| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
*/ |
| 41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
| 42 |
#include "math/SquareMatrix3.hpp" |
| 43 |
#include "nonbonded/NonBondedInteraction.hpp" |
| 44 |
#include "brains/SnapshotManager.hpp" |
| 45 |
|
| 46 |
using namespace std; |
| 47 |
namespace OpenMD { |
| 48 |
|
| 49 |
/** |
| 50 |
* distributeInitialData is essentially a copy of the older fortran |
| 51 |
* SimulationSetup |
| 52 |
*/ |
| 53 |
|
| 54 |
void ForceMatrixDecomposition::distributeInitialData() { |
| 55 |
snap_ = sman_->getCurrentSnapshot(); |
| 56 |
storageLayout_ = sman_->getStorageLayout(); |
| 57 |
#ifdef IS_MPI |
| 58 |
int nLocal = snap_->getNumberOfAtoms(); |
| 59 |
int nGroups = snap_->getNumberOfCutoffGroups(); |
| 60 |
|
| 61 |
AtomCommIntRow = new Communicator<Row,int>(nLocal); |
| 62 |
AtomCommRealRow = new Communicator<Row,RealType>(nLocal); |
| 63 |
AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal); |
| 64 |
AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal); |
| 65 |
|
| 66 |
AtomCommIntColumn = new Communicator<Column,int>(nLocal); |
| 67 |
AtomCommRealColumn = new Communicator<Column,RealType>(nLocal); |
| 68 |
AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal); |
| 69 |
AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal); |
| 70 |
|
| 71 |
cgCommIntRow = new Communicator<Row,int>(nGroups); |
| 72 |
cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups); |
| 73 |
cgCommIntColumn = new Communicator<Column,int>(nGroups); |
| 74 |
cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups); |
| 75 |
|
| 76 |
int nAtomsInRow = AtomCommIntRow->getSize(); |
| 77 |
int nAtomsInCol = AtomCommIntColumn->getSize(); |
| 78 |
int nGroupsInRow = cgCommIntRow->getSize(); |
| 79 |
int nGroupsInCol = cgCommIntColumn->getSize(); |
| 80 |
|
| 81 |
// Modify the data storage objects with the correct layouts and sizes: |
| 82 |
atomRowData.resize(nAtomsInRow); |
| 83 |
atomRowData.setStorageLayout(storageLayout_); |
| 84 |
atomColData.resize(nAtomsInCol); |
| 85 |
atomColData.setStorageLayout(storageLayout_); |
| 86 |
cgRowData.resize(nGroupsInRow); |
| 87 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
| 88 |
cgColData.resize(nGroupsInCol); |
| 89 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
| 90 |
|
| 91 |
vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES, |
| 92 |
vector<RealType> (nAtomsInRow, 0.0)); |
| 93 |
vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES, |
| 94 |
vector<RealType> (nAtomsInCol, 0.0)); |
| 95 |
|
| 96 |
|
| 97 |
vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0); |
| 98 |
|
| 99 |
// gather the information for atomtype IDs (atids): |
| 100 |
vector<int> identsLocal = info_->getIdentArray(); |
| 101 |
identsRow.reserve(nAtomsInRow); |
| 102 |
identsCol.reserve(nAtomsInCol); |
| 103 |
|
| 104 |
AtomCommIntRow->gather(identsLocal, identsRow); |
| 105 |
AtomCommIntColumn->gather(identsLocal, identsCol); |
| 106 |
|
| 107 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
| 108 |
AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
| 109 |
AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
| 110 |
|
| 111 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
| 112 |
cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
| 113 |
cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
| 114 |
|
| 115 |
// still need: |
| 116 |
// topoDist |
| 117 |
// exclude |
| 118 |
#endif |
| 119 |
} |
| 120 |
|
| 121 |
|
| 122 |
|
| 123 |
void ForceMatrixDecomposition::distributeData() { |
| 124 |
snap_ = sman_->getCurrentSnapshot(); |
| 125 |
storageLayout_ = sman_->getStorageLayout(); |
| 126 |
#ifdef IS_MPI |
| 127 |
|
| 128 |
// gather up the atomic positions |
| 129 |
AtomCommVectorRow->gather(snap_->atomData.position, |
| 130 |
atomRowData.position); |
| 131 |
AtomCommVectorColumn->gather(snap_->atomData.position, |
| 132 |
atomColData.position); |
| 133 |
|
| 134 |
// gather up the cutoff group positions |
| 135 |
cgCommVectorRow->gather(snap_->cgData.position, |
| 136 |
cgRowData.position); |
| 137 |
cgCommVectorColumn->gather(snap_->cgData.position, |
| 138 |
cgColData.position); |
| 139 |
|
| 140 |
// if needed, gather the atomic rotation matrices |
| 141 |
if (storageLayout_ & DataStorage::dslAmat) { |
| 142 |
AtomCommMatrixRow->gather(snap_->atomData.aMat, |
| 143 |
atomRowData.aMat); |
| 144 |
AtomCommMatrixColumn->gather(snap_->atomData.aMat, |
| 145 |
atomColData.aMat); |
| 146 |
} |
| 147 |
|
| 148 |
// if needed, gather the atomic eletrostatic frames |
| 149 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 150 |
AtomCommMatrixRow->gather(snap_->atomData.electroFrame, |
| 151 |
atomRowData.electroFrame); |
| 152 |
AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, |
| 153 |
atomColData.electroFrame); |
| 154 |
} |
| 155 |
#endif |
| 156 |
} |
| 157 |
|
| 158 |
void ForceMatrixDecomposition::collectIntermediateData() { |
| 159 |
snap_ = sman_->getCurrentSnapshot(); |
| 160 |
storageLayout_ = sman_->getStorageLayout(); |
| 161 |
#ifdef IS_MPI |
| 162 |
|
| 163 |
if (storageLayout_ & DataStorage::dslDensity) { |
| 164 |
|
| 165 |
AtomCommRealRow->scatter(atomRowData.density, |
| 166 |
snap_->atomData.density); |
| 167 |
|
| 168 |
int n = snap_->atomData.density.size(); |
| 169 |
std::vector<RealType> rho_tmp(n, 0.0); |
| 170 |
AtomCommRealColumn->scatter(atomColData.density, rho_tmp); |
| 171 |
for (int i = 0; i < n; i++) |
| 172 |
snap_->atomData.density[i] += rho_tmp[i]; |
| 173 |
} |
| 174 |
#endif |
| 175 |
} |
| 176 |
|
| 177 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
| 178 |
snap_ = sman_->getCurrentSnapshot(); |
| 179 |
storageLayout_ = sman_->getStorageLayout(); |
| 180 |
#ifdef IS_MPI |
| 181 |
if (storageLayout_ & DataStorage::dslFunctional) { |
| 182 |
AtomCommRealRow->gather(snap_->atomData.functional, |
| 183 |
atomRowData.functional); |
| 184 |
AtomCommRealColumn->gather(snap_->atomData.functional, |
| 185 |
atomColData.functional); |
| 186 |
} |
| 187 |
|
| 188 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 189 |
AtomCommRealRow->gather(snap_->atomData.functionalDerivative, |
| 190 |
atomRowData.functionalDerivative); |
| 191 |
AtomCommRealColumn->gather(snap_->atomData.functionalDerivative, |
| 192 |
atomColData.functionalDerivative); |
| 193 |
} |
| 194 |
#endif |
| 195 |
} |
| 196 |
|
| 197 |
|
| 198 |
void ForceMatrixDecomposition::collectData() { |
| 199 |
snap_ = sman_->getCurrentSnapshot(); |
| 200 |
storageLayout_ = sman_->getStorageLayout(); |
| 201 |
#ifdef IS_MPI |
| 202 |
int n = snap_->atomData.force.size(); |
| 203 |
vector<Vector3d> frc_tmp(n, V3Zero); |
| 204 |
|
| 205 |
AtomCommVectorRow->scatter(atomRowData.force, frc_tmp); |
| 206 |
for (int i = 0; i < n; i++) { |
| 207 |
snap_->atomData.force[i] += frc_tmp[i]; |
| 208 |
frc_tmp[i] = 0.0; |
| 209 |
} |
| 210 |
|
| 211 |
AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); |
| 212 |
for (int i = 0; i < n; i++) |
| 213 |
snap_->atomData.force[i] += frc_tmp[i]; |
| 214 |
|
| 215 |
|
| 216 |
if (storageLayout_ & DataStorage::dslTorque) { |
| 217 |
|
| 218 |
int nt = snap_->atomData.force.size(); |
| 219 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
| 220 |
|
| 221 |
AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); |
| 222 |
for (int i = 0; i < n; i++) { |
| 223 |
snap_->atomData.torque[i] += trq_tmp[i]; |
| 224 |
trq_tmp[i] = 0.0; |
| 225 |
} |
| 226 |
|
| 227 |
AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); |
| 228 |
for (int i = 0; i < n; i++) |
| 229 |
snap_->atomData.torque[i] += trq_tmp[i]; |
| 230 |
} |
| 231 |
|
| 232 |
int nLocal = snap_->getNumberOfAtoms(); |
| 233 |
|
| 234 |
vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES, |
| 235 |
vector<RealType> (nLocal, 0.0)); |
| 236 |
|
| 237 |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
| 238 |
AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); |
| 239 |
for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { |
| 240 |
pot_local[i] += pot_temp[i][ii]; |
| 241 |
} |
| 242 |
} |
| 243 |
#endif |
| 244 |
} |
| 245 |
|
| 246 |
|
| 247 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ |
| 248 |
Vector3d d; |
| 249 |
|
| 250 |
#ifdef IS_MPI |
| 251 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
| 252 |
#else |
| 253 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
| 254 |
#endif |
| 255 |
|
| 256 |
snap_->wrapVector(d); |
| 257 |
return d; |
| 258 |
} |
| 259 |
|
| 260 |
|
| 261 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){ |
| 262 |
|
| 263 |
Vector3d d; |
| 264 |
|
| 265 |
#ifdef IS_MPI |
| 266 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
| 267 |
#else |
| 268 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
| 269 |
#endif |
| 270 |
|
| 271 |
snap_->wrapVector(d); |
| 272 |
return d; |
| 273 |
} |
| 274 |
|
| 275 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){ |
| 276 |
Vector3d d; |
| 277 |
|
| 278 |
#ifdef IS_MPI |
| 279 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
| 280 |
#else |
| 281 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
| 282 |
#endif |
| 283 |
|
| 284 |
snap_->wrapVector(d); |
| 285 |
return d; |
| 286 |
} |
| 287 |
|
| 288 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ |
| 289 |
Vector3d d; |
| 290 |
|
| 291 |
#ifdef IS_MPI |
| 292 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
| 293 |
#else |
| 294 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
| 295 |
#endif |
| 296 |
|
| 297 |
snap_->wrapVector(d); |
| 298 |
return d; |
| 299 |
} |
| 300 |
|
| 301 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ |
| 302 |
#ifdef IS_MPI |
| 303 |
atomRowData.force[atom1] += fg; |
| 304 |
#else |
| 305 |
snap_->atomData.force[atom1] += fg; |
| 306 |
#endif |
| 307 |
} |
| 308 |
|
| 309 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){ |
| 310 |
#ifdef IS_MPI |
| 311 |
atomColData.force[atom2] += fg; |
| 312 |
#else |
| 313 |
snap_->atomData.force[atom2] += fg; |
| 314 |
#endif |
| 315 |
|
| 316 |
} |
| 317 |
|
| 318 |
// filling interaction blocks with pointers |
| 319 |
InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { |
| 320 |
|
| 321 |
InteractionData idat; |
| 322 |
#ifdef IS_MPI |
| 323 |
if (storageLayout_ & DataStorage::dslAmat) { |
| 324 |
idat.A1 = &(atomRowData.aMat[atom1]); |
| 325 |
idat.A2 = &(atomColData.aMat[atom2]); |
| 326 |
} |
| 327 |
|
| 328 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 329 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 330 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 331 |
} |
| 332 |
|
| 333 |
if (storageLayout_ & DataStorage::dslTorque) { |
| 334 |
idat.t1 = &(atomRowData.torque[atom1]); |
| 335 |
idat.t2 = &(atomColData.torque[atom2]); |
| 336 |
} |
| 337 |
|
| 338 |
if (storageLayout_ & DataStorage::dslDensity) { |
| 339 |
idat.rho1 = &(atomRowData.density[atom1]); |
| 340 |
idat.rho2 = &(atomColData.density[atom2]); |
| 341 |
} |
| 342 |
|
| 343 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 344 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
| 345 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
| 346 |
} |
| 347 |
#else |
| 348 |
if (storageLayout_ & DataStorage::dslAmat) { |
| 349 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
| 350 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
| 351 |
} |
| 352 |
|
| 353 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 354 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
| 355 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
| 356 |
} |
| 357 |
|
| 358 |
if (storageLayout_ & DataStorage::dslTorque) { |
| 359 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
| 360 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
| 361 |
} |
| 362 |
|
| 363 |
if (storageLayout_ & DataStorage::dslDensity) { |
| 364 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
| 365 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
| 366 |
} |
| 367 |
|
| 368 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) { |
| 369 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
| 370 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
| 371 |
} |
| 372 |
#endif |
| 373 |
|
| 374 |
} |
| 375 |
InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ |
| 376 |
InteractionData idat; |
| 377 |
skippedCharge1 |
| 378 |
skippedCharge2 |
| 379 |
rij |
| 380 |
d |
| 381 |
electroMult |
| 382 |
sw |
| 383 |
f |
| 384 |
#ifdef IS_MPI |
| 385 |
|
| 386 |
if (storageLayout_ & DataStorage::dslElectroFrame) { |
| 387 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
| 388 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
| 389 |
} |
| 390 |
if (storageLayout_ & DataStorage::dslTorque) { |
| 391 |
idat.t1 = &(atomRowData.torque[atom1]); |
| 392 |
idat.t2 = &(atomColData.torque[atom2]); |
| 393 |
} |
| 394 |
|
| 395 |
|
| 396 |
} |
| 397 |
SelfData ForceMatrixDecomposition::fillSelfData(int atom1) { |
| 398 |
} |
| 399 |
|
| 400 |
|
| 401 |
/* |
| 402 |
* buildNeighborList |
| 403 |
* |
| 404 |
* first element of pair is row-indexed CutoffGroup |
| 405 |
* second element of pair is column-indexed CutoffGroup |
| 406 |
*/ |
| 407 |
vector<pair<int, int> > buildNeighborList() { |
| 408 |
Vector3d dr, invWid, rs, shift; |
| 409 |
Vector3i cc, m1v, m2s; |
| 410 |
RealType rrNebr; |
| 411 |
int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset; |
| 412 |
|
| 413 |
|
| 414 |
vector<pair<int, int> > neighborList; |
| 415 |
Vector3i nCells; |
| 416 |
Vector3d invWid, r; |
| 417 |
|
| 418 |
rList_ = (rCut_ + skinThickness_); |
| 419 |
rl2 = rList_ * rList_; |
| 420 |
|
| 421 |
snap_ = sman_->getCurrentSnapshot(); |
| 422 |
Mat3x3d Hmat = snap_->getHmat(); |
| 423 |
Vector3d Hx = Hmat.getColumn(0); |
| 424 |
Vector3d Hy = Hmat.getColumn(1); |
| 425 |
Vector3d Hz = Hmat.getColumn(2); |
| 426 |
|
| 427 |
nCells.x() = (int) ( Hx.length() )/ rList_; |
| 428 |
nCells.y() = (int) ( Hy.length() )/ rList_; |
| 429 |
nCells.z() = (int) ( Hz.length() )/ rList_; |
| 430 |
|
| 431 |
for (i = 0; i < nGroupsInRow; i++) { |
| 432 |
rs = cgRowData.position[i]; |
| 433 |
snap_->scaleVector(rs); |
| 434 |
} |
| 435 |
|
| 436 |
|
| 437 |
VDiv (invWid, cells, region); |
| 438 |
for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1; |
| 439 |
for (n = 0; n < nMol; n ++) { |
| 440 |
VSAdd (rs, mol[n].r, 0.5, region); |
| 441 |
VMul (cc, rs, invWid); |
| 442 |
c = VLinear (cc, cells) + nMol; |
| 443 |
cellList[n] = cellList[c]; |
| 444 |
cellList[c] = n; |
| 445 |
} |
| 446 |
nebrTabLen = 0; |
| 447 |
for (m1z = 0; m1z < cells.z(); m1z++) { |
| 448 |
for (m1y = 0; m1y < cells.y(); m1y++) { |
| 449 |
for (m1x = 0; m1x < cells.x(); m1x++) { |
| 450 |
Vector3i m1v(m1x, m1y, m1z); |
| 451 |
m1 = VLinear(m1v, cells) + nMol; |
| 452 |
for (offset = 0; offset < nOffset_; offset++) { |
| 453 |
m2v = m1v + cellOffsets_[offset]; |
| 454 |
shift = V3Zero(); |
| 455 |
|
| 456 |
if (m2v.x() >= cells.x) { |
| 457 |
m2v.x() = 0; |
| 458 |
shift.x() = region.x(); |
| 459 |
} else if (m2v.x() < 0) { |
| 460 |
m2v.x() = cells.x() - 1; |
| 461 |
shift.x() = - region.x(); |
| 462 |
} |
| 463 |
|
| 464 |
if (m2v.y() >= cells.y()) { |
| 465 |
m2v.y() = 0; |
| 466 |
shift.y() = region.y(); |
| 467 |
} else if (m2v.y() < 0) { |
| 468 |
m2v.y() = cells.y() - 1; |
| 469 |
shift.y() = - region.y(); |
| 470 |
} |
| 471 |
|
| 472 |
m2 = VLinear (m2v, cells) + nMol; |
| 473 |
for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) { |
| 474 |
for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) { |
| 475 |
if (m1 != m2 || j2 < j1) { |
| 476 |
dr = mol[j1].r - mol[j2].r; |
| 477 |
VSub (dr, mol[j1].r, mol[j2].r); |
| 478 |
VVSub (dr, shift); |
| 479 |
if (VLenSq (dr) < rrNebr) { |
| 480 |
neighborList.push_back(make_pair(j1, j2)); |
| 481 |
} |
| 482 |
} |
| 483 |
} |
| 484 |
} |
| 485 |
} |
| 486 |
} |
| 487 |
} |
| 488 |
} |
| 489 |
} |
| 490 |
|
| 491 |
|
| 492 |
} //end namespace OpenMD |