat.dipole2 = &(atomColData.dipole[atom2]); | 
| 1167 | + | } | 
| 1168 | + |  | 
| 1169 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1170 | + | idat.quadrupole2 = &(atomColData.quadrupole[atom2]); | 
| 1171 | + | } | 
| 1172 | + |  | 
| 1173 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1146 | – | idat.rho1 = &(atomRowData.density[atom1]); | 
| 1174 |  | idat.rho2 = &(atomColData.density[atom2]); | 
| 1175 |  | } | 
| 1176 |  |  | 
| 1177 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1151 | – | idat.frho1 = &(atomRowData.functional[atom1]); | 
| 1178 |  | idat.frho2 = &(atomColData.functional[atom2]); | 
| 1179 |  | } | 
| 1180 |  |  | 
| 1181 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1156 | – | idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); | 
| 1182 |  | idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); | 
| 1183 |  | } | 
| 1184 |  |  | 
| 1185 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1161 | – | idat.particlePot1 = &(atomRowData.particlePot[atom1]); | 
| 1186 |  | idat.particlePot2 = &(atomColData.particlePot[atom2]); | 
| 1187 |  | } | 
| 1188 |  |  | 
| 1189 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1166 | – | idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); | 
| 1190 |  | idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); | 
| 1191 |  | } | 
| 1192 |  |  | 
| 1193 | < | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1171 | < | idat.flucQ1 = &(atomRowData.flucQPos[atom1]); | 
| 1193 | > | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1194 |  | idat.flucQ2 = &(atomColData.flucQPos[atom2]); | 
| 1195 |  | } | 
| 1196 |  |  | 
| 1197 | < | #else | 
| 1198 | < |  | 
| 1177 | < | idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); | 
| 1197 | > | #else | 
| 1198 | > | idat.atid2 = idents[atom2]; | 
| 1199 |  |  | 
| 1200 | + | if (regions[atom1] >= 0 && regions[atom2] >= 0) { | 
| 1201 | + | idat.sameRegion = (regions[atom1] == regions[atom2]); | 
| 1202 | + | } else { | 
| 1203 | + | idat.sameRegion = false; | 
| 1204 | + | } | 
| 1205 | + |  | 
| 1206 |  | if (storageLayout_ & DataStorage::dslAmat) { | 
| 1180 | – | idat.A1 = &(snap_->atomData.aMat[atom1]); | 
| 1207 |  | idat.A2 = &(snap_->atomData.aMat[atom2]); | 
| 1208 |  | } | 
| 1209 |  |  | 
| 1184 | – | if (storageLayout_ & DataStorage::dslElectroFrame) { | 
| 1185 | – | idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); | 
| 1186 | – | idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); | 
| 1187 | – | } | 
| 1188 | – |  | 
| 1210 |  | if (storageLayout_ & DataStorage::dslTorque) { | 
| 1190 | – | idat.t1 = &(snap_->atomData.torque[atom1]); | 
| 1211 |  | idat.t2 = &(snap_->atomData.torque[atom2]); | 
| 1212 |  | } | 
| 1213 |  |  | 
| 1214 | + | if (storageLayout_ & DataStorage::dslDipole) { | 
| 1215 | + | idat.dipole2 = &(snap_->atomData.dipole[atom2]); | 
| 1216 | + | } | 
| 1217 | + |  | 
| 1218 | + | if (storageLayout_ & DataStorage::dslQuadrupole) { | 
| 1219 | + | idat.quadrupole2 = &(snap_->atomData.quadrupole[atom2]); | 
| 1220 | + | } | 
| 1221 | + |  | 
| 1222 |  | if (storageLayout_ & DataStorage::dslDensity) { | 
| 1195 | – | idat.rho1 = &(snap_->atomData.density[atom1]); | 
| 1223 |  | idat.rho2 = &(snap_->atomData.density[atom2]); | 
| 1224 |  | } | 
| 1225 |  |  | 
| 1226 |  | if (storageLayout_ & DataStorage::dslFunctional) { | 
| 1200 | – | idat.frho1 = &(snap_->atomData.functional[atom1]); | 
| 1227 |  | idat.frho2 = &(snap_->atomData.functional[atom2]); | 
| 1228 |  | } | 
| 1229 |  |  | 
| 1230 |  | if (storageLayout_ & DataStorage::dslFunctionalDerivative) { | 
| 1205 | – | idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); | 
| 1231 |  | idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); | 
| 1232 |  | } | 
| 1233 |  |  | 
| 1234 |  | if (storageLayout_ & DataStorage::dslParticlePot) { | 
| 1210 | – | idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); | 
| 1235 |  | idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); | 
| 1236 |  | } | 
| 1237 |  |  | 
| 1238 |  | if (storageLayout_ & DataStorage::dslSkippedCharge) { | 
| 1215 | – | idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); | 
| 1239 |  | idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); | 
| 1240 |  | } | 
| 1241 |  |  | 
| 1242 |  | if (storageLayout_ & DataStorage::dslFlucQPosition) { | 
| 1220 | – | idat.flucQ1 = &(snap_->atomData.flucQPos[atom1]); | 
| 1243 |  | idat.flucQ2 = &(snap_->atomData.flucQPos[atom2]); | 
| 1244 |  | } | 
| 1245 |  |  | 
| 1246 |  | #endif | 
| 1247 | + | } | 
| 1248 |  | } | 
| 1226 | – |  | 
| 1249 |  |  | 
| 1250 | < | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { | 
| 1250 | > | void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, | 
| 1251 | > | int atom1, int atom2) { | 
| 1252 |  | #ifdef IS_MPI | 
| 1253 |  | pot_row[atom1] += RealType(0.5) *  *(idat.pot); | 
| 1254 |  | pot_col[atom2] += RealType(0.5) *  *(idat.pot); | 
| 1266 |  | if (storageLayout_ & DataStorage::dslElectricField) { | 
| 1267 |  | atomRowData.electricField[atom1] += *(idat.eField1); | 
| 1268 |  | atomColData.electricField[atom2] += *(idat.eField2); | 
| 1269 | + | } | 
| 1270 | + |  | 
| 1271 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1272 | + | atomRowData.sitePotential[atom1] += *(idat.sPot1); | 
| 1273 | + | atomColData.sitePotential[atom2] += *(idat.sPot2); | 
| 1274 |  | } | 
| 1275 |  |  | 
| 1276 |  | #else | 
| 1299 |  | snap_->atomData.electricField[atom2] += *(idat.eField2); | 
| 1300 |  | } | 
| 1301 |  |  | 
| 1302 | + | if (storageLayout_ & DataStorage::dslSitePotential) { | 
| 1303 | + | snap_->atomData.sitePotential[atom1] += *(idat.sPot1); | 
| 1304 | + | snap_->atomData.sitePotential[atom2] += *(idat.sPot2); | 
| 1305 | + | } | 
| 1306 | + |  | 
| 1307 |  | #endif | 
| 1308 |  |  | 
| 1309 |  | } | 
| 1311 |  | /* | 
| 1312 |  | * buildNeighborList | 
| 1313 |  | * | 
| 1314 | < | * first element of pair is row-indexed CutoffGroup | 
| 1315 | < | * second element of pair is column-indexed CutoffGroup | 
| 1314 | > | * Constructs the Verlet neighbor list for a force-matrix | 
| 1315 | > | * decomposition.  In this case, each processor is responsible for | 
| 1316 | > | * row-site interactions with column-sites. | 
| 1317 | > | * | 
| 1318 | > | * neighborList is returned as a packed array of neighboring | 
| 1319 | > | * column-ordered CutoffGroups.  The starting position in | 
| 1320 | > | * neighborList for each row-ordered CutoffGroup is given by the | 
| 1321 | > | * returned vector point. | 
| 1322 |  | */ | 
| 1323 | < | vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { | 
| 1324 | < |  | 
| 1325 | < | vector<pair<int, int> > neighborList; | 
| 1326 | < | groupCutoffs cuts; | 
| 1323 | > | void ForceMatrixDecomposition::buildNeighborList(vector<int>& neighborList, | 
| 1324 | > | vector<int>& point) { | 
| 1325 | > | neighborList.clear(); | 
| 1326 | > | point.clear(); | 
| 1327 | > | int len = 0; | 
| 1328 | > |  | 
| 1329 |  | bool doAllPairs = false; | 
| 1330 |  |  | 
| 1331 | + | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1332 | + | Mat3x3d box; | 
| 1333 | + | Mat3x3d invBox; | 
| 1334 | + |  | 
| 1335 | + | Vector3d rs, scaled, dr; | 
| 1336 | + | Vector3i whichCell; | 
| 1337 | + | int cellIndex; | 
| 1338 | + |  | 
| 1339 |  | #ifdef IS_MPI | 
| 1340 |  | cellListRow_.clear(); | 
| 1341 |  | cellListCol_.clear(); | 
| 1342 | + | point.resize(nGroupsInRow_+1); | 
| 1343 |  | #else | 
| 1344 |  | cellList_.clear(); | 
| 1345 | + | point.resize(nGroups_+1); | 
| 1346 |  | #endif | 
| 1347 | + |  | 
| 1348 | + | if (!usePeriodicBoundaryConditions_) { | 
| 1349 | + | box = snap_->getBoundingBox(); | 
| 1350 | + | invBox = snap_->getInvBoundingBox(); | 
| 1351 | + | } else { | 
| 1352 | + | box = snap_->getHmat(); | 
| 1353 | + | invBox = snap_->getInvHmat(); | 
| 1354 | + | } | 
| 1355 | + |  | 
| 1356 | + | Vector3d A = box.getColumn(0); | 
| 1357 | + | Vector3d B = box.getColumn(1); | 
| 1358 | + | Vector3d C = box.getColumn(2); | 
| 1359 |  |  | 
| 1360 | < | RealType rList_ = (largestRcut_ + skinThickness_); | 
| 1361 | < | RealType rl2 = rList_ * rList_; | 
| 1362 | < | Snapshot* snap_ = sman_->getCurrentSnapshot(); | 
| 1363 | < | Mat3x3d Hmat = snap_->getHmat(); | 
| 1301 | < | Vector3d Hx = Hmat.getColumn(0); | 
| 1302 | < | Vector3d Hy = Hmat.getColumn(1); | 
| 1303 | < | Vector3d Hz = Hmat.getColumn(2); | 
| 1360 | > | // Required for triclinic cells | 
| 1361 | > | Vector3d AxB = cross(A, B); | 
| 1362 | > | Vector3d BxC = cross(B, C); | 
| 1363 | > | Vector3d CxA = cross(C, A); | 
| 1364 |  |  | 
| 1365 | < | nCells_.x() = (int) ( Hx.length() )/ rList_; | 
| 1366 | < | nCells_.y() = (int) ( Hy.length() )/ rList_; | 
| 1367 | < | nCells_.z() = (int) ( Hz.length() )/ rList_; | 
| 1365 | > | // unit vectors perpendicular to the faces of the triclinic cell: | 
| 1366 | > | AxB.normalize(); | 
| 1367 | > | BxC.normalize(); | 
| 1368 | > | CxA.normalize(); | 
| 1369 |  |  | 
| 1370 | < | // handle small boxes where the cell offsets can end up repeating cells | 
| 1370 | > | // A set of perpendicular lengths in triclinic cells: | 
| 1371 | > | RealType Wa = abs(dot(A, BxC)); | 
| 1372 | > | RealType Wb = abs(dot(B, CxA)); | 
| 1373 | > | RealType Wc = abs(dot(C, AxB)); | 
| 1374 |  |  | 
| 1375 | + | nCells_.x() = int( Wa / rList_ ); | 
| 1376 | + | nCells_.y() = int( Wb / rList_ ); | 
| 1377 | + | nCells_.z() = int( Wc / rList_ ); | 
| 1378 | + |  | 
| 1379 | + | // handle small boxes where the cell offsets can end up repeating cells | 
| 1380 |  | if (nCells_.x() < 3) doAllPairs = true; | 
| 1381 |  | if (nCells_.y() < 3) doAllPairs = true; | 
| 1382 |  | if (nCells_.z() < 3) doAllPairs = true; | 
| 1383 | < |  | 
| 1315 | < | Mat3x3d invHmat = snap_->getInvHmat(); | 
| 1316 | < | Vector3d rs, scaled, dr; | 
| 1317 | < | Vector3i whichCell; | 
| 1318 | < | int cellIndex; | 
| 1383 | > |  | 
| 1384 |  | int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); | 
| 1385 | < |  | 
| 1385 | > |  | 
| 1386 |  | #ifdef IS_MPI | 
| 1387 |  | cellListRow_.resize(nCtot); | 
| 1388 |  | cellListCol_.resize(nCtot); | 
| 1389 |  | #else | 
| 1390 |  | cellList_.resize(nCtot); | 
| 1391 |  | #endif | 
| 1392 | < |  | 
| 1392 | > |  | 
| 1393 |  | if (!doAllPairs) { | 
| 1394 | + |  | 
| 1395 |  | #ifdef IS_MPI | 
| 1396 | < |  | 
| 1396 | > |  | 
| 1397 |  | for (int i = 0; i < nGroupsInRow_; i++) { | 
| 1398 |  | rs = cgRowData.position[i]; | 
| 1399 |  |  | 
| 1400 |  | // scaled positions relative to the box vectors | 
| 1401 | < | scaled = invHmat * rs; | 
| 1401 | > | scaled = invBox * rs; | 
| 1402 |  |  | 
| 1403 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1404 |  | // numbers | 
| 1405 |  | for (int j = 0; j < 3; j++) { | 
| 1406 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1407 |  | scaled[j] += 0.5; | 
| 1408 | + | // Handle the special case when an object is exactly on the | 
| 1409 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1410 | + | // scaled coordinate of 0.0) | 
| 1411 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1412 |  | } | 
| 1413 |  |  | 
| 1414 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1426 |  | rs = cgColData.position[i]; | 
| 1427 |  |  | 
| 1428 |  | // scaled positions relative to the box vectors | 
| 1429 | < | scaled = invHmat * rs; | 
| 1429 | > | scaled = invBox * rs; | 
| 1430 |  |  | 
| 1431 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1432 |  | // numbers | 
| 1433 |  | for (int j = 0; j < 3; j++) { | 
| 1434 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1435 |  | scaled[j] += 0.5; | 
| 1436 | + | // Handle the special case when an object is exactly on the | 
| 1437 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1438 | + | // scaled coordinate of 0.0) | 
| 1439 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1440 |  | } | 
| 1441 |  |  | 
| 1442 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1450 |  | // add this cutoff group to the list of groups in this cell; | 
| 1451 |  | cellListCol_[cellIndex].push_back(i); | 
| 1452 |  | } | 
| 1453 | < |  | 
| 1453 | > |  | 
| 1454 |  | #else | 
| 1455 |  | for (int i = 0; i < nGroups_; i++) { | 
| 1456 |  | rs = snap_->cgData.position[i]; | 
| 1457 |  |  | 
| 1458 |  | // scaled positions relative to the box vectors | 
| 1459 | < | scaled = invHmat * rs; | 
| 1459 | > | scaled = invBox * rs; | 
| 1460 |  |  | 
| 1461 |  | // wrap the vector back into the unit box by subtracting integer box | 
| 1462 |  | // numbers | 
| 1463 |  | for (int j = 0; j < 3; j++) { | 
| 1464 |  | scaled[j] -= roundMe(scaled[j]); | 
| 1465 |  | scaled[j] += 0.5; | 
| 1466 | + | // Handle the special case when an object is exactly on the | 
| 1467 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1468 | + | // scaled coordinate of 0.0) | 
| 1469 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1470 |  | } | 
| 1471 |  |  | 
| 1472 |  | // find xyz-indices of cell that cutoffGroup is in. | 
| 1473 | < | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1474 | < | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1475 | < | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1473 | > | whichCell.x() = int(nCells_.x() * scaled.x()); | 
| 1474 | > | whichCell.y() = int(nCells_.y() * scaled.y()); | 
| 1475 | > | whichCell.z() = int(nCells_.z() * scaled.z()); | 
| 1476 |  |  | 
| 1477 |  | // find single index of this cell: | 
| 1478 |  | cellIndex = Vlinear(whichCell, nCells_); | 
| 1483 |  |  | 
| 1484 |  | #endif | 
| 1485 |  |  | 
| 1408 | – | for (int m1z = 0; m1z < nCells_.z(); m1z++) { | 
| 1409 | – | for (int m1y = 0; m1y < nCells_.y(); m1y++) { | 
| 1410 | – | for (int m1x = 0; m1x < nCells_.x(); m1x++) { | 
| 1411 | – | Vector3i m1v(m1x, m1y, m1z); | 
| 1412 | – | int m1 = Vlinear(m1v, nCells_); | 
| 1413 | – |  | 
| 1414 | – | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1415 | – | os != cellOffsets_.end(); ++os) { | 
| 1416 | – |  | 
| 1417 | – | Vector3i m2v = m1v + (*os); | 
| 1418 | – |  | 
| 1419 | – |  | 
| 1420 | – | if (m2v.x() >= nCells_.x()) { | 
| 1421 | – | m2v.x() = 0; | 
| 1422 | – | } else if (m2v.x() < 0) { | 
| 1423 | – | m2v.x() = nCells_.x() - 1; | 
| 1424 | – | } | 
| 1425 | – |  | 
| 1426 | – | if (m2v.y() >= nCells_.y()) { | 
| 1427 | – | m2v.y() = 0; | 
| 1428 | – | } else if (m2v.y() < 0) { | 
| 1429 | – | m2v.y() = nCells_.y() - 1; | 
| 1430 | – | } | 
| 1431 | – |  | 
| 1432 | – | if (m2v.z() >= nCells_.z()) { | 
| 1433 | – | m2v.z() = 0; | 
| 1434 | – | } else if (m2v.z() < 0) { | 
| 1435 | – | m2v.z() = nCells_.z() - 1; | 
| 1436 | – | } | 
| 1437 | – |  | 
| 1438 | – | int m2 = Vlinear (m2v, nCells_); | 
| 1439 | – |  | 
| 1486 |  | #ifdef IS_MPI | 
| 1487 | < | for (vector<int>::iterator j1 = cellListRow_[m1].begin(); | 
| 1488 | < | j1 != cellListRow_[m1].end(); ++j1) { | 
| 1443 | < | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1444 | < | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1445 | < |  | 
| 1446 | < | // In parallel, we need to visit *all* pairs of row | 
| 1447 | < | // & column indicies and will divide labor in the | 
| 1448 | < | // force evaluation later. | 
| 1449 | < | dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; | 
| 1450 | < | snap_->wrapVector(dr); | 
| 1451 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1452 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1453 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1454 | < | } | 
| 1455 | < | } | 
| 1456 | < | } | 
| 1487 | > | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1488 | > | rs = cgRowData.position[j1]; | 
| 1489 |  | #else | 
| 1458 | – | for (vector<int>::iterator j1 = cellList_[m1].begin(); | 
| 1459 | – | j1 != cellList_[m1].end(); ++j1) { | 
| 1460 | – | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1461 | – | j2 != cellList_[m2].end(); ++j2) { | 
| 1462 | – |  | 
| 1463 | – | // Always do this if we're in different cells or if | 
| 1464 | – | // we're in the same cell and the global index of | 
| 1465 | – | // the j2 cutoff group is greater than or equal to | 
| 1466 | – | // the j1 cutoff group.  Note that Rappaport's code | 
| 1467 | – | // has a "less than" conditional here, but that | 
| 1468 | – | // deals with atom-by-atom computation.  OpenMD | 
| 1469 | – | // allows atoms within a single cutoff group to | 
| 1470 | – | // interact with each other. | 
| 1490 |  |  | 
| 1491 | + | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1492 | + | rs = snap_->cgData.position[j1]; | 
| 1493 | + | #endif | 
| 1494 | + | point[j1] = len; | 
| 1495 | + |  | 
| 1496 | + | // scaled positions relative to the box vectors | 
| 1497 | + | scaled = invBox * rs; | 
| 1498 | + |  | 
| 1499 | + | // wrap the vector back into the unit box by subtracting integer box | 
| 1500 | + | // numbers | 
| 1501 | + | for (int j = 0; j < 3; j++) { | 
| 1502 | + | scaled[j] -= roundMe(scaled[j]); | 
| 1503 | + | scaled[j] += 0.5; | 
| 1504 | + | // Handle the special case when an object is exactly on the | 
| 1505 | + | // boundary (a scaled coordinate of 1.0 is the same as | 
| 1506 | + | // scaled coordinate of 0.0) | 
| 1507 | + | if (scaled[j] >= 1.0) scaled[j] -= 1.0; | 
| 1508 | + | } | 
| 1509 | + |  | 
| 1510 | + | // find xyz-indices of cell that cutoffGroup is in. | 
| 1511 | + | whichCell.x() = nCells_.x() * scaled.x(); | 
| 1512 | + | whichCell.y() = nCells_.y() * scaled.y(); | 
| 1513 | + | whichCell.z() = nCells_.z() * scaled.z(); | 
| 1514 | + |  | 
| 1515 | + | // find single index of this cell: | 
| 1516 | + | int m1 = Vlinear(whichCell, nCells_); | 
| 1517 |  |  | 
| 1518 | + | for (vector<Vector3i>::iterator os = cellOffsets_.begin(); | 
| 1519 | + | os != cellOffsets_.end(); ++os) { | 
| 1520 | + |  | 
| 1521 | + | Vector3i m2v = whichCell + (*os); | 
| 1522 |  |  | 
| 1523 | < | if (m2 != m1 || (*j2) >= (*j1) ) { | 
| 1524 | < |  | 
| 1525 | < | dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; | 
| 1526 | < | snap_->wrapVector(dr); | 
| 1527 | < | cuts = getGroupCutoffs( (*j1), (*j2) ); | 
| 1528 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1529 | < | neighborList.push_back(make_pair((*j1), (*j2))); | 
| 1530 | < | } | 
| 1531 | < | } | 
| 1532 | < | } | 
| 1523 | > | if (m2v.x() >= nCells_.x()) { | 
| 1524 | > | m2v.x() = 0; | 
| 1525 | > | } else if (m2v.x() < 0) { | 
| 1526 | > | m2v.x() = nCells_.x() - 1; | 
| 1527 | > | } | 
| 1528 | > |  | 
| 1529 | > | if (m2v.y() >= nCells_.y()) { | 
| 1530 | > | m2v.y() = 0; | 
| 1531 | > | } else if (m2v.y() < 0) { | 
| 1532 | > | m2v.y() = nCells_.y() - 1; | 
| 1533 | > | } | 
| 1534 | > |  | 
| 1535 | > | if (m2v.z() >= nCells_.z()) { | 
| 1536 | > | m2v.z() = 0; | 
| 1537 | > | } else if (m2v.z() < 0) { | 
| 1538 | > | m2v.z() = nCells_.z() - 1; | 
| 1539 | > | } | 
| 1540 | > | int m2 = Vlinear (m2v, nCells_); | 
| 1541 | > | #ifdef IS_MPI | 
| 1542 | > | for (vector<int>::iterator j2 = cellListCol_[m2].begin(); | 
| 1543 | > | j2 != cellListCol_[m2].end(); ++j2) { | 
| 1544 | > |  | 
| 1545 | > | // In parallel, we need to visit *all* pairs of row | 
| 1546 | > | // & column indicies and will divide labor in the | 
| 1547 | > | // force evaluation later. | 
| 1548 | > | dr = cgColData.position[(*j2)] - rs; | 
| 1549 | > | if (usePeriodicBoundaryConditions_) { | 
| 1550 | > | snap_->wrapVector(dr); | 
| 1551 | > | } | 
| 1552 | > | if (dr.lengthSquare() < rListSq_) { | 
| 1553 | > | neighborList.push_back( (*j2) ); | 
| 1554 | > | ++len; | 
| 1555 | > | } | 
| 1556 | > | } | 
| 1557 | > | #else | 
| 1558 | > | for (vector<int>::iterator j2 = cellList_[m2].begin(); | 
| 1559 | > | j2 != cellList_[m2].end(); ++j2) { | 
| 1560 | > |  | 
| 1561 | > | // Always do this if we're in different cells or if | 
| 1562 | > | // we're in the same cell and the global index of | 
| 1563 | > | // the j2 cutoff group is greater than or equal to | 
| 1564 | > | // the j1 cutoff group.  Note that Rappaport's code | 
| 1565 | > | // has a "less than" conditional here, but that | 
| 1566 | > | // deals with atom-by-atom computation.  OpenMD | 
| 1567 | > | // allows atoms within a single cutoff group to | 
| 1568 | > | // interact with each other. | 
| 1569 | > |  | 
| 1570 | > | if ( (*j2) >= j1 ) { | 
| 1571 | > |  | 
| 1572 | > | dr = snap_->cgData.position[(*j2)] - rs; | 
| 1573 | > | if (usePeriodicBoundaryConditions_) { | 
| 1574 | > | snap_->wrapVector(dr); | 
| 1575 |  | } | 
| 1576 | < | #endif | 
| 1576 | > | if ( dr.lengthSquare() < rListSq_) { | 
| 1577 | > | neighborList.push_back( (*j2) ); | 
| 1578 | > | ++len; | 
| 1579 | > | } | 
| 1580 |  | } | 
| 1581 | < | } | 
| 1581 | > | } | 
| 1582 | > | #endif | 
| 1583 |  | } | 
| 1584 | < | } | 
| 1584 | > | } | 
| 1585 |  | } else { | 
| 1586 |  | // branch to do all cutoff group pairs | 
| 1587 |  | #ifdef IS_MPI | 
| 1588 |  | for (int j1 = 0; j1 < nGroupsInRow_; j1++) { | 
| 1589 | + | point[j1] = len; | 
| 1590 | + | rs = cgRowData.position[j1]; | 
| 1591 |  | for (int j2 = 0; j2 < nGroupsInCol_; j2++) { | 
| 1592 | < | dr = cgColData.position[j2] - cgRowData.position[j1]; | 
| 1593 | < | snap_->wrapVector(dr); | 
| 1594 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1498 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1499 | < | neighborList.push_back(make_pair(j1, j2)); | 
| 1592 | > | dr = cgColData.position[j2] - rs; | 
| 1593 | > | if (usePeriodicBoundaryConditions_) { | 
| 1594 | > | snap_->wrapVector(dr); | 
| 1595 |  | } | 
| 1596 | + | if (dr.lengthSquare() < rListSq_) { | 
| 1597 | + | neighborList.push_back( j2 ); | 
| 1598 | + | ++len; | 
| 1599 | + | } | 
| 1600 |  | } | 
| 1601 |  | } | 
| 1602 |  | #else | 
| 1603 |  | // include all groups here. | 
| 1604 |  | for (int j1 = 0; j1 < nGroups_; j1++) { | 
| 1605 | + | point[j1] = len; | 
| 1606 | + | rs = snap_->cgData.position[j1]; | 
| 1607 |  | // include self group interactions j2 == j1 | 
| 1608 |  | for (int j2 = j1; j2 < nGroups_; j2++) { | 
| 1609 | < | dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; | 
| 1610 | < | snap_->wrapVector(dr); | 
| 1611 | < | cuts = getGroupCutoffs( j1, j2 ); | 
| 1511 | < | if (dr.lengthSquare() < cuts.third) { | 
| 1512 | < | neighborList.push_back(make_pair(j1, j2)); | 
| 1609 | > | dr = snap_->cgData.position[j2] - rs; | 
| 1610 | > | if (usePeriodicBoundaryConditions_) { | 
| 1611 | > | snap_->wrapVector(dr); | 
| 1612 |  | } | 
| 1613 | + | if (dr.lengthSquare() < rListSq_) { | 
| 1614 | + | neighborList.push_back( j2 ); | 
| 1615 | + | ++len; | 
| 1616 | + | } | 
| 1617 |  | } | 
| 1618 |  | } | 
| 1619 |  | #endif | 
| 1620 |  | } | 
| 1621 | < |  | 
| 1621 | > |  | 
| 1622 | > | #ifdef IS_MPI | 
| 1623 | > | point[nGroupsInRow_] = len; | 
| 1624 | > | #else | 
| 1625 | > | point[nGroups_] = len; | 
| 1626 | > | #endif | 
| 1627 | > |  | 
| 1628 |  | // save the local cutoff group positions for the check that is | 
| 1629 |  | // done on each loop: | 
| 1630 |  | saved_CG_positions_.clear(); | 
| 1631 | + | saved_CG_positions_.reserve(nGroups_); | 
| 1632 |  | for (int i = 0; i < nGroups_; i++) | 
| 1633 |  | saved_CG_positions_.push_back(snap_->cgData.position[i]); | 
| 1524 | – |  | 
| 1525 | – | return neighborList; | 
| 1634 |  | } | 
| 1635 |  | } //end namespace OpenMD |