--- branches/development/src/parallel/ForceMatrixDecomposition.cpp 2011/05/25 16:20:37 1568 +++ branches/development/src/parallel/ForceMatrixDecomposition.cpp 2011/07/12 20:33:14 1592 @@ -42,6 +42,7 @@ #include "math/SquareMatrix3.hpp" #include "nonbonded/NonBondedInteraction.hpp" #include "brains/SnapshotManager.hpp" +#include "brains/PairList.hpp" using namespace std; namespace OpenMD { @@ -54,20 +55,36 @@ namespace OpenMD { void ForceMatrixDecomposition::distributeInitialData() { snap_ = sman_->getCurrentSnapshot(); storageLayout_ = sman_->getStorageLayout(); + ff_ = info_->getForceField(); nLocal_ = snap_->getNumberOfAtoms(); - nGroups_ = snap_->getNumberOfCutoffGroups(); + + nGroups_ = info_->getNLocalCutoffGroups(); + // gather the information for atomtype IDs (atids): + idents = info_->getIdentArray(); + AtomLocalToGlobal = info_->getGlobalAtomIndices(); + cgLocalToGlobal = info_->getGlobalGroupIndices(); + vector globalGroupMembership = info_->getGlobalGroupMembership(); + massFactors = info_->getMassFactors(); + + PairList* excludes = info_->getExcludedInteractions(); + PairList* oneTwo = info_->getOneTwoInteractions(); + PairList* oneThree = info_->getOneThreeInteractions(); + PairList* oneFour = info_->getOneFourInteractions(); + #ifdef IS_MPI AtomCommIntRow = new Communicator(nLocal_); AtomCommRealRow = new Communicator(nLocal_); AtomCommVectorRow = new Communicator(nLocal_); AtomCommMatrixRow = new Communicator(nLocal_); + AtomCommPotRow = new Communicator(nLocal_); AtomCommIntColumn = new Communicator(nLocal_); AtomCommRealColumn = new Communicator(nLocal_); AtomCommVectorColumn = new Communicator(nLocal_); AtomCommMatrixColumn = new Communicator(nLocal_); + AtomCommPotColumn = new Communicator(nLocal_); cgCommIntRow = new Communicator(nGroups_); cgCommVectorRow = new Communicator(nGroups_); @@ -88,39 +105,412 @@ namespace OpenMD { cgRowData.setStorageLayout(DataStorage::dslPosition); cgColData.resize(nGroupsInCol_); cgColData.setStorageLayout(DataStorage::dslPosition); + + identsRow.resize(nAtomsInRow_); + identsCol.resize(nAtomsInCol_); - vector > pot_row(N_INTERACTION_FAMILIES, - vector (nAtomsInRow_, 0.0)); - vector > pot_col(N_INTERACTION_FAMILIES, - vector (nAtomsInCol_, 0.0)); + AtomCommIntRow->gather(idents, identsRow); + AtomCommIntColumn->gather(idents, identsCol); + + // allocate memory for the parallel objects + atypesRow.resize(nAtomsInRow_); + atypesCol.resize(nAtomsInCol_); + for (int i = 0; i < nAtomsInRow_; i++) + atypesRow[i] = ff_->getAtomType(identsRow[i]); + for (int i = 0; i < nAtomsInCol_; i++) + atypesCol[i] = ff_->getAtomType(identsCol[i]); - vector pot_local(N_INTERACTION_FAMILIES, 0.0); - - // gather the information for atomtype IDs (atids): - vector identsLocal = info_->getIdentArray(); - identsRow.reserve(nAtomsInRow_); - identsCol.reserve(nAtomsInCol_); - - AtomCommIntRow->gather(identsLocal, identsRow); - AtomCommIntColumn->gather(identsLocal, identsCol); - - AtomLocalToGlobal = info_->getGlobalAtomIndices(); + pot_row.resize(nAtomsInRow_); + pot_col.resize(nAtomsInCol_); + + AtomRowToGlobal.resize(nAtomsInRow_); + AtomColToGlobal.resize(nAtomsInCol_); AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); - cgLocalToGlobal = info_->getGlobalGroupIndices(); + cgRowToGlobal.resize(nGroupsInRow_); + cgColToGlobal.resize(nGroupsInCol_); cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); - // still need: - // topoDist - // exclude + massFactorsRow.resize(nAtomsInRow_); + massFactorsCol.resize(nAtomsInCol_); + AtomCommRealRow->gather(massFactors, massFactorsRow); + AtomCommRealColumn->gather(massFactors, massFactorsCol); + + groupListRow_.clear(); + groupListRow_.resize(nGroupsInRow_); + for (int i = 0; i < nGroupsInRow_; i++) { + int gid = cgRowToGlobal[i]; + for (int j = 0; j < nAtomsInRow_; j++) { + int aid = AtomRowToGlobal[j]; + if (globalGroupMembership[aid] == gid) + groupListRow_[i].push_back(j); + } + } + + groupListCol_.clear(); + groupListCol_.resize(nGroupsInCol_); + for (int i = 0; i < nGroupsInCol_; i++) { + int gid = cgColToGlobal[i]; + for (int j = 0; j < nAtomsInCol_; j++) { + int aid = AtomColToGlobal[j]; + if (globalGroupMembership[aid] == gid) + groupListCol_[i].push_back(j); + } + } + + excludesForAtom.clear(); + excludesForAtom.resize(nAtomsInRow_); + toposForAtom.clear(); + toposForAtom.resize(nAtomsInRow_); + topoDist.clear(); + topoDist.resize(nAtomsInRow_); + for (int i = 0; i < nAtomsInRow_; i++) { + int iglob = AtomRowToGlobal[i]; + + for (int j = 0; j < nAtomsInCol_; j++) { + int jglob = AtomColToGlobal[j]; + + if (excludes->hasPair(iglob, jglob)) + excludesForAtom[i].push_back(j); + + if (oneTwo->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(1); + } else { + if (oneThree->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(2); + } else { + if (oneFour->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(3); + } + } + } + } + } + +#endif + + // allocate memory for the parallel objects + atypesLocal.resize(nLocal_); + + for (int i = 0; i < nLocal_; i++) + atypesLocal[i] = ff_->getAtomType(idents[i]); + + groupList_.clear(); + groupList_.resize(nGroups_); + for (int i = 0; i < nGroups_; i++) { + int gid = cgLocalToGlobal[i]; + for (int j = 0; j < nLocal_; j++) { + int aid = AtomLocalToGlobal[j]; + if (globalGroupMembership[aid] == gid) { + groupList_[i].push_back(j); + } + } + } + + excludesForAtom.clear(); + excludesForAtom.resize(nLocal_); + toposForAtom.clear(); + toposForAtom.resize(nLocal_); + topoDist.clear(); + topoDist.resize(nLocal_); + + for (int i = 0; i < nLocal_; i++) { + int iglob = AtomLocalToGlobal[i]; + + for (int j = 0; j < nLocal_; j++) { + int jglob = AtomLocalToGlobal[j]; + + if (excludes->hasPair(iglob, jglob)) + excludesForAtom[i].push_back(j); + + if (oneTwo->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(1); + } else { + if (oneThree->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(2); + } else { + if (oneFour->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(3); + } + } + } + } + } + + createGtypeCutoffMap(); + + } + + void ForceMatrixDecomposition::createGtypeCutoffMap() { + + RealType tol = 1e-6; + largestRcut_ = 0.0; + RealType rc; + int atid; + set atypes = info_->getSimulatedAtomTypes(); + + map atypeCutoff; + + for (set::iterator at = atypes.begin(); + at != atypes.end(); ++at){ + atid = (*at)->getIdent(); + if (userChoseCutoff_) + atypeCutoff[atid] = userCutoff_; + else + atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); + } + + vector gTypeCutoffs; + // first we do a single loop over the cutoff groups to find the + // largest cutoff for any atypes present in this group. +#ifdef IS_MPI + vector groupCutoffRow(nGroupsInRow_, 0.0); + groupRowToGtype.resize(nGroupsInRow_); + for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { + vector atomListRow = getAtomsInGroupRow(cg1); + for (vector::iterator ia = atomListRow.begin(); + ia != atomListRow.end(); ++ia) { + int atom1 = (*ia); + atid = identsRow[atom1]; + if (atypeCutoff[atid] > groupCutoffRow[cg1]) { + groupCutoffRow[cg1] = atypeCutoff[atid]; + } + } + + bool gTypeFound = false; + for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { + if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) { + groupRowToGtype[cg1] = gt; + gTypeFound = true; + } + } + if (!gTypeFound) { + gTypeCutoffs.push_back( groupCutoffRow[cg1] ); + groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; + } + + } + vector groupCutoffCol(nGroupsInCol_, 0.0); + groupColToGtype.resize(nGroupsInCol_); + for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { + vector atomListCol = getAtomsInGroupColumn(cg2); + for (vector::iterator jb = atomListCol.begin(); + jb != atomListCol.end(); ++jb) { + int atom2 = (*jb); + atid = identsCol[atom2]; + if (atypeCutoff[atid] > groupCutoffCol[cg2]) { + groupCutoffCol[cg2] = atypeCutoff[atid]; + } + } + bool gTypeFound = false; + for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { + if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) { + groupColToGtype[cg2] = gt; + gTypeFound = true; + } + } + if (!gTypeFound) { + gTypeCutoffs.push_back( groupCutoffCol[cg2] ); + groupColToGtype[cg2] = gTypeCutoffs.size() - 1; + } + } +#else + + vector groupCutoff(nGroups_, 0.0); + groupToGtype.resize(nGroups_); + for (int cg1 = 0; cg1 < nGroups_; cg1++) { + groupCutoff[cg1] = 0.0; + vector atomList = getAtomsInGroupRow(cg1); + for (vector::iterator ia = atomList.begin(); + ia != atomList.end(); ++ia) { + int atom1 = (*ia); + atid = idents[atom1]; + if (atypeCutoff[atid] > groupCutoff[cg1]) + groupCutoff[cg1] = atypeCutoff[atid]; + } + + bool gTypeFound = false; + for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { + if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { + groupToGtype[cg1] = gt; + gTypeFound = true; + } + } + if (!gTypeFound) { + gTypeCutoffs.push_back( groupCutoff[cg1] ); + groupToGtype[cg1] = gTypeCutoffs.size() - 1; + } + } #endif + + // Now we find the maximum group cutoff value present in the simulation + + RealType groupMax = *max_element(gTypeCutoffs.begin(), + gTypeCutoffs.end()); + +#ifdef IS_MPI + MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, + MPI::MAX); +#endif + + RealType tradRcut = groupMax; + + for (int i = 0; i < gTypeCutoffs.size(); i++) { + for (int j = 0; j < gTypeCutoffs.size(); j++) { + RealType thisRcut; + switch(cutoffPolicy_) { + case TRADITIONAL: + thisRcut = tradRcut; + break; + case MIX: + thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); + break; + case MAX: + thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); + break; + default: + sprintf(painCave.errMsg, + "ForceMatrixDecomposition::createGtypeCutoffMap " + "hit an unknown cutoff policy!\n"); + painCave.severity = OPENMD_ERROR; + painCave.isFatal = 1; + simError(); + break; + } + + pair key = make_pair(i,j); + gTypeCutoffMap[key].first = thisRcut; + if (thisRcut > largestRcut_) largestRcut_ = thisRcut; + gTypeCutoffMap[key].second = thisRcut*thisRcut; + gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); + // sanity check + + if (userChoseCutoff_) { + if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { + sprintf(painCave.errMsg, + "ForceMatrixDecomposition::createGtypeCutoffMap " + "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); + painCave.severity = OPENMD_ERROR; + painCave.isFatal = 1; + simError(); + } + } + } + } } + + + groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { + int i, j; +#ifdef IS_MPI + i = groupRowToGtype[cg1]; + j = groupColToGtype[cg2]; +#else + i = groupToGtype[cg1]; + j = groupToGtype[cg2]; +#endif + return gTypeCutoffMap[make_pair(i,j)]; + } + + int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { + for (int j = 0; j < toposForAtom[atom1].size(); j++) { + if (toposForAtom[atom1][j] == atom2) + return topoDist[atom1][j]; + } + return 0; + } + + void ForceMatrixDecomposition::zeroWorkArrays() { + pairwisePot = 0.0; + embeddingPot = 0.0; + +#ifdef IS_MPI + if (storageLayout_ & DataStorage::dslForce) { + fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); + fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); + } + + if (storageLayout_ & DataStorage::dslTorque) { + fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); + fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); + } + fill(pot_row.begin(), pot_row.end(), + Vector (0.0)); + fill(pot_col.begin(), pot_col.end(), + Vector (0.0)); + if (storageLayout_ & DataStorage::dslParticlePot) { + fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), + 0.0); + fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), + 0.0); + } + + if (storageLayout_ & DataStorage::dslDensity) { + fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); + fill(atomColData.density.begin(), atomColData.density.end(), 0.0); + } + + if (storageLayout_ & DataStorage::dslFunctional) { + fill(atomRowData.functional.begin(), atomRowData.functional.end(), + 0.0); + fill(atomColData.functional.begin(), atomColData.functional.end(), + 0.0); + } + + if (storageLayout_ & DataStorage::dslFunctionalDerivative) { + fill(atomRowData.functionalDerivative.begin(), + atomRowData.functionalDerivative.end(), 0.0); + fill(atomColData.functionalDerivative.begin(), + atomColData.functionalDerivative.end(), 0.0); + } + + if (storageLayout_ & DataStorage::dslSkippedCharge) { + fill(atomRowData.skippedCharge.begin(), + atomRowData.skippedCharge.end(), 0.0); + fill(atomColData.skippedCharge.begin(), + atomColData.skippedCharge.end(), 0.0); + } + +#endif + // even in parallel, we need to zero out the local arrays: + + if (storageLayout_ & DataStorage::dslParticlePot) { + fill(snap_->atomData.particlePot.begin(), + snap_->atomData.particlePot.end(), 0.0); + } + + if (storageLayout_ & DataStorage::dslDensity) { + fill(snap_->atomData.density.begin(), + snap_->atomData.density.end(), 0.0); + } + if (storageLayout_ & DataStorage::dslFunctional) { + fill(snap_->atomData.functional.begin(), + snap_->atomData.functional.end(), 0.0); + } + if (storageLayout_ & DataStorage::dslFunctionalDerivative) { + fill(snap_->atomData.functionalDerivative.begin(), + snap_->atomData.functionalDerivative.end(), 0.0); + } + if (storageLayout_ & DataStorage::dslSkippedCharge) { + fill(snap_->atomData.skippedCharge.begin(), + snap_->atomData.skippedCharge.end(), 0.0); + } + + } + + void ForceMatrixDecomposition::distributeData() { snap_ = sman_->getCurrentSnapshot(); storageLayout_ = sman_->getStorageLayout(); @@ -153,9 +543,13 @@ namespace OpenMD { AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, atomColData.electroFrame); } + #endif } + /* collects information obtained during the pre-pair loop onto local + * data structures. + */ void ForceMatrixDecomposition::collectIntermediateData() { snap_ = sman_->getCurrentSnapshot(); storageLayout_ = sman_->getStorageLayout(); @@ -167,14 +561,18 @@ namespace OpenMD { snap_->atomData.density); int n = snap_->atomData.density.size(); - std::vector rho_tmp(n, 0.0); + vector rho_tmp(n, 0.0); AtomCommRealColumn->scatter(atomColData.density, rho_tmp); for (int i = 0; i < n; i++) snap_->atomData.density[i] += rho_tmp[i]; } #endif } - + + /* + * redistributes information obtained during the pre-pair loop out to + * row and column-indexed data structures + */ void ForceMatrixDecomposition::distributeIntermediateData() { snap_ = sman_->getCurrentSnapshot(); storageLayout_ = sman_->getStorageLayout(); @@ -212,38 +610,88 @@ namespace OpenMD { AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); for (int i = 0; i < n; i++) snap_->atomData.force[i] += frc_tmp[i]; - - + if (storageLayout_ & DataStorage::dslTorque) { - int nt = snap_->atomData.force.size(); + int nt = snap_->atomData.torque.size(); vector trq_tmp(nt, V3Zero); AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); - for (int i = 0; i < n; i++) { + for (int i = 0; i < nt; i++) { snap_->atomData.torque[i] += trq_tmp[i]; trq_tmp[i] = 0.0; } AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); - for (int i = 0; i < n; i++) + for (int i = 0; i < nt; i++) snap_->atomData.torque[i] += trq_tmp[i]; } + + if (storageLayout_ & DataStorage::dslSkippedCharge) { + + int ns = snap_->atomData.skippedCharge.size(); + vector skch_tmp(ns, 0.0); + + AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); + for (int i = 0; i < ns; i++) { + snap_->atomData.skippedCharge[i] += skch_tmp[i]; + skch_tmp[i] = 0.0; + } + + AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); + for (int i = 0; i < ns; i++) + snap_->atomData.skippedCharge[i] += skch_tmp[i]; + } nLocal_ = snap_->getNumberOfAtoms(); - vector > pot_temp(N_INTERACTION_FAMILIES, - vector (nLocal_, 0.0)); + vector pot_temp(nLocal_, + Vector (0.0)); + + // scatter/gather pot_row into the members of my column + + AtomCommPotRow->scatter(pot_row, pot_temp); + + for (int ii = 0; ii < pot_temp.size(); ii++ ) + pairwisePot += pot_temp[ii]; - for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { - AtomCommRealRow->scatter(pot_row[i], pot_temp[i]); - for (int ii = 0; ii < pot_temp[i].size(); ii++ ) { - pot_local[i] += pot_temp[i][ii]; - } - } + fill(pot_temp.begin(), pot_temp.end(), + Vector (0.0)); + + AtomCommPotColumn->scatter(pot_col, pot_temp); + + for (int ii = 0; ii < pot_temp.size(); ii++ ) + pairwisePot += pot_temp[ii]; #endif + } + int ForceMatrixDecomposition::getNAtomsInRow() { +#ifdef IS_MPI + return nAtomsInRow_; +#else + return nLocal_; +#endif + } + + /** + * returns the list of atoms belonging to this group. + */ + vector ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){ +#ifdef IS_MPI + return groupListRow_[cg1]; +#else + return groupList_[cg1]; +#endif + } + + vector ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){ +#ifdef IS_MPI + return groupListCol_[cg2]; +#else + return groupList_[cg2]; +#endif + } Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){ Vector3d d; @@ -285,6 +733,23 @@ namespace OpenMD { snap_->wrapVector(d); return d; } + + RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { +#ifdef IS_MPI + return massFactorsRow[atom1]; +#else + return massFactors[atom1]; +#endif + } + + RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { +#ifdef IS_MPI + return massFactorsCol[atom2]; +#else + return massFactors[atom2]; +#endif + + } Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){ Vector3d d; @@ -299,6 +764,64 @@ namespace OpenMD { return d; } + vector ForceMatrixDecomposition::getExcludesForAtom(int atom1) { + return excludesForAtom[atom1]; + } + + /** + * We need to exclude some overcounted interactions that result from + * the parallel decomposition. + */ + bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { + int unique_id_1, unique_id_2; + +#ifdef IS_MPI + // in MPI, we have to look up the unique IDs for each atom + unique_id_1 = AtomRowToGlobal[atom1]; + unique_id_2 = AtomColToGlobal[atom2]; + + // this situation should only arise in MPI simulations + if (unique_id_1 == unique_id_2) return true; + + // this prevents us from doing the pair on multiple processors + if (unique_id_1 < unique_id_2) { + if ((unique_id_1 + unique_id_2) % 2 == 0) return true; + } else { + if ((unique_id_1 + unique_id_2) % 2 == 1) return true; + } +#endif + return false; + } + + /** + * We need to handle the interactions for atoms who are involved in + * the same rigid body as well as some short range interactions + * (bonds, bends, torsions) differently from other interactions. + * We'll still visit the pairwise routines, but with a flag that + * tells those routines to exclude the pair from direct long range + * interactions. Some indirect interactions (notably reaction + * field) must still be handled for these pairs. + */ + bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { + int unique_id_2; + +#ifdef IS_MPI + // in MPI, we have to look up the unique IDs for the row atom. + unique_id_2 = AtomColToGlobal[atom2]; +#else + // in the normal loop, the atom numbers are unique + unique_id_2 = atom2; +#endif + + for (vector::iterator i = excludesForAtom[atom1].begin(); + i != excludesForAtom[atom1].end(); ++i) { + if ( (*i) == unique_id_2 ) return true; + } + + return false; + } + + void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ #ifdef IS_MPI atomRowData.force[atom1] += fg; @@ -316,10 +839,16 @@ namespace OpenMD { } // filling interaction blocks with pointers - InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { - InteractionData idat; + void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, + int atom1, int atom2) { + idat.excluded = excludeAtomPair(atom1, atom2); + #ifdef IS_MPI + idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); + //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), + // ff_->getAtomType(identsCol[atom2]) ); + if (storageLayout_ & DataStorage::dslAmat) { idat.A1 = &(atomRowData.aMat[atom1]); idat.A2 = &(atomColData.aMat[atom2]); @@ -340,11 +869,32 @@ namespace OpenMD { idat.rho2 = &(atomColData.density[atom2]); } + if (storageLayout_ & DataStorage::dslFunctional) { + idat.frho1 = &(atomRowData.functional[atom1]); + idat.frho2 = &(atomColData.functional[atom2]); + } + if (storageLayout_ & DataStorage::dslFunctionalDerivative) { idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); } + + if (storageLayout_ & DataStorage::dslParticlePot) { + idat.particlePot1 = &(atomRowData.particlePot[atom1]); + idat.particlePot2 = &(atomColData.particlePot[atom2]); + } + + if (storageLayout_ & DataStorage::dslSkippedCharge) { + idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); + idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); + } + #else + + idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); + //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), + // ff_->getAtomType(idents[atom2]) ); + if (storageLayout_ & DataStorage::dslAmat) { idat.A1 = &(snap_->atomData.aMat[atom1]); idat.A2 = &(snap_->atomData.aMat[atom2]); @@ -360,55 +910,50 @@ namespace OpenMD { idat.t2 = &(snap_->atomData.torque[atom2]); } - if (storageLayout_ & DataStorage::dslDensity) { + if (storageLayout_ & DataStorage::dslDensity) { idat.rho1 = &(snap_->atomData.density[atom1]); idat.rho2 = &(snap_->atomData.density[atom2]); + } + + if (storageLayout_ & DataStorage::dslFunctional) { + idat.frho1 = &(snap_->atomData.functional[atom1]); + idat.frho2 = &(snap_->atomData.functional[atom2]); } if (storageLayout_ & DataStorage::dslFunctionalDerivative) { idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); } + + if (storageLayout_ & DataStorage::dslParticlePot) { + idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); + idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); + } + + if (storageLayout_ & DataStorage::dslSkippedCharge) { + idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); + idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); + } #endif - return idat; } - InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ - - InteractionData idat; + + void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { #ifdef IS_MPI - if (storageLayout_ & DataStorage::dslElectroFrame) { - idat.eFrame1 = &(atomRowData.electroFrame[atom1]); - idat.eFrame2 = &(atomColData.electroFrame[atom2]); - } - if (storageLayout_ & DataStorage::dslTorque) { - idat.t1 = &(atomRowData.torque[atom1]); - idat.t2 = &(atomColData.torque[atom2]); - } - if (storageLayout_ & DataStorage::dslForce) { - idat.t1 = &(atomRowData.force[atom1]); - idat.t2 = &(atomColData.force[atom2]); - } + pot_row[atom1] += 0.5 * *(idat.pot); + pot_col[atom2] += 0.5 * *(idat.pot); + + atomRowData.force[atom1] += *(idat.f1); + atomColData.force[atom2] -= *(idat.f1); #else - if (storageLayout_ & DataStorage::dslElectroFrame) { - idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); - idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); - } - if (storageLayout_ & DataStorage::dslTorque) { - idat.t1 = &(snap_->atomData.torque[atom1]); - idat.t2 = &(snap_->atomData.torque[atom2]); - } - if (storageLayout_ & DataStorage::dslForce) { - idat.t1 = &(snap_->atomData.force[atom1]); - idat.t2 = &(snap_->atomData.force[atom2]); - } + pairwisePot += *(idat.pot); + + snap_->atomData.force[atom1] += *(idat.f1); + snap_->atomData.force[atom2] -= *(idat.f1); #endif } - - - /* * buildNeighborList * @@ -418,6 +963,9 @@ namespace OpenMD { vector > ForceMatrixDecomposition::buildNeighborList() { vector > neighborList; + groupCutoffs cuts; + bool doAllPairs = false; + #ifdef IS_MPI cellListRow_.clear(); cellListCol_.clear(); @@ -425,10 +973,7 @@ namespace OpenMD { cellList_.clear(); #endif - // dangerous to not do error checking. - RealType rCut_; - - RealType rList_ = (rCut_ + skinThickness_); + RealType rList_ = (largestRcut_ + skinThickness_); RealType rl2 = rList_ * rList_; Snapshot* snap_ = sman_->getCurrentSnapshot(); Mat3x3d Hmat = snap_->getHmat(); @@ -440,156 +985,214 @@ namespace OpenMD { nCells_.y() = (int) ( Hy.length() )/ rList_; nCells_.z() = (int) ( Hz.length() )/ rList_; + // handle small boxes where the cell offsets can end up repeating cells + + if (nCells_.x() < 3) doAllPairs = true; + if (nCells_.y() < 3) doAllPairs = true; + if (nCells_.z() < 3) doAllPairs = true; + Mat3x3d invHmat = snap_->getInvHmat(); Vector3d rs, scaled, dr; Vector3i whichCell; int cellIndex; + int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); #ifdef IS_MPI - for (int i = 0; i < nGroupsInRow_; i++) { - rs = cgRowData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); + cellListRow_.resize(nCtot); + cellListCol_.resize(nCtot); +#else + cellList_.resize(nCtot); +#endif - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellListRow_[cellIndex].push_back(i); - } + if (!doAllPairs) { +#ifdef IS_MPI - for (int i = 0; i < nGroupsInCol_; i++) { - rs = cgColData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); - - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellListCol_[cellIndex].push_back(i); - } + for (int i = 0; i < nGroupsInRow_; i++) { + rs = cgRowData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellListRow_[cellIndex].push_back(i); + } + + for (int i = 0; i < nGroupsInCol_; i++) { + rs = cgColData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellListCol_[cellIndex].push_back(i); + } #else - for (int i = 0; i < nGroups_; i++) { - rs = snap_->cgData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); - - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellList_[cellIndex].push_back(i); - } + for (int i = 0; i < nGroups_; i++) { + rs = snap_->cgData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellList_[cellIndex].push_back(i); + } #endif - - - for (int m1z = 0; m1z < nCells_.z(); m1z++) { - for (int m1y = 0; m1y < nCells_.y(); m1y++) { - for (int m1x = 0; m1x < nCells_.x(); m1x++) { - Vector3i m1v(m1x, m1y, m1z); - int m1 = Vlinear(m1v, nCells_); - - for (vector::iterator os = cellOffsets_.begin(); - os != cellOffsets_.end(); ++os) { + for (int m1z = 0; m1z < nCells_.z(); m1z++) { + for (int m1y = 0; m1y < nCells_.y(); m1y++) { + for (int m1x = 0; m1x < nCells_.x(); m1x++) { + Vector3i m1v(m1x, m1y, m1z); + int m1 = Vlinear(m1v, nCells_); - Vector3i m2v = m1v + (*os); - - if (m2v.x() >= nCells_.x()) { - m2v.x() = 0; - } else if (m2v.x() < 0) { - m2v.x() = nCells_.x() - 1; - } - - if (m2v.y() >= nCells_.y()) { - m2v.y() = 0; - } else if (m2v.y() < 0) { - m2v.y() = nCells_.y() - 1; - } - - if (m2v.z() >= nCells_.z()) { - m2v.z() = 0; - } else if (m2v.z() < 0) { - m2v.z() = nCells_.z() - 1; - } - - int m2 = Vlinear (m2v, nCells_); - + for (vector::iterator os = cellOffsets_.begin(); + os != cellOffsets_.end(); ++os) { + + Vector3i m2v = m1v + (*os); + + if (m2v.x() >= nCells_.x()) { + m2v.x() = 0; + } else if (m2v.x() < 0) { + m2v.x() = nCells_.x() - 1; + } + + if (m2v.y() >= nCells_.y()) { + m2v.y() = 0; + } else if (m2v.y() < 0) { + m2v.y() = nCells_.y() - 1; + } + + if (m2v.z() >= nCells_.z()) { + m2v.z() = 0; + } else if (m2v.z() < 0) { + m2v.z() = nCells_.z() - 1; + } + + int m2 = Vlinear (m2v, nCells_); + #ifdef IS_MPI - for (vector::iterator j1 = cellListRow_[m1].begin(); - j1 != cellListRow_[m1].end(); ++j1) { - for (vector::iterator j2 = cellListCol_[m2].begin(); - j2 != cellListCol_[m2].end(); ++j2) { - - // Always do this if we're in different cells or if - // we're in the same cell and the global index of the - // j2 cutoff group is less than the j1 cutoff group - - if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { - dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; - snap_->wrapVector(dr); - if (dr.lengthSquare() < rl2) { - neighborList.push_back(make_pair((*j1), (*j2))); + for (vector::iterator j1 = cellListRow_[m1].begin(); + j1 != cellListRow_[m1].end(); ++j1) { + for (vector::iterator j2 = cellListCol_[m2].begin(); + j2 != cellListCol_[m2].end(); ++j2) { + + // Always do this if we're in different cells or if + // we're in the same cell and the global index of the + // j2 cutoff group is less than the j1 cutoff group + + if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { + dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( (*j1), (*j2) ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair((*j1), (*j2))); + } } } } - } #else - for (vector::iterator j1 = cellList_[m1].begin(); - j1 != cellList_[m1].end(); ++j1) { - for (vector::iterator j2 = cellList_[m2].begin(); - j2 != cellList_[m2].end(); ++j2) { - - // Always do this if we're in different cells or if - // we're in the same cell and the global index of the - // j2 cutoff group is less than the j1 cutoff group - - if (m2 != m1 || (*j2) < (*j1)) { - dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; - snap_->wrapVector(dr); - if (dr.lengthSquare() < rl2) { - neighborList.push_back(make_pair((*j1), (*j2))); + + for (vector::iterator j1 = cellList_[m1].begin(); + j1 != cellList_[m1].end(); ++j1) { + for (vector::iterator j2 = cellList_[m2].begin(); + j2 != cellList_[m2].end(); ++j2) { + + // Always do this if we're in different cells or if + // we're in the same cell and the global index of the + // j2 cutoff group is less than the j1 cutoff group + + if (m2 != m1 || (*j2) < (*j1)) { + dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( (*j1), (*j2) ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair((*j1), (*j2))); + } } } } - } #endif + } } } } + } else { + // branch to do all cutoff group pairs +#ifdef IS_MPI + for (int j1 = 0; j1 < nGroupsInRow_; j1++) { + for (int j2 = 0; j2 < nGroupsInCol_; j2++) { + dr = cgColData.position[j2] - cgRowData.position[j1]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( j1, j2 ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair(j1, j2)); + } + } + } +#else + for (int j1 = 0; j1 < nGroups_ - 1; j1++) { + for (int j2 = j1 + 1; j2 < nGroups_; j2++) { + dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( j1, j2 ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair(j1, j2)); + } + } + } +#endif } - + // save the local cutoff group positions for the check that is // done on each loop: saved_CG_positions_.clear(); for (int i = 0; i < nGroups_; i++) saved_CG_positions_.push_back(snap_->cgData.position[i]); - + return neighborList; } } //end namespace OpenMD