| 1 | gezelter | 2026 | /* | 
| 2 |  |  | * Copyright (c) 2014 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 |  |  | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 |  |  | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 |  |  | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 |  |  | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 |  |  | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  |  | */ | 
| 42 |  |  |  | 
| 43 |  |  | #include "perturbations/UniformGradient.hpp" | 
| 44 |  |  | #include "types/FixedChargeAdapter.hpp" | 
| 45 |  |  | #include "types/FluctuatingChargeAdapter.hpp" | 
| 46 |  |  | #include "types/MultipoleAdapter.hpp" | 
| 47 |  |  | #include "primitives/Molecule.hpp" | 
| 48 |  |  | #include "nonbonded/NonBondedInteraction.hpp" | 
| 49 |  |  | #include "utils/PhysicalConstants.hpp" | 
| 50 |  |  |  | 
| 51 |  |  | namespace OpenMD { | 
| 52 |  |  |  | 
| 53 |  |  | UniformGradient::UniformGradient(SimInfo* info) : info_(info), | 
| 54 |  |  | doUniformGradient(false), | 
| 55 |  |  | doParticlePot(false), | 
| 56 |  |  | initialized(false) { | 
| 57 |  |  | simParams = info_->getSimParams(); | 
| 58 |  |  | } | 
| 59 |  |  |  | 
| 60 |  |  | void UniformGradient::initialize() { | 
| 61 | gezelter | 2034 |  | 
| 62 |  |  | bool haveA = false; | 
| 63 |  |  | bool haveB = false; | 
| 64 |  |  | bool haveG = false; | 
| 65 |  |  |  | 
| 66 |  |  | if (simParams->haveUniformGradientDirection1()) { | 
| 67 |  |  | std::vector<RealType> d1 = simParams->getUniformGradientDirection1(); | 
| 68 |  |  | if (d1.size() != 3) { | 
| 69 | gezelter | 2026 | sprintf(painCave.errMsg, | 
| 70 | gezelter | 2034 | "uniformGradientDirection1: Incorrect number of parameters\n" | 
| 71 |  |  | "\tspecified. There should be 3 parameters, but %lu were\n" | 
| 72 |  |  | "\tspecified.\n", d1.size()); | 
| 73 | gezelter | 2026 | painCave.isFatal = 1; | 
| 74 |  |  | simError(); | 
| 75 |  |  | } | 
| 76 | gezelter | 2034 | a_.x() = d1[0]; | 
| 77 |  |  | a_.y() = d1[1]; | 
| 78 |  |  | a_.z() = d1[2]; | 
| 79 | gezelter | 2026 |  | 
| 80 | gezelter | 2034 | a_.normalize(); | 
| 81 |  |  | haveA = true; | 
| 82 |  |  | } | 
| 83 |  |  |  | 
| 84 |  |  | if (simParams->haveUniformGradientDirection2()) { | 
| 85 |  |  | std::vector<RealType> d2 = simParams->getUniformGradientDirection2(); | 
| 86 |  |  | if (d2.size() != 3) { | 
| 87 |  |  | sprintf(painCave.errMsg, | 
| 88 |  |  | "uniformGradientDirection2: Incorrect number of parameters\n" | 
| 89 |  |  | "\tspecified. There should be 3 parameters, but %lu were\n" | 
| 90 |  |  | "\tspecified.\n", d2.size()); | 
| 91 |  |  | painCave.isFatal = 1; | 
| 92 |  |  | simError(); | 
| 93 |  |  | } | 
| 94 |  |  | b_.x() = d2[0]; | 
| 95 |  |  | b_.y() = d2[1]; | 
| 96 |  |  | b_.z() = d2[2]; | 
| 97 |  |  |  | 
| 98 |  |  | b_.normalize(); | 
| 99 |  |  | haveB = true; | 
| 100 |  |  | } | 
| 101 |  |  |  | 
| 102 |  |  | if (simParams->haveUniformGradientStrength()) { | 
| 103 |  |  | g_ = simParams->getUniformGradientStrength(); | 
| 104 |  |  | haveG = true; | 
| 105 |  |  | } | 
| 106 |  |  |  | 
| 107 |  |  | if (haveA && haveB && haveG) { | 
| 108 |  |  | doUniformGradient = true; | 
| 109 |  |  | cpsi_ = dot(a_, b_); | 
| 110 |  |  |  | 
| 111 |  |  | Grad_(0,0) = 2.0 * (a_.x()*b_.x() - cpsi_ / 3.0); | 
| 112 |  |  | Grad_(0,1) = a_.x()*b_.y() + a_.y()*b_.x(); | 
| 113 |  |  | Grad_(0,2) = a_.x()*b_.z() + a_.z()*b_.x(); | 
| 114 | gezelter | 2026 | Grad_(1,0) = Grad_(0,1); | 
| 115 | gezelter | 2034 | Grad_(1,1) = 2.0 * (a_.y()*b_.y() - cpsi_ / 3.0); | 
| 116 |  |  | Grad_(1,2) = a_.y()*b_.z() + a_.z()*b_.y(); | 
| 117 | gezelter | 2026 | Grad_(2,0) = Grad_(0,2); | 
| 118 |  |  | Grad_(2,1) = Grad_(1,2); | 
| 119 | gezelter | 2034 | Grad_(2,2) = 2.0 * (a_.z()*b_.z() - cpsi_ / 3.0); | 
| 120 |  |  |  | 
| 121 |  |  | Grad_ *= g_ / 2.0; | 
| 122 |  |  | } else { | 
| 123 |  |  | if (!haveA) { | 
| 124 |  |  | sprintf(painCave.errMsg, | 
| 125 |  |  | "UniformGradient: uniformGradientDirection1 not specified.\n"); | 
| 126 |  |  | painCave.isFatal = 1; | 
| 127 |  |  | simError(); | 
| 128 |  |  | } | 
| 129 |  |  | if (!haveB) { | 
| 130 |  |  | sprintf(painCave.errMsg, | 
| 131 |  |  | "UniformGradient: uniformGradientDirection2 not specified.\n"); | 
| 132 |  |  | painCave.isFatal = 1; | 
| 133 |  |  | simError(); | 
| 134 |  |  | } | 
| 135 |  |  | if (!haveG) { | 
| 136 |  |  | sprintf(painCave.errMsg, | 
| 137 |  |  | "UniformGradient: uniformGradientStrength not specified.\n"); | 
| 138 |  |  | painCave.isFatal = 1; | 
| 139 |  |  | simError(); | 
| 140 |  |  | } | 
| 141 |  |  | } | 
| 142 |  |  |  | 
| 143 | gezelter | 2026 | int storageLayout_ = info_->getSnapshotManager()->getStorageLayout(); | 
| 144 |  |  | if (storageLayout_ & DataStorage::dslParticlePot) doParticlePot = true; | 
| 145 |  |  | initialized = true; | 
| 146 |  |  | } | 
| 147 |  |  |  | 
| 148 |  |  | void UniformGradient::applyPerturbation() { | 
| 149 |  |  |  | 
| 150 |  |  | if (!initialized) initialize(); | 
| 151 |  |  |  | 
| 152 |  |  | SimInfo::MoleculeIterator i; | 
| 153 |  |  | Molecule::AtomIterator  j; | 
| 154 |  |  | Molecule* mol; | 
| 155 |  |  | Atom* atom; | 
| 156 |  |  | AtomType* atype; | 
| 157 |  |  | potVec longRangePotential(0.0); | 
| 158 |  |  |  | 
| 159 |  |  | RealType C; | 
| 160 |  |  | Vector3d D; | 
| 161 |  |  | Mat3x3d Q; | 
| 162 |  |  |  | 
| 163 |  |  | RealType U; | 
| 164 |  |  | RealType fPot; | 
| 165 |  |  | Vector3d t; | 
| 166 |  |  | Vector3d f; | 
| 167 |  |  |  | 
| 168 |  |  | Vector3d r; | 
| 169 |  |  | Vector3d EF; | 
| 170 |  |  |  | 
| 171 |  |  | bool isCharge; | 
| 172 |  |  |  | 
| 173 |  |  | if (doUniformGradient) { | 
| 174 |  |  |  | 
| 175 |  |  | U = 0.0; | 
| 176 |  |  | fPot = 0.0; | 
| 177 |  |  |  | 
| 178 |  |  | for (mol = info_->beginMolecule(i); mol != NULL; | 
| 179 |  |  | mol = info_->nextMolecule(i)) { | 
| 180 |  |  |  | 
| 181 |  |  | for (atom = mol->beginAtom(j); atom != NULL; | 
| 182 |  |  | atom = mol->nextAtom(j)) { | 
| 183 |  |  |  | 
| 184 |  |  | isCharge = false; | 
| 185 |  |  | C = 0.0; | 
| 186 |  |  |  | 
| 187 |  |  | atype = atom->getAtomType(); | 
| 188 |  |  |  | 
| 189 |  |  | r = atom->getPos(); | 
| 190 |  |  | EF = Grad_ * r; | 
| 191 |  |  |  | 
| 192 |  |  | if (atype->isElectrostatic()) { | 
| 193 |  |  | atom->addElectricField(EF * PhysicalConstants::chargeFieldConvert); | 
| 194 |  |  | } | 
| 195 |  |  |  | 
| 196 |  |  | FixedChargeAdapter fca = FixedChargeAdapter(atype); | 
| 197 |  |  | if ( fca.isFixedCharge() ) { | 
| 198 |  |  | isCharge = true; | 
| 199 |  |  | C = fca.getCharge(); | 
| 200 |  |  | } | 
| 201 |  |  |  | 
| 202 |  |  | FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atype); | 
| 203 |  |  | if ( fqa.isFluctuatingCharge() ) { | 
| 204 |  |  | isCharge = true; | 
| 205 |  |  | C += atom->getFlucQPos(); | 
| 206 |  |  | atom->addFlucQFrc( dot(r, EF) | 
| 207 |  |  | * PhysicalConstants::chargeFieldConvert ); | 
| 208 |  |  | } | 
| 209 |  |  |  | 
| 210 |  |  | if (isCharge) { | 
| 211 |  |  | f = EF * C * PhysicalConstants::chargeFieldConvert; | 
| 212 |  |  | atom->addFrc(f); | 
| 213 |  |  |  | 
| 214 |  |  | U = -dot(r, f); | 
| 215 |  |  | if (doParticlePot) { | 
| 216 |  |  | atom->addParticlePot(U); | 
| 217 |  |  | } | 
| 218 |  |  | fPot += U; | 
| 219 |  |  | } | 
| 220 |  |  |  | 
| 221 |  |  | MultipoleAdapter ma = MultipoleAdapter(atype); | 
| 222 |  |  | if (ma.isDipole() ) { | 
| 223 |  |  | D = atom->getDipole() * PhysicalConstants::dipoleFieldConvert; | 
| 224 |  |  |  | 
| 225 |  |  | f = D * Grad_; | 
| 226 |  |  | atom->addFrc(f); | 
| 227 |  |  |  | 
| 228 |  |  | t = cross(D, EF); | 
| 229 |  |  | atom->addTrq(t); | 
| 230 |  |  |  | 
| 231 |  |  | U = -dot(D, EF); | 
| 232 |  |  | if (doParticlePot) { | 
| 233 |  |  | atom->addParticlePot(U); | 
| 234 |  |  | } | 
| 235 |  |  | fPot += U; | 
| 236 |  |  | } | 
| 237 |  |  |  | 
| 238 |  |  | if (ma.isQuadrupole() ) { | 
| 239 |  |  | Q = atom->getQuadrupole() * PhysicalConstants::dipoleFieldConvert; | 
| 240 |  |  |  | 
| 241 |  |  | t = 2.0 * mCross(Q, Grad_); | 
| 242 |  |  | atom->addTrq(t); | 
| 243 |  |  |  | 
| 244 |  |  | U = -doubleDot(Q, Grad_); | 
| 245 |  |  | if (doParticlePot) { | 
| 246 |  |  | atom->addParticlePot(U); | 
| 247 |  |  | } | 
| 248 |  |  | fPot += U; | 
| 249 |  |  | } | 
| 250 |  |  | } | 
| 251 |  |  | } | 
| 252 |  |  |  | 
| 253 |  |  | #ifdef IS_MPI | 
| 254 |  |  | MPI_Allreduce(MPI_IN_PLACE, &fPot, 1, MPI_REALTYPE, | 
| 255 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 256 |  |  | #endif | 
| 257 |  |  |  | 
| 258 |  |  | Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 259 |  |  | longRangePotential = snap->getLongRangePotentials(); | 
| 260 |  |  | longRangePotential[ELECTROSTATIC_FAMILY] += fPot; | 
| 261 |  |  | snap->setLongRangePotential(longRangePotential); | 
| 262 |  |  | } | 
| 263 |  |  | } | 
| 264 |  |  | } |