| 1 |
gezelter |
507 |
/* |
| 2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
|
|
* |
| 4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
| 6 |
|
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
|
* that the following conditions are met: |
| 8 |
|
|
* |
| 9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
|
* |
| 12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
|
* documentation and/or other materials provided with the |
| 15 |
|
|
* distribution. |
| 16 |
|
|
* |
| 17 |
|
|
* This software is provided "AS IS," without a warranty of any |
| 18 |
|
|
* kind. All express or implied conditions, representations and |
| 19 |
|
|
* warranties, including any implied warranty of merchantability, |
| 20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
|
|
* be liable for any damages suffered by licensee as a result of |
| 23 |
|
|
* using, modifying or distributing the software or its |
| 24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
|
|
* damages, however caused and regardless of the theory of liability, |
| 28 |
|
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
|
* such damages. |
| 31 |
gezelter |
1390 |
* |
| 32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
|
|
* research, please cite the appropriate papers when you publish your |
| 34 |
|
|
* work. Good starting points are: |
| 35 |
|
|
* |
| 36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
gezelter |
246 |
*/ |
| 41 |
|
|
|
| 42 |
tim |
3 |
#include "primitives/DirectionalAtom.hpp" |
| 43 |
tim |
273 |
#include "utils/simError.h" |
| 44 |
gezelter |
1390 |
namespace OpenMD { |
| 45 |
gezelter |
1211 |
|
| 46 |
gezelter |
507 |
DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType) |
| 47 |
|
|
: Atom(dAtomType){ |
| 48 |
gezelter |
1211 |
objType_= otDAtom; |
| 49 |
|
|
if (dAtomType->isMultipole()) { |
| 50 |
|
|
electroBodyFrame_ = dAtomType->getElectroBodyFrame(); |
| 51 |
|
|
} |
| 52 |
|
|
|
| 53 |
|
|
// Check if one of the diagonal inertia tensor of this directional |
| 54 |
|
|
// atom is zero: |
| 55 |
|
|
int nLinearAxis = 0; |
| 56 |
|
|
Mat3x3d inertiaTensor = getI(); |
| 57 |
|
|
for (int i = 0; i < 3; i++) { |
| 58 |
gezelter |
1390 |
if (fabs(inertiaTensor(i, i)) < OpenMD::epsilon) { |
| 59 |
gezelter |
1211 |
linear_ = true; |
| 60 |
|
|
linearAxis_ = i; |
| 61 |
|
|
++ nLinearAxis; |
| 62 |
gezelter |
507 |
} |
| 63 |
tim |
273 |
} |
| 64 |
gezelter |
2 |
|
| 65 |
gezelter |
1211 |
if (nLinearAxis > 1) { |
| 66 |
|
|
sprintf( painCave.errMsg, |
| 67 |
|
|
"Directional Atom warning.\n" |
| 68 |
gezelter |
1390 |
"\tOpenMD found more than one axis in this directional atom with a vanishing \n" |
| 69 |
gezelter |
1211 |
"\tmoment of inertia."); |
| 70 |
|
|
painCave.isFatal = 0; |
| 71 |
|
|
simError(); |
| 72 |
|
|
} |
| 73 |
|
|
} |
| 74 |
|
|
|
| 75 |
gezelter |
507 |
Mat3x3d DirectionalAtom::getI() { |
| 76 |
gezelter |
246 |
return static_cast<DirectionalAtomType*>(getAtomType())->getI(); |
| 77 |
gezelter |
507 |
} |
| 78 |
gezelter |
1211 |
|
| 79 |
gezelter |
507 |
void DirectionalAtom::setPrevA(const RotMat3x3d& a) { |
| 80 |
gezelter |
246 |
((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; |
| 81 |
|
|
if (atomType_->isMultipole()) { |
| 82 |
gezelter |
507 |
((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
| 83 |
gezelter |
205 |
} |
| 84 |
gezelter |
507 |
} |
| 85 |
gezelter |
1211 |
|
| 86 |
|
|
|
| 87 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a) { |
| 88 |
gezelter |
246 |
((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; |
| 89 |
gezelter |
1211 |
|
| 90 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
| 91 |
gezelter |
507 |
((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
| 92 |
gezelter |
2 |
} |
| 93 |
gezelter |
507 |
} |
| 94 |
gezelter |
1211 |
|
| 95 |
gezelter |
507 |
void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { |
| 96 |
gezelter |
246 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; |
| 97 |
gezelter |
1211 |
|
| 98 |
gezelter |
246 |
if (atomType_->isMultipole()) { |
| 99 |
gezelter |
507 |
((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; |
| 100 |
gezelter |
2 |
} |
| 101 |
gezelter |
507 |
} |
| 102 |
gezelter |
1211 |
|
| 103 |
gezelter |
507 |
void DirectionalAtom::rotateBy(const RotMat3x3d& m) { |
| 104 |
gezelter |
246 |
setA(m *getA()); |
| 105 |
gezelter |
507 |
} |
| 106 |
gezelter |
1211 |
|
| 107 |
tim |
963 |
std::vector<RealType> DirectionalAtom::getGrad() { |
| 108 |
|
|
std::vector<RealType> grad(6, 0.0); |
| 109 |
gezelter |
246 |
Vector3d force; |
| 110 |
|
|
Vector3d torque; |
| 111 |
|
|
Vector3d myEuler; |
| 112 |
tim |
963 |
RealType phi, theta, psi; |
| 113 |
|
|
RealType cphi, sphi, ctheta, stheta; |
| 114 |
gezelter |
246 |
Vector3d ephi; |
| 115 |
|
|
Vector3d etheta; |
| 116 |
|
|
Vector3d epsi; |
| 117 |
gezelter |
1211 |
|
| 118 |
gezelter |
246 |
force = getFrc(); |
| 119 |
|
|
torque =getTrq(); |
| 120 |
|
|
myEuler = getA().toEulerAngles(); |
| 121 |
gezelter |
1211 |
|
| 122 |
gezelter |
246 |
phi = myEuler[0]; |
| 123 |
|
|
theta = myEuler[1]; |
| 124 |
|
|
psi = myEuler[2]; |
| 125 |
gezelter |
1211 |
|
| 126 |
gezelter |
246 |
cphi = cos(phi); |
| 127 |
|
|
sphi = sin(phi); |
| 128 |
|
|
ctheta = cos(theta); |
| 129 |
|
|
stheta = sin(theta); |
| 130 |
gezelter |
1211 |
|
| 131 |
gezelter |
246 |
// get unit vectors along the phi, theta and psi rotation axes |
| 132 |
gezelter |
1211 |
|
| 133 |
gezelter |
246 |
ephi[0] = 0.0; |
| 134 |
|
|
ephi[1] = 0.0; |
| 135 |
|
|
ephi[2] = 1.0; |
| 136 |
gezelter |
1211 |
|
| 137 |
gezelter |
1424 |
//etheta[0] = -sphi; |
| 138 |
|
|
//etheta[1] = cphi; |
| 139 |
|
|
//etheta[2] = 0.0; |
| 140 |
gezelter |
1211 |
|
| 141 |
gezelter |
1424 |
etheta[0] = cphi; |
| 142 |
|
|
etheta[1] = sphi; |
| 143 |
|
|
etheta[2] = 0.0; |
| 144 |
|
|
|
| 145 |
gezelter |
246 |
epsi[0] = stheta * cphi; |
| 146 |
|
|
epsi[1] = stheta * sphi; |
| 147 |
|
|
epsi[2] = ctheta; |
| 148 |
gezelter |
1211 |
|
| 149 |
gezelter |
246 |
//gradient is equal to -force |
| 150 |
|
|
for (int j = 0 ; j<3; j++) |
| 151 |
gezelter |
507 |
grad[j] = -force[j]; |
| 152 |
gezelter |
1211 |
|
| 153 |
|
|
for (int j = 0; j < 3; j++ ) { |
| 154 |
tim |
642 |
grad[3] -= torque[j]*ephi[j]; |
| 155 |
|
|
grad[4] -= torque[j]*etheta[j]; |
| 156 |
gezelter |
1211 |
grad[5] -= torque[j]*epsi[j]; |
| 157 |
gezelter |
246 |
} |
| 158 |
gezelter |
2 |
|
| 159 |
gezelter |
246 |
return grad; |
| 160 |
gezelter |
507 |
} |
| 161 |
gezelter |
1211 |
|
| 162 |
gezelter |
507 |
void DirectionalAtom::accept(BaseVisitor* v) { |
| 163 |
gezelter |
246 |
v->visit(this); |
| 164 |
gezelter |
1211 |
} |
| 165 |
gezelter |
2 |
} |
| 166 |
|
|
|