| 1 | 
/* | 
| 2 | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
 * | 
| 4 | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
 * that the following conditions are met: | 
| 8 | 
 * | 
| 9 | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
 *    the article in which the program was described (Matthew | 
| 13 | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
 * | 
| 18 | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
 * | 
| 21 | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
 *    documentation and/or other materials provided with the | 
| 24 | 
 *    distribution. | 
| 25 | 
 * | 
| 26 | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
 * using, modifying or distributing the software or its | 
| 33 | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
 * such damages. | 
| 40 | 
 */ | 
| 41 | 
  | 
| 42 | 
#include "primitives/DirectionalAtom.hpp" | 
| 43 | 
#include "utils/simError.h" | 
| 44 | 
namespace oopse { | 
| 45 | 
   | 
| 46 | 
  DirectionalAtom::DirectionalAtom(DirectionalAtomType* dAtomType)  | 
| 47 | 
    : Atom(dAtomType){ | 
| 48 | 
    objType_= otDAtom; | 
| 49 | 
    if (dAtomType->isMultipole()) { | 
| 50 | 
      electroBodyFrame_ = dAtomType->getElectroBodyFrame(); | 
| 51 | 
    } | 
| 52 | 
     | 
| 53 | 
    // Check if one of the diagonal inertia tensor of this directional | 
| 54 | 
    // atom is zero: | 
| 55 | 
    int nLinearAxis = 0; | 
| 56 | 
    Mat3x3d inertiaTensor = getI(); | 
| 57 | 
    for (int i = 0; i < 3; i++) {     | 
| 58 | 
      if (fabs(inertiaTensor(i, i)) < oopse::epsilon) { | 
| 59 | 
        linear_ = true; | 
| 60 | 
        linearAxis_ = i; | 
| 61 | 
        ++ nLinearAxis; | 
| 62 | 
      } | 
| 63 | 
    } | 
| 64 | 
 | 
| 65 | 
    if (nLinearAxis > 1) { | 
| 66 | 
      sprintf( painCave.errMsg, | 
| 67 | 
               "Directional Atom warning.\n" | 
| 68 | 
               "\tOOPSE found more than one axis in this directional atom with a vanishing \n" | 
| 69 | 
               "\tmoment of inertia."); | 
| 70 | 
      painCave.isFatal = 0; | 
| 71 | 
      simError(); | 
| 72 | 
    }     | 
| 73 | 
  } | 
| 74 | 
   | 
| 75 | 
  Mat3x3d DirectionalAtom::getI() { | 
| 76 | 
    return static_cast<DirectionalAtomType*>(getAtomType())->getI(); | 
| 77 | 
  }     | 
| 78 | 
   | 
| 79 | 
  void DirectionalAtom::setPrevA(const RotMat3x3d& a) { | 
| 80 | 
    ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 81 | 
    if (atomType_->isMultipole()) { | 
| 82 | 
      ((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; | 
| 83 | 
    } | 
| 84 | 
  } | 
| 85 | 
   | 
| 86 | 
   | 
| 87 | 
  void DirectionalAtom::setA(const RotMat3x3d& a) { | 
| 88 | 
    ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 89 | 
     | 
| 90 | 
    if (atomType_->isMultipole()) { | 
| 91 | 
      ((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_; | 
| 92 | 
    } | 
| 93 | 
  }     | 
| 94 | 
   | 
| 95 | 
  void DirectionalAtom::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 96 | 
    ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 97 | 
     | 
| 98 | 
    if (atomType_->isMultipole()) { | 
| 99 | 
      ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * electroBodyFrame_;     | 
| 100 | 
    } | 
| 101 | 
  }     | 
| 102 | 
   | 
| 103 | 
  void DirectionalAtom::rotateBy(const RotMat3x3d& m) { | 
| 104 | 
    setA(m *getA()); | 
| 105 | 
  } | 
| 106 | 
   | 
| 107 | 
  std::vector<RealType> DirectionalAtom::getGrad() { | 
| 108 | 
    std::vector<RealType> grad(6, 0.0); | 
| 109 | 
    Vector3d force; | 
| 110 | 
    Vector3d torque; | 
| 111 | 
    Vector3d myEuler; | 
| 112 | 
    RealType phi, theta, psi; | 
| 113 | 
    RealType cphi, sphi, ctheta, stheta; | 
| 114 | 
    Vector3d ephi; | 
| 115 | 
    Vector3d etheta; | 
| 116 | 
    Vector3d epsi; | 
| 117 | 
     | 
| 118 | 
    force = getFrc(); | 
| 119 | 
    torque =getTrq(); | 
| 120 | 
    myEuler = getA().toEulerAngles(); | 
| 121 | 
     | 
| 122 | 
    phi = myEuler[0]; | 
| 123 | 
    theta = myEuler[1]; | 
| 124 | 
    psi = myEuler[2]; | 
| 125 | 
     | 
| 126 | 
    cphi = cos(phi); | 
| 127 | 
    sphi = sin(phi); | 
| 128 | 
    ctheta = cos(theta); | 
| 129 | 
    stheta = sin(theta); | 
| 130 | 
     | 
| 131 | 
    // get unit vectors along the phi, theta and psi rotation axes | 
| 132 | 
     | 
| 133 | 
    ephi[0] = 0.0; | 
| 134 | 
    ephi[1] = 0.0; | 
| 135 | 
    ephi[2] = 1.0; | 
| 136 | 
     | 
| 137 | 
    etheta[0] = cphi; | 
| 138 | 
    etheta[1] = sphi; | 
| 139 | 
    etheta[2] = 0.0; | 
| 140 | 
     | 
| 141 | 
    epsi[0] = stheta * cphi; | 
| 142 | 
    epsi[1] = stheta * sphi; | 
| 143 | 
    epsi[2] = ctheta; | 
| 144 | 
     | 
| 145 | 
    //gradient is equal to -force | 
| 146 | 
    for (int j = 0 ; j<3; j++) | 
| 147 | 
      grad[j] = -force[j]; | 
| 148 | 
     | 
| 149 | 
    for (int j = 0; j < 3; j++ ) {       | 
| 150 | 
      grad[3] -= torque[j]*ephi[j]; | 
| 151 | 
      grad[4] -= torque[j]*etheta[j]; | 
| 152 | 
      grad[5] -= torque[j]*epsi[j];       | 
| 153 | 
    } | 
| 154 | 
     | 
| 155 | 
    return grad; | 
| 156 | 
  }     | 
| 157 | 
   | 
| 158 | 
  void DirectionalAtom::accept(BaseVisitor* v) { | 
| 159 | 
    v->visit(this); | 
| 160 | 
  } | 
| 161 | 
} | 
| 162 | 
 |