--- branches/development/src/parallel/ForceMatrixDecomposition.cpp 2011/06/08 16:05:07 1576 +++ branches/development/src/parallel/ForceMatrixDecomposition.cpp 2011/07/12 20:33:14 1592 @@ -57,19 +57,21 @@ namespace OpenMD { storageLayout_ = sman_->getStorageLayout(); ff_ = info_->getForceField(); nLocal_ = snap_->getNumberOfAtoms(); - nGroups_ = snap_->getNumberOfCutoffGroups(); - + + nGroups_ = info_->getNLocalCutoffGroups(); // gather the information for atomtype IDs (atids): - identsLocal = info_->getIdentArray(); + idents = info_->getIdentArray(); AtomLocalToGlobal = info_->getGlobalAtomIndices(); cgLocalToGlobal = info_->getGlobalGroupIndices(); vector globalGroupMembership = info_->getGlobalGroupMembership(); - vector massFactorsLocal = info_->getMassFactors(); - PairList excludes = info_->getExcludedInteractions(); - PairList oneTwo = info_->getOneTwoInteractions(); - PairList oneThree = info_->getOneThreeInteractions(); - PairList oneFour = info_->getOneFourInteractions(); + massFactors = info_->getMassFactors(); + + PairList* excludes = info_->getExcludedInteractions(); + PairList* oneTwo = info_->getOneTwoInteractions(); + PairList* oneThree = info_->getOneThreeInteractions(); + PairList* oneFour = info_->getOneFourInteractions(); + #ifdef IS_MPI AtomCommIntRow = new Communicator(nLocal_); @@ -104,23 +106,41 @@ namespace OpenMD { cgColData.resize(nGroupsInCol_); cgColData.setStorageLayout(DataStorage::dslPosition); - identsRow.reserve(nAtomsInRow_); - identsCol.reserve(nAtomsInCol_); + identsRow.resize(nAtomsInRow_); + identsCol.resize(nAtomsInCol_); - AtomCommIntRow->gather(identsLocal, identsRow); - AtomCommIntColumn->gather(identsLocal, identsCol); + AtomCommIntRow->gather(idents, identsRow); + AtomCommIntColumn->gather(idents, identsCol); + // allocate memory for the parallel objects + atypesRow.resize(nAtomsInRow_); + atypesCol.resize(nAtomsInCol_); + + for (int i = 0; i < nAtomsInRow_; i++) + atypesRow[i] = ff_->getAtomType(identsRow[i]); + for (int i = 0; i < nAtomsInCol_; i++) + atypesCol[i] = ff_->getAtomType(identsCol[i]); + + pot_row.resize(nAtomsInRow_); + pot_col.resize(nAtomsInCol_); + + AtomRowToGlobal.resize(nAtomsInRow_); + AtomColToGlobal.resize(nAtomsInCol_); AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); + cgRowToGlobal.resize(nGroupsInRow_); + cgColToGlobal.resize(nGroupsInCol_); cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal); cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal); - AtomCommRealRow->gather(massFactorsLocal, massFactorsRow); - AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol); + massFactorsRow.resize(nAtomsInRow_); + massFactorsCol.resize(nAtomsInCol_); + AtomCommRealRow->gather(massFactors, massFactorsRow); + AtomCommRealColumn->gather(massFactors, massFactorsCol); groupListRow_.clear(); - groupListRow_.reserve(nGroupsInRow_); + groupListRow_.resize(nGroupsInRow_); for (int i = 0; i < nGroupsInRow_; i++) { int gid = cgRowToGlobal[i]; for (int j = 0; j < nAtomsInRow_; j++) { @@ -131,7 +151,7 @@ namespace OpenMD { } groupListCol_.clear(); - groupListCol_.reserve(nGroupsInCol_); + groupListCol_.resize(nGroupsInCol_); for (int i = 0; i < nGroupsInCol_; i++) { int gid = cgColToGlobal[i]; for (int j = 0; j < nAtomsInCol_; j++) { @@ -141,115 +161,120 @@ namespace OpenMD { } } - skipsForRowAtom.clear(); - skipsForRowAtom.reserve(nAtomsInRow_); + excludesForAtom.clear(); + excludesForAtom.resize(nAtomsInRow_); + toposForAtom.clear(); + toposForAtom.resize(nAtomsInRow_); + topoDist.clear(); + topoDist.resize(nAtomsInRow_); for (int i = 0; i < nAtomsInRow_; i++) { int iglob = AtomRowToGlobal[i]; - for (int j = 0; j < nAtomsInCol_; j++) { - int jglob = AtomColToGlobal[j]; - if (excludes.hasPair(iglob, jglob)) - skipsForRowAtom[i].push_back(j); - } - } - toposForRowAtom.clear(); - toposForRowAtom.reserve(nAtomsInRow_); - for (int i = 0; i < nAtomsInRow_; i++) { - int iglob = AtomRowToGlobal[i]; - int nTopos = 0; for (int j = 0; j < nAtomsInCol_; j++) { - int jglob = AtomColToGlobal[j]; - if (oneTwo.hasPair(iglob, jglob)) { - toposForRowAtom[i].push_back(j); - topoDistRow[i][nTopos] = 1; - nTopos++; - } - if (oneThree.hasPair(iglob, jglob)) { - toposForRowAtom[i].push_back(j); - topoDistRow[i][nTopos] = 2; - nTopos++; - } - if (oneFour.hasPair(iglob, jglob)) { - toposForRowAtom[i].push_back(j); - topoDistRow[i][nTopos] = 3; - nTopos++; + int jglob = AtomColToGlobal[j]; + + if (excludes->hasPair(iglob, jglob)) + excludesForAtom[i].push_back(j); + + if (oneTwo->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(1); + } else { + if (oneThree->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(2); + } else { + if (oneFour->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(3); + } + } } } } #endif + // allocate memory for the parallel objects + atypesLocal.resize(nLocal_); + + for (int i = 0; i < nLocal_; i++) + atypesLocal[i] = ff_->getAtomType(idents[i]); + groupList_.clear(); - groupList_.reserve(nGroups_); + groupList_.resize(nGroups_); for (int i = 0; i < nGroups_; i++) { int gid = cgLocalToGlobal[i]; for (int j = 0; j < nLocal_; j++) { int aid = AtomLocalToGlobal[j]; - if (globalGroupMembership[aid] == gid) + if (globalGroupMembership[aid] == gid) { groupList_[i].push_back(j); + } } } - skipsForLocalAtom.clear(); - skipsForLocalAtom.reserve(nLocal_); + excludesForAtom.clear(); + excludesForAtom.resize(nLocal_); + toposForAtom.clear(); + toposForAtom.resize(nLocal_); + topoDist.clear(); + topoDist.resize(nLocal_); for (int i = 0; i < nLocal_; i++) { int iglob = AtomLocalToGlobal[i]; - for (int j = 0; j < nLocal_; j++) { - int jglob = AtomLocalToGlobal[j]; - if (excludes.hasPair(iglob, jglob)) - skipsForLocalAtom[i].push_back(j); - } - } - toposForLocalAtom.clear(); - toposForLocalAtom.reserve(nLocal_); - for (int i = 0; i < nLocal_; i++) { - int iglob = AtomLocalToGlobal[i]; - int nTopos = 0; for (int j = 0; j < nLocal_; j++) { - int jglob = AtomLocalToGlobal[j]; - if (oneTwo.hasPair(iglob, jglob)) { - toposForLocalAtom[i].push_back(j); - topoDistLocal[i][nTopos] = 1; - nTopos++; + int jglob = AtomLocalToGlobal[j]; + + if (excludes->hasPair(iglob, jglob)) + excludesForAtom[i].push_back(j); + + if (oneTwo->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(1); + } else { + if (oneThree->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(2); + } else { + if (oneFour->hasPair(iglob, jglob)) { + toposForAtom[i].push_back(j); + topoDist[i].push_back(3); + } + } } - if (oneThree.hasPair(iglob, jglob)) { - toposForLocalAtom[i].push_back(j); - topoDistLocal[i][nTopos] = 2; - nTopos++; - } - if (oneFour.hasPair(iglob, jglob)) { - toposForLocalAtom[i].push_back(j); - topoDistLocal[i][nTopos] = 3; - nTopos++; - } } - } + } + + createGtypeCutoffMap(); } void ForceMatrixDecomposition::createGtypeCutoffMap() { - + RealType tol = 1e-6; + largestRcut_ = 0.0; RealType rc; int atid; set atypes = info_->getSimulatedAtomTypes(); - vector atypeCutoff; - atypeCutoff.reserve( atypes.size() ); - - for (set::iterator at = atypes.begin(); at != atypes.end(); ++at){ - rc = interactionMan_->getSuggestedCutoffRadius(*at); + + map atypeCutoff; + + for (set::iterator at = atypes.begin(); + at != atypes.end(); ++at){ atid = (*at)->getIdent(); - atypeCutoff[atid] = rc; + if (userChoseCutoff_) + atypeCutoff[atid] = userCutoff_; + else + atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); } - + vector gTypeCutoffs; - // first we do a single loop over the cutoff groups to find the // largest cutoff for any atypes present in this group. #ifdef IS_MPI vector groupCutoffRow(nGroupsInRow_, 0.0); + groupRowToGtype.resize(nGroupsInRow_); for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) { vector atomListRow = getAtomsInGroupRow(cg1); for (vector::iterator ia = atomListRow.begin(); @@ -275,6 +300,7 @@ namespace OpenMD { } vector groupCutoffCol(nGroupsInCol_, 0.0); + groupColToGtype.resize(nGroupsInCol_); for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) { vector atomListCol = getAtomsInGroupColumn(cg2); for (vector::iterator jb = atomListCol.begin(); @@ -298,19 +324,20 @@ namespace OpenMD { } } #else + vector groupCutoff(nGroups_, 0.0); + groupToGtype.resize(nGroups_); for (int cg1 = 0; cg1 < nGroups_; cg1++) { groupCutoff[cg1] = 0.0; vector atomList = getAtomsInGroupRow(cg1); for (vector::iterator ia = atomList.begin(); ia != atomList.end(); ++ia) { int atom1 = (*ia); - atid = identsLocal[atom1]; - if (atypeCutoff[atid] > groupCutoff[cg1]) { + atid = idents[atom1]; + if (atypeCutoff[atid] > groupCutoff[cg1]) groupCutoff[cg1] = atypeCutoff[atid]; - } } - + bool gTypeFound = false; for (int gt = 0; gt < gTypeCutoffs.size(); gt++) { if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) { @@ -318,7 +345,7 @@ namespace OpenMD { gTypeFound = true; } } - if (!gTypeFound) { + if (!gTypeFound) { gTypeCutoffs.push_back( groupCutoff[cg1] ); groupToGtype[cg1] = gTypeCutoffs.size() - 1; } @@ -327,51 +354,51 @@ namespace OpenMD { // Now we find the maximum group cutoff value present in the simulation - vector::iterator groupMaxLoc = max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); - RealType groupMax = *groupMaxLoc; + RealType groupMax = *max_element(gTypeCutoffs.begin(), + gTypeCutoffs.end()); #ifdef IS_MPI - MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX); + MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, + MPI::MAX); #endif RealType tradRcut = groupMax; for (int i = 0; i < gTypeCutoffs.size(); i++) { - for (int j = 0; j < gTypeCutoffs.size(); j++) { - + for (int j = 0; j < gTypeCutoffs.size(); j++) { RealType thisRcut; switch(cutoffPolicy_) { case TRADITIONAL: thisRcut = tradRcut; + break; case MIX: thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); + break; case MAX: thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); + break; default: sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap " "hit an unknown cutoff policy!\n"); painCave.severity = OPENMD_ERROR; painCave.isFatal = 1; - simError(); + simError(); + break; } pair key = make_pair(i,j); gTypeCutoffMap[key].first = thisRcut; - if (thisRcut > largestRcut_) largestRcut_ = thisRcut; - gTypeCutoffMap[key].second = thisRcut*thisRcut; - gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); - // sanity check if (userChoseCutoff_) { if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) { sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap " - "user-specified rCut does not match computed group Cutoff\n"); + "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); painCave.severity = OPENMD_ERROR; painCave.isFatal = 1; simError(); @@ -383,25 +410,28 @@ namespace OpenMD { groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { - int i, j; - + int i, j; #ifdef IS_MPI i = groupRowToGtype[cg1]; j = groupColToGtype[cg2]; #else i = groupToGtype[cg1]; j = groupToGtype[cg2]; -#endif - +#endif return gTypeCutoffMap[make_pair(i,j)]; } + int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { + for (int j = 0; j < toposForAtom[atom1].size(); j++) { + if (toposForAtom[atom1][j] == atom2) + return topoDist[atom1][j]; + } + return 0; + } void ForceMatrixDecomposition::zeroWorkArrays() { - - for (int j = 0; j < N_INTERACTION_FAMILIES; j++) { - longRangePot_[j] = 0.0; - } + pairwisePot = 0.0; + embeddingPot = 0.0; #ifdef IS_MPI if (storageLayout_ & DataStorage::dslForce) { @@ -418,13 +448,13 @@ namespace OpenMD { Vector (0.0)); fill(pot_col.begin(), pot_col.end(), - Vector (0.0)); - - pot_local = Vector(0.0); + Vector (0.0)); if (storageLayout_ & DataStorage::dslParticlePot) { - fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0); - fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0); + fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), + 0.0); + fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), + 0.0); } if (storageLayout_ & DataStorage::dslDensity) { @@ -433,8 +463,10 @@ namespace OpenMD { } if (storageLayout_ & DataStorage::dslFunctional) { - fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0); - fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0); + fill(atomRowData.functional.begin(), atomRowData.functional.end(), + 0.0); + fill(atomColData.functional.begin(), atomColData.functional.end(), + 0.0); } if (storageLayout_ & DataStorage::dslFunctionalDerivative) { @@ -444,8 +476,16 @@ namespace OpenMD { atomColData.functionalDerivative.end(), 0.0); } -#else - + if (storageLayout_ & DataStorage::dslSkippedCharge) { + fill(atomRowData.skippedCharge.begin(), + atomRowData.skippedCharge.end(), 0.0); + fill(atomColData.skippedCharge.begin(), + atomColData.skippedCharge.end(), 0.0); + } + +#endif + // even in parallel, we need to zero out the local arrays: + if (storageLayout_ & DataStorage::dslParticlePot) { fill(snap_->atomData.particlePot.begin(), snap_->atomData.particlePot.end(), 0.0); @@ -463,7 +503,10 @@ namespace OpenMD { fill(snap_->atomData.functionalDerivative.begin(), snap_->atomData.functionalDerivative.end(), 0.0); } -#endif + if (storageLayout_ & DataStorage::dslSkippedCharge) { + fill(snap_->atomData.skippedCharge.begin(), + snap_->atomData.skippedCharge.end(), 0.0); + } } @@ -500,6 +543,7 @@ namespace OpenMD { AtomCommMatrixColumn->gather(snap_->atomData.electroFrame, atomColData.electroFrame); } + #endif } @@ -566,23 +610,38 @@ namespace OpenMD { AtomCommVectorColumn->scatter(atomColData.force, frc_tmp); for (int i = 0; i < n; i++) snap_->atomData.force[i] += frc_tmp[i]; - - + if (storageLayout_ & DataStorage::dslTorque) { - int nt = snap_->atomData.force.size(); + int nt = snap_->atomData.torque.size(); vector trq_tmp(nt, V3Zero); AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp); - for (int i = 0; i < n; i++) { + for (int i = 0; i < nt; i++) { snap_->atomData.torque[i] += trq_tmp[i]; trq_tmp[i] = 0.0; } AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp); - for (int i = 0; i < n; i++) + for (int i = 0; i < nt; i++) snap_->atomData.torque[i] += trq_tmp[i]; } + + if (storageLayout_ & DataStorage::dslSkippedCharge) { + + int ns = snap_->atomData.skippedCharge.size(); + vector skch_tmp(ns, 0.0); + + AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp); + for (int i = 0; i < ns; i++) { + snap_->atomData.skippedCharge[i] += skch_tmp[i]; + skch_tmp[i] = 0.0; + } + + AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp); + for (int i = 0; i < ns; i++) + snap_->atomData.skippedCharge[i] += skch_tmp[i]; + } nLocal_ = snap_->getNumberOfAtoms(); @@ -594,7 +653,7 @@ namespace OpenMD { AtomCommPotRow->scatter(pot_row, pot_temp); for (int ii = 0; ii < pot_temp.size(); ii++ ) - pot_local += pot_temp[ii]; + pairwisePot += pot_temp[ii]; fill(pot_temp.begin(), pot_temp.end(), Vector (0.0)); @@ -602,9 +661,9 @@ namespace OpenMD { AtomCommPotColumn->scatter(pot_col, pot_temp); for (int ii = 0; ii < pot_temp.size(); ii++ ) - pot_local += pot_temp[ii]; - + pairwisePot += pot_temp[ii]; #endif + } int ForceMatrixDecomposition::getNAtomsInRow() { @@ -679,7 +738,7 @@ namespace OpenMD { #ifdef IS_MPI return massFactorsRow[atom1]; #else - return massFactorsLocal[atom1]; + return massFactors[atom1]; #endif } @@ -687,7 +746,7 @@ namespace OpenMD { #ifdef IS_MPI return massFactorsCol[atom2]; #else - return massFactorsLocal[atom2]; + return massFactors[atom2]; #endif } @@ -705,19 +764,12 @@ namespace OpenMD { return d; } - vector ForceMatrixDecomposition::getSkipsForRowAtom(int atom1) { -#ifdef IS_MPI - return skipsForRowAtom[atom1]; -#else - return skipsForLocalAtom[atom1]; -#endif + vector ForceMatrixDecomposition::getExcludesForAtom(int atom1) { + return excludesForAtom[atom1]; } /** - * There are a number of reasons to skip a pair or a - * particle. Mostly we do this to exclude atoms who are involved in - * short range interactions (bonds, bends, torsions), but we also - * need to exclude some overcounted interactions that result from + * We need to exclude some overcounted interactions that result from * the parallel decomposition. */ bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { @@ -737,41 +789,39 @@ namespace OpenMD { } else { if ((unique_id_1 + unique_id_2) % 2 == 1) return true; } -#else - // in the normal loop, the atom numbers are unique - unique_id_1 = atom1; - unique_id_2 = atom2; #endif - -#ifdef IS_MPI - for (vector::iterator i = skipsForRowAtom[atom1].begin(); - i != skipsForRowAtom[atom1].end(); ++i) { - if ( (*i) == unique_id_2 ) return true; - } -#else - for (vector::iterator i = skipsForLocalAtom[atom1].begin(); - i != skipsForLocalAtom[atom1].end(); ++i) { - if ( (*i) == unique_id_2 ) return true; - } -#endif + return false; } - int ForceMatrixDecomposition::getTopoDistance(int atom1, int atom2) { + /** + * We need to handle the interactions for atoms who are involved in + * the same rigid body as well as some short range interactions + * (bonds, bends, torsions) differently from other interactions. + * We'll still visit the pairwise routines, but with a flag that + * tells those routines to exclude the pair from direct long range + * interactions. Some indirect interactions (notably reaction + * field) must still be handled for these pairs. + */ + bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { + int unique_id_2; #ifdef IS_MPI - for (int i = 0; i < toposForRowAtom[atom1].size(); i++) { - if ( toposForRowAtom[atom1][i] == atom2 ) return topoDistRow[atom1][i]; - } + // in MPI, we have to look up the unique IDs for the row atom. + unique_id_2 = AtomColToGlobal[atom2]; #else - for (int i = 0; i < toposForLocalAtom[atom1].size(); i++) { - if ( toposForLocalAtom[atom1][i] == atom2 ) return topoDistLocal[atom1][i]; - } + // in the normal loop, the atom numbers are unique + unique_id_2 = atom2; #endif + + for (vector::iterator i = excludesForAtom[atom1].begin(); + i != excludesForAtom[atom1].end(); ++i) { + if ( (*i) == unique_id_2 ) return true; + } - // zero is default for unconnected (i.e. normal) pair interactions - return 0; + return false; } + void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){ #ifdef IS_MPI atomRowData.force[atom1] += fg; @@ -789,15 +839,16 @@ namespace OpenMD { } // filling interaction blocks with pointers - InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) { - InteractionData idat; + void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, + int atom1, int atom2) { + idat.excluded = excludeAtomPair(atom1, atom2); + #ifdef IS_MPI + idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); + //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), + // ff_->getAtomType(identsCol[atom2]) ); - idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), - ff_->getAtomType(identsCol[atom2]) ); - - if (storageLayout_ & DataStorage::dslAmat) { idat.A1 = &(atomRowData.aMat[atom1]); idat.A2 = &(atomColData.aMat[atom2]); @@ -833,10 +884,16 @@ namespace OpenMD { idat.particlePot2 = &(atomColData.particlePot[atom2]); } + if (storageLayout_ & DataStorage::dslSkippedCharge) { + idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); + idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); + } + #else - idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), - ff_->getAtomType(identsLocal[atom2]) ); + idat.atypes = make_pair( atypesLocal[atom1], atypesLocal[atom2]); + //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), + // ff_->getAtomType(idents[atom2]) ); if (storageLayout_ & DataStorage::dslAmat) { idat.A1 = &(snap_->atomData.aMat[atom1]); @@ -853,7 +910,7 @@ namespace OpenMD { idat.t2 = &(snap_->atomData.torque[atom2]); } - if (storageLayout_ & DataStorage::dslDensity) { + if (storageLayout_ & DataStorage::dslDensity) { idat.rho1 = &(snap_->atomData.density[atom1]); idat.rho2 = &(snap_->atomData.density[atom2]); } @@ -873,12 +930,15 @@ namespace OpenMD { idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); } + if (storageLayout_ & DataStorage::dslSkippedCharge) { + idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); + idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); + } #endif - return idat; } - void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) { + void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { #ifdef IS_MPI pot_row[atom1] += 0.5 * *(idat.pot); pot_col[atom2] += 0.5 * *(idat.pot); @@ -886,45 +946,14 @@ namespace OpenMD { atomRowData.force[atom1] += *(idat.f1); atomColData.force[atom2] -= *(idat.f1); #else - longRangePot_ += *(idat.pot); - + pairwisePot += *(idat.pot); + snap_->atomData.force[atom1] += *(idat.f1); snap_->atomData.force[atom2] -= *(idat.f1); #endif - + } - - InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){ - - InteractionData idat; -#ifdef IS_MPI - idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), - ff_->getAtomType(identsCol[atom2]) ); - - if (storageLayout_ & DataStorage::dslElectroFrame) { - idat.eFrame1 = &(atomRowData.electroFrame[atom1]); - idat.eFrame2 = &(atomColData.electroFrame[atom2]); - } - if (storageLayout_ & DataStorage::dslTorque) { - idat.t1 = &(atomRowData.torque[atom1]); - idat.t2 = &(atomColData.torque[atom2]); - } -#else - idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]), - ff_->getAtomType(identsLocal[atom2]) ); - - if (storageLayout_ & DataStorage::dslElectroFrame) { - idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); - idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); - } - if (storageLayout_ & DataStorage::dslTorque) { - idat.t1 = &(snap_->atomData.torque[atom1]); - idat.t2 = &(snap_->atomData.torque[atom2]); - } -#endif - } - /* * buildNeighborList * @@ -935,6 +964,8 @@ namespace OpenMD { vector > neighborList; groupCutoffs cuts; + bool doAllPairs = false; + #ifdef IS_MPI cellListRow_.clear(); cellListCol_.clear(); @@ -954,156 +985,214 @@ namespace OpenMD { nCells_.y() = (int) ( Hy.length() )/ rList_; nCells_.z() = (int) ( Hz.length() )/ rList_; + // handle small boxes where the cell offsets can end up repeating cells + + if (nCells_.x() < 3) doAllPairs = true; + if (nCells_.y() < 3) doAllPairs = true; + if (nCells_.z() < 3) doAllPairs = true; + Mat3x3d invHmat = snap_->getInvHmat(); Vector3d rs, scaled, dr; Vector3i whichCell; int cellIndex; + int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); #ifdef IS_MPI - for (int i = 0; i < nGroupsInRow_; i++) { - rs = cgRowData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); - - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellListRow_[cellIndex].push_back(i); - } - - for (int i = 0; i < nGroupsInCol_; i++) { - rs = cgColData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); - - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellListCol_[cellIndex].push_back(i); - } + cellListRow_.resize(nCtot); + cellListCol_.resize(nCtot); #else - for (int i = 0; i < nGroups_; i++) { - rs = snap_->cgData.position[i]; - // scaled positions relative to the box vectors - scaled = invHmat * rs; - // wrap the vector back into the unit box by subtracting integer box - // numbers - for (int j = 0; j < 3; j++) - scaled[j] -= roundMe(scaled[j]); - - // find xyz-indices of cell that cutoffGroup is in. - whichCell.x() = nCells_.x() * scaled.x(); - whichCell.y() = nCells_.y() * scaled.y(); - whichCell.z() = nCells_.z() * scaled.z(); - - // find single index of this cell: - cellIndex = Vlinear(whichCell, nCells_); - // add this cutoff group to the list of groups in this cell; - cellList_[cellIndex].push_back(i); - } + cellList_.resize(nCtot); #endif - for (int m1z = 0; m1z < nCells_.z(); m1z++) { - for (int m1y = 0; m1y < nCells_.y(); m1y++) { - for (int m1x = 0; m1x < nCells_.x(); m1x++) { - Vector3i m1v(m1x, m1y, m1z); - int m1 = Vlinear(m1v, nCells_); + if (!doAllPairs) { +#ifdef IS_MPI - for (vector::iterator os = cellOffsets_.begin(); - os != cellOffsets_.end(); ++os) { - - Vector3i m2v = m1v + (*os); - - if (m2v.x() >= nCells_.x()) { - m2v.x() = 0; - } else if (m2v.x() < 0) { - m2v.x() = nCells_.x() - 1; - } - - if (m2v.y() >= nCells_.y()) { - m2v.y() = 0; - } else if (m2v.y() < 0) { - m2v.y() = nCells_.y() - 1; - } - - if (m2v.z() >= nCells_.z()) { - m2v.z() = 0; - } else if (m2v.z() < 0) { - m2v.z() = nCells_.z() - 1; - } - - int m2 = Vlinear (m2v, nCells_); + for (int i = 0; i < nGroupsInRow_; i++) { + rs = cgRowData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellListRow_[cellIndex].push_back(i); + } + + for (int i = 0; i < nGroupsInCol_; i++) { + rs = cgColData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellListCol_[cellIndex].push_back(i); + } +#else + for (int i = 0; i < nGroups_; i++) { + rs = snap_->cgData.position[i]; + + // scaled positions relative to the box vectors + scaled = invHmat * rs; + + // wrap the vector back into the unit box by subtracting integer box + // numbers + for (int j = 0; j < 3; j++) { + scaled[j] -= roundMe(scaled[j]); + scaled[j] += 0.5; + } + + // find xyz-indices of cell that cutoffGroup is in. + whichCell.x() = nCells_.x() * scaled.x(); + whichCell.y() = nCells_.y() * scaled.y(); + whichCell.z() = nCells_.z() * scaled.z(); + + // find single index of this cell: + cellIndex = Vlinear(whichCell, nCells_); + + // add this cutoff group to the list of groups in this cell; + cellList_[cellIndex].push_back(i); + } +#endif + for (int m1z = 0; m1z < nCells_.z(); m1z++) { + for (int m1y = 0; m1y < nCells_.y(); m1y++) { + for (int m1x = 0; m1x < nCells_.x(); m1x++) { + Vector3i m1v(m1x, m1y, m1z); + int m1 = Vlinear(m1v, nCells_); + + for (vector::iterator os = cellOffsets_.begin(); + os != cellOffsets_.end(); ++os) { + + Vector3i m2v = m1v + (*os); + + if (m2v.x() >= nCells_.x()) { + m2v.x() = 0; + } else if (m2v.x() < 0) { + m2v.x() = nCells_.x() - 1; + } + + if (m2v.y() >= nCells_.y()) { + m2v.y() = 0; + } else if (m2v.y() < 0) { + m2v.y() = nCells_.y() - 1; + } + + if (m2v.z() >= nCells_.z()) { + m2v.z() = 0; + } else if (m2v.z() < 0) { + m2v.z() = nCells_.z() - 1; + } + + int m2 = Vlinear (m2v, nCells_); + #ifdef IS_MPI - for (vector::iterator j1 = cellListRow_[m1].begin(); - j1 != cellListRow_[m1].end(); ++j1) { - for (vector::iterator j2 = cellListCol_[m2].begin(); - j2 != cellListCol_[m2].end(); ++j2) { - - // Always do this if we're in different cells or if - // we're in the same cell and the global index of the - // j2 cutoff group is less than the j1 cutoff group - - if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { - dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; - snap_->wrapVector(dr); - cuts = getGroupCutoffs( (*j1), (*j2) ); - if (dr.lengthSquare() < cuts.third) { - neighborList.push_back(make_pair((*j1), (*j2))); + for (vector::iterator j1 = cellListRow_[m1].begin(); + j1 != cellListRow_[m1].end(); ++j1) { + for (vector::iterator j2 = cellListCol_[m2].begin(); + j2 != cellListCol_[m2].end(); ++j2) { + + // Always do this if we're in different cells or if + // we're in the same cell and the global index of the + // j2 cutoff group is less than the j1 cutoff group + + if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) { + dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( (*j1), (*j2) ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair((*j1), (*j2))); + } } } } - } #else - for (vector::iterator j1 = cellList_[m1].begin(); - j1 != cellList_[m1].end(); ++j1) { - for (vector::iterator j2 = cellList_[m2].begin(); - j2 != cellList_[m2].end(); ++j2) { - - // Always do this if we're in different cells or if - // we're in the same cell and the global index of the - // j2 cutoff group is less than the j1 cutoff group - - if (m2 != m1 || (*j2) < (*j1)) { - dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; - snap_->wrapVector(dr); - cuts = getGroupCutoffs( (*j1), (*j2) ); - if (dr.lengthSquare() < cuts.third) { - neighborList.push_back(make_pair((*j1), (*j2))); + + for (vector::iterator j1 = cellList_[m1].begin(); + j1 != cellList_[m1].end(); ++j1) { + for (vector::iterator j2 = cellList_[m2].begin(); + j2 != cellList_[m2].end(); ++j2) { + + // Always do this if we're in different cells or if + // we're in the same cell and the global index of the + // j2 cutoff group is less than the j1 cutoff group + + if (m2 != m1 || (*j2) < (*j1)) { + dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( (*j1), (*j2) ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair((*j1), (*j2))); + } } } } - } #endif + } } } } + } else { + // branch to do all cutoff group pairs +#ifdef IS_MPI + for (int j1 = 0; j1 < nGroupsInRow_; j1++) { + for (int j2 = 0; j2 < nGroupsInCol_; j2++) { + dr = cgColData.position[j2] - cgRowData.position[j1]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( j1, j2 ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair(j1, j2)); + } + } + } +#else + for (int j1 = 0; j1 < nGroups_ - 1; j1++) { + for (int j2 = j1 + 1; j2 < nGroups_; j2++) { + dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; + snap_->wrapVector(dr); + cuts = getGroupCutoffs( j1, j2 ); + if (dr.lengthSquare() < cuts.third) { + neighborList.push_back(make_pair(j1, j2)); + } + } + } +#endif } - + // save the local cutoff group positions for the check that is // done on each loop: saved_CG_positions_.clear(); for (int i = 0; i < nGroups_; i++) saved_CG_positions_.push_back(snap_->cgData.position[i]); - + return neighborList; } } //end namespace OpenMD