| 42 |
|
#include "primitives/Bend.hpp" |
| 43 |
|
|
| 44 |
|
namespace oopse { |
| 45 |
< |
|
| 45 |
> |
|
| 46 |
|
/**@todo still a lot left to improve*/ |
| 47 |
< |
void Bend::calcForce(double& angle) { |
| 47 |
> |
void Bend::calcForce(RealType& angle) { |
| 48 |
|
Vector3d pos1 = atom1_->getPos(); |
| 49 |
|
Vector3d pos2 = atom2_->getPos(); |
| 50 |
|
Vector3d pos3 = atom3_->getPos(); |
| 51 |
< |
|
| 51 |
> |
|
| 52 |
|
Vector3d r21 = pos1 - pos2; |
| 53 |
< |
double d21 = r21.length(); |
| 54 |
< |
|
| 55 |
< |
double d21inv = 1.0 / d21; |
| 56 |
< |
|
| 53 |
> |
RealType d21 = r21.length(); |
| 54 |
> |
|
| 55 |
> |
RealType d21inv = 1.0 / d21; |
| 56 |
> |
|
| 57 |
|
Vector3d r23 = pos3 - pos2; |
| 58 |
< |
double d23 = r23.length(); |
| 59 |
< |
|
| 60 |
< |
double d23inv = 1.0 / d23; |
| 61 |
< |
|
| 62 |
< |
double cosTheta = dot(r21, r23) / (d21 * d23); |
| 63 |
< |
|
| 58 |
> |
RealType d23 = r23.length(); |
| 59 |
> |
|
| 60 |
> |
RealType d23inv = 1.0 / d23; |
| 61 |
> |
|
| 62 |
> |
RealType cosTheta = dot(r21, r23) / (d21 * d23); |
| 63 |
> |
|
| 64 |
|
//check roundoff |
| 65 |
|
if (cosTheta > 1.0) { |
| 66 |
|
cosTheta = 1.0; |
| 67 |
|
} else if (cosTheta < -1.0) { |
| 68 |
|
cosTheta = -1.0; |
| 69 |
|
} |
| 70 |
+ |
|
| 71 |
+ |
RealType theta = acos(cosTheta); |
| 72 |
+ |
|
| 73 |
+ |
RealType dVdTheta; |
| 74 |
|
|
| 71 |
– |
double theta = acos(cosTheta); |
| 72 |
– |
|
| 73 |
– |
double dVdTheta; |
| 74 |
– |
|
| 75 |
|
bendType_->calcForce(theta, potential_, dVdTheta); |
| 76 |
< |
//std::cout << atom1_->getType() << "\t" << atom2_->getType() << "\t" << atom3_->getType() << "\t"; |
| 77 |
< |
//std::cout << "theta = " << theta/M_PI * 180.0 <<", potential = " << potential_ << std::endl; |
| 78 |
< |
|
| 79 |
< |
double sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
| 80 |
< |
|
| 76 |
> |
|
| 77 |
> |
RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
| 78 |
> |
|
| 79 |
|
if (fabs(sinTheta) < 1.0E-6) { |
| 80 |
|
sinTheta = 1.0E-6; |
| 81 |
|
} |
| 82 |
< |
|
| 83 |
< |
double commonFactor1 = dVdTheta / sinTheta * d21inv; |
| 84 |
< |
double commonFactor2 = dVdTheta / sinTheta * d23inv; |
| 85 |
< |
|
| 82 |
> |
|
| 83 |
> |
RealType commonFactor1 = dVdTheta / sinTheta * d21inv; |
| 84 |
> |
RealType commonFactor2 = dVdTheta / sinTheta * d23inv; |
| 85 |
> |
|
| 86 |
|
Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); |
| 87 |
|
Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); |
| 88 |
|
|
| 89 |
< |
//total force in current bend is zero |
| 89 |
> |
// Total force in current bend is zero |
| 90 |
|
Vector3d force2 = force1 + force3; |
| 91 |
|
force2 *= -1.0; |
| 92 |
< |
|
| 92 |
> |
|
| 93 |
|
atom1_->addFrc(force1); |
| 94 |
|
atom2_->addFrc(force2); |
| 95 |
|
atom3_->addFrc(force3); |
| 96 |
|
|
| 97 |
+ |
atom1_->addParticlePot(potential_); |
| 98 |
+ |
atom2_->addParticlePot(potential_); |
| 99 |
+ |
atom3_->addParticlePot(potential_); |
| 100 |
+ |
|
| 101 |
|
angle = theta /M_PI * 180.0; |
| 102 |
|
} |
| 103 |
|
|