| 1 | gezelter | 507 | /* | 
| 2 | gezelter | 246 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 246 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 246 | */ | 
| 42 |  |  |  | 
| 43 | gezelter | 1782 | #include "config.h" | 
| 44 |  |  | #include <cmath> | 
| 45 | gezelter | 246 | #include "primitives/GhostBend.hpp" | 
| 46 |  |  | #include "primitives/DirectionalAtom.hpp" | 
| 47 | gezelter | 1390 | namespace OpenMD { | 
| 48 | gezelter | 2 |  | 
| 49 | gezelter | 507 | /**@todo still a lot left to improve*/ | 
| 50 | gezelter | 1782 | void GhostBend::calcForce(RealType& angle, bool doParticlePot) { | 
| 51 | gezelter | 1953 | DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atoms_[1]); | 
| 52 | gezelter | 2 |  | 
| 53 | gezelter | 1953 | Vector3d pos1 = atoms_[0]->getPos(); | 
| 54 | gezelter | 246 | Vector3d pos2 = ghostAtom->getPos(); | 
| 55 | gezelter | 1459 |  | 
| 56 |  |  | Vector3d r21 = pos1 - pos2; | 
| 57 |  |  | RealType d21 = r21.length(); | 
| 58 | gezelter | 1211 |  | 
| 59 | gezelter | 1459 | RealType d21inv = 1.0 / d21; | 
| 60 | gezelter | 1443 |  | 
| 61 | gezelter | 1459 | // we need the transpose of A to get the lab fixed vector: | 
| 62 |  |  | Vector3d r23 = ghostAtom->getA().transpose().getColumn(2); | 
| 63 |  |  | RealType d23 = r23.length(); | 
| 64 | gezelter | 1211 |  | 
| 65 | gezelter | 1459 | RealType d23inv = 1.0 / d23; | 
| 66 | gezelter | 1211 |  | 
| 67 | gezelter | 1459 | RealType cosTheta = dot(r21, r23) / (d21 * d23); | 
| 68 |  |  |  | 
| 69 | gezelter | 246 | //check roundoff | 
| 70 |  |  | if (cosTheta > 1.0) { | 
| 71 | gezelter | 507 | cosTheta = 1.0; | 
| 72 | gezelter | 246 | } else if (cosTheta < -1.0) { | 
| 73 | gezelter | 507 | cosTheta = -1.0; | 
| 74 | gezelter | 246 | } | 
| 75 | gezelter | 1211 |  | 
| 76 | tim | 963 | RealType theta = acos(cosTheta); | 
| 77 | gezelter | 1459 |  | 
| 78 |  |  | RealType dVdTheta; | 
| 79 | gezelter | 1211 |  | 
| 80 | gezelter | 1459 | bendType_->calcForce(theta, potential_, dVdTheta); | 
| 81 | gezelter | 1211 |  | 
| 82 | tim | 963 | RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 83 | gezelter | 1211 |  | 
| 84 | gezelter | 1459 | if (fabs(sinTheta) < 1.0E-6) { | 
| 85 |  |  | sinTheta = 1.0E-6; | 
| 86 | gezelter | 246 | } | 
| 87 | gezelter | 1211 |  | 
| 88 | gezelter | 1459 | RealType commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 89 |  |  | RealType commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 90 | gezelter | 1211 |  | 
| 91 | gezelter | 1459 | Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); | 
| 92 |  |  | Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); | 
| 93 |  |  |  | 
| 94 |  |  | // Total force in current bend is zero | 
| 95 |  |  |  | 
| 96 | gezelter | 1953 | atoms_[0]->addFrc(force1); | 
| 97 | gezelter | 246 | ghostAtom->addFrc(-force1); | 
| 98 | gezelter | 1309 |  | 
| 99 | gezelter | 1459 | ghostAtom->addTrq( cross(r23, force3) ); | 
| 100 | gezelter | 1782 | if(doParticlePot) { | 
| 101 | gezelter | 1953 | atoms_[0]->addParticlePot(potential_); | 
| 102 | gezelter | 1782 | ghostAtom->addParticlePot(potential_); | 
| 103 |  |  | } | 
| 104 | gezelter | 1459 |  | 
| 105 | tim | 749 | angle = theta /M_PI * 180.0; | 
| 106 | gezelter | 1459 |  | 
| 107 | gezelter | 1211 | } | 
| 108 | gezelter | 1390 | } //end namespace OpenMD | 
| 109 | gezelter | 2 |  |