| 1 |
+ |
/* |
| 2 |
+ |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
+ |
* |
| 4 |
+ |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
+ |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
+ |
* redistribute this software in source and binary code form, provided |
| 7 |
+ |
* that the following conditions are met: |
| 8 |
+ |
* |
| 9 |
+ |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
+ |
* publication of scientific results based in part on use of the |
| 11 |
+ |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
+ |
* the article in which the program was described (Matthew |
| 13 |
+ |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
+ |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
+ |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
+ |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
+ |
* |
| 18 |
+ |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
+ |
* notice, this list of conditions and the following disclaimer. |
| 20 |
+ |
* |
| 21 |
+ |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
+ |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
+ |
* documentation and/or other materials provided with the |
| 24 |
+ |
* distribution. |
| 25 |
+ |
* |
| 26 |
+ |
* This software is provided "AS IS," without a warranty of any |
| 27 |
+ |
* kind. All express or implied conditions, representations and |
| 28 |
+ |
* warranties, including any implied warranty of merchantability, |
| 29 |
+ |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
+ |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
+ |
* be liable for any damages suffered by licensee as a result of |
| 32 |
+ |
* using, modifying or distributing the software or its |
| 33 |
+ |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
+ |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
+ |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
+ |
* damages, however caused and regardless of the theory of liability, |
| 37 |
+ |
* arising out of the use of or inability to use software, even if the |
| 38 |
+ |
* University of Notre Dame has been advised of the possibility of |
| 39 |
+ |
* such damages. |
| 40 |
+ |
*/ |
| 41 |
+ |
|
| 42 |
+ |
#include "primitives/GhostBend.hpp" |
| 43 |
+ |
#include "primitives/DirectionalAtom.hpp" |
| 44 |
+ |
namespace oopse { |
| 45 |
|
|
| 46 |
< |
#include <math.h> |
| 47 |
< |
#include <iostream> |
| 48 |
< |
#include <stdlib.h> |
| 5 |
< |
|
| 6 |
< |
#include "utils/simError.h" |
| 7 |
< |
#include "primitives/SRI.hpp" |
| 8 |
< |
#include "primitives/Atom.hpp" |
| 9 |
< |
|
| 10 |
< |
|
| 11 |
< |
|
| 12 |
< |
GhostBend::GhostBend( Atom &a, Atom &b ){ |
| 13 |
< |
|
| 14 |
< |
c_p_a = &a; |
| 15 |
< |
|
| 16 |
< |
if( !b.isDirectional() ){ |
| 46 |
> |
/**@todo still a lot left to improve*/ |
| 47 |
> |
void GhostBend::calcForce(RealType& angle) { |
| 48 |
> |
DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom2_); |
| 49 |
|
|
| 50 |
< |
// if atom b is not directional, then bad things will happen |
| 50 |
> |
Vector3d pos1 = atom1_->getPos(); |
| 51 |
> |
Vector3d pos2 = ghostAtom->getPos(); |
| 52 |
|
|
| 53 |
< |
sprintf( painCave.errMsg, |
| 54 |
< |
" Ghost Bend error: Atom # %d of type \"%s\" is not " |
| 55 |
< |
"directional.\n", |
| 56 |
< |
b.getIndex(), |
| 57 |
< |
b.getType() ); |
| 58 |
< |
painCave.isFatal = 1; |
| 59 |
< |
simError(); |
| 60 |
< |
} |
| 53 |
> |
Vector3d r12 = pos1 - pos2; |
| 54 |
> |
RealType d12 = r12.length(); |
| 55 |
> |
|
| 56 |
> |
RealType d12inv = 1.0 / d12; |
| 57 |
> |
|
| 58 |
> |
Vector3d r32 = ghostAtom->getElectroFrame().getColumn(2); |
| 59 |
> |
RealType d32 = r32.length(); |
| 60 |
> |
|
| 61 |
> |
RealType d32inv = 1.0 / d32; |
| 62 |
> |
|
| 63 |
> |
RealType cosTheta = dot(r12, r32) / (d12 * d32); |
| 64 |
> |
|
| 65 |
> |
//check roundoff |
| 66 |
> |
if (cosTheta > 1.0) { |
| 67 |
> |
cosTheta = 1.0; |
| 68 |
> |
} else if (cosTheta < -1.0) { |
| 69 |
> |
cosTheta = -1.0; |
| 70 |
> |
} |
| 71 |
> |
|
| 72 |
> |
RealType theta = acos(cosTheta); |
| 73 |
> |
|
| 74 |
> |
RealType firstDerivative; |
| 75 |
> |
|
| 76 |
> |
bendType_->calcForce(theta, firstDerivative, potential_); |
| 77 |
> |
|
| 78 |
> |
RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); |
| 79 |
> |
|
| 80 |
> |
if (fabs(sinTheta) < 1.0E-12) { |
| 81 |
> |
sinTheta = 1.0E-12; |
| 82 |
> |
} |
| 83 |
> |
|
| 84 |
> |
RealType commonFactor1 = -firstDerivative / sinTheta * d12inv; |
| 85 |
> |
RealType commonFactor2 = -firstDerivative / sinTheta * d32inv; |
| 86 |
> |
|
| 87 |
> |
Vector3d force1 = commonFactor1*(r12*(d12inv*cosTheta) - r32*d32inv); |
| 88 |
> |
Vector3d force3 = commonFactor2*(r32*(d32inv*cosTheta) - r12*d12inv); |
| 89 |
> |
atom1_->addFrc(force1); |
| 90 |
> |
ghostAtom->addFrc(-force1); |
| 91 |
> |
/**@todo test correctness */ |
| 92 |
> |
ghostAtom->addTrq(cross(r32, force3) ); |
| 93 |
> |
|
| 94 |
> |
angle = theta /M_PI * 180.0; |
| 95 |
> |
|
| 96 |
> |
} |
| 97 |
> |
} //end namespace oopse |
| 98 |
|
|
| 29 |
– |
atomB = ( DirectionalAtom* ) &b; |
| 30 |
– |
|
| 31 |
– |
c_potential_E = 0.0; |
| 32 |
– |
|
| 33 |
– |
} |
| 34 |
– |
|
| 35 |
– |
|
| 36 |
– |
void GhostBend::calc_forces(){ |
| 37 |
– |
|
| 38 |
– |
double dx,dy,dz,gx,gy,gz,dx2,dy2,dz2,gx2,gy2,gz2; |
| 39 |
– |
double rij2, rkj2, riji2, rkji2, dot, denom, cosang, angl; |
| 40 |
– |
|
| 41 |
– |
double sina2, sinai; |
| 42 |
– |
|
| 43 |
– |
double comf2, comf3, comf4; |
| 44 |
– |
double dcsidx, dcsidy, dcsidz, dcskdx, dcskdy, dcskdz; |
| 45 |
– |
// double dcsjdx, dcsjdy, dcsjdz; |
| 46 |
– |
double dadxi, dadyi, dadzi; |
| 47 |
– |
double dadxk, dadyk, dadzk;//, dadxj, dadyj, dadzj; |
| 48 |
– |
double daxi, dayi, dazi, daxk, dayk, dazk, daxj, dayj, dazj; |
| 49 |
– |
double u[3]; |
| 50 |
– |
|
| 51 |
– |
double aR[3], bR[3]; |
| 52 |
– |
double aF[3], bF[3], bTrq[3]; |
| 53 |
– |
|
| 54 |
– |
c_p_a->getPos( aR ); |
| 55 |
– |
atomB->getPos( bR ); |
| 56 |
– |
|
| 57 |
– |
|
| 58 |
– |
dx = aR[0] - bR[0]; |
| 59 |
– |
dy = aR[1] - bR[1]; |
| 60 |
– |
dz = aR[2] - bR[2]; |
| 61 |
– |
|
| 62 |
– |
atomB->getU(u); |
| 63 |
– |
|
| 64 |
– |
gx = u[0]; |
| 65 |
– |
gy = u[1]; |
| 66 |
– |
gz = u[2]; |
| 67 |
– |
|
| 68 |
– |
dx2 = dx * dx; |
| 69 |
– |
dy2 = dy * dy; |
| 70 |
– |
dz2 = dz * dz; |
| 71 |
– |
|
| 72 |
– |
gx2 = gx * gx; |
| 73 |
– |
gy2 = gy * gy; |
| 74 |
– |
gz2 = gz * gz; |
| 75 |
– |
|
| 76 |
– |
rij2 = dx2 + dy2 + dz2; |
| 77 |
– |
rkj2 = gx2 + gy2 + gz2; |
| 78 |
– |
|
| 79 |
– |
riji2 = 1.0 / rij2; |
| 80 |
– |
rkji2 = 1.0 / rkj2; |
| 81 |
– |
|
| 82 |
– |
dot = dx * gx + dy * gy + dz * gz; |
| 83 |
– |
denom = sqrt((riji2 * rkji2)); |
| 84 |
– |
cosang = dot * denom; |
| 85 |
– |
|
| 86 |
– |
if(cosang > 1.0)cosang = 1.0; |
| 87 |
– |
if(cosang < -1.0) cosang = -1.0; |
| 88 |
– |
|
| 89 |
– |
angl = acos(cosang); |
| 90 |
– |
angl = angl * 180.0 / M_PI; |
| 91 |
– |
|
| 92 |
– |
sina2 = 1.0 - cosang*cosang; |
| 93 |
– |
if(fabs(sina2) < 1.0E-12 ) sina2 = 1.0E-12; |
| 94 |
– |
sinai = 1.0 / sqrt(sina2); |
| 95 |
– |
|
| 96 |
– |
comf2 = cosang * riji2; |
| 97 |
– |
comf3 = cosang * rkji2; |
| 98 |
– |
comf4 = bend_force(angl); |
| 99 |
– |
|
| 100 |
– |
dcsidx = gx*denom - comf2*dx; |
| 101 |
– |
dcsidy = gy*denom - comf2*dy; |
| 102 |
– |
dcsidz = gz*denom - comf2*dz; |
| 103 |
– |
|
| 104 |
– |
dcskdx = dx*denom - comf3*gx; |
| 105 |
– |
dcskdy = dy*denom - comf3*gy; |
| 106 |
– |
dcskdz = dz*denom - comf3*gz; |
| 107 |
– |
|
| 108 |
– |
// dcsjdx = -dcsidx - dcskdx; |
| 109 |
– |
// dcsjdy = -dcsidy - dcskdy; |
| 110 |
– |
// dcsjdz = -dcsidz - dcskdz; |
| 111 |
– |
|
| 112 |
– |
dadxi = -sinai*dcsidx; |
| 113 |
– |
dadyi = -sinai*dcsidy; |
| 114 |
– |
dadzi = -sinai*dcsidz; |
| 115 |
– |
|
| 116 |
– |
dadxk = -sinai*dcskdx; |
| 117 |
– |
dadyk = -sinai*dcskdy; |
| 118 |
– |
dadzk = -sinai*dcskdz; |
| 119 |
– |
|
| 120 |
– |
// dadxj = -dadxi - dadxk; |
| 121 |
– |
// dadyj = -dadyi - dadyk; |
| 122 |
– |
// dadzj = -dadzi - dadzk; |
| 123 |
– |
|
| 124 |
– |
daxi = comf4*dadxi; |
| 125 |
– |
dayi = comf4*dadyi; |
| 126 |
– |
dazi = comf4*dadzi; |
| 127 |
– |
|
| 128 |
– |
daxk = comf4*dadxk; |
| 129 |
– |
dayk = comf4*dadyk; |
| 130 |
– |
dazk = comf4*dadzk; |
| 131 |
– |
|
| 132 |
– |
daxj = -daxi - daxk; |
| 133 |
– |
dayj = -dayi - dayk; |
| 134 |
– |
dazj = -dazi - dazk; |
| 135 |
– |
|
| 136 |
– |
aF[0] = daxi; |
| 137 |
– |
aF[1] = dayi; |
| 138 |
– |
aF[2] = dazi; |
| 139 |
– |
|
| 140 |
– |
bF[0] = daxj + daxk; |
| 141 |
– |
bF[1] = dayj + dayk; |
| 142 |
– |
bF[2] = dazj + dazk; |
| 143 |
– |
|
| 144 |
– |
bTrq[0] = gy*dazk - gz*dayk; |
| 145 |
– |
bTrq[1] = gz*daxk - gx*dazk; |
| 146 |
– |
bTrq[2] = gx*dayk - gy*daxk; |
| 147 |
– |
|
| 148 |
– |
|
| 149 |
– |
c_p_a->addFrc( aF ); |
| 150 |
– |
atomB->addFrc( bF ); |
| 151 |
– |
atomB->addTrq( bTrq ); |
| 152 |
– |
|
| 153 |
– |
return; |
| 154 |
– |
} |
| 155 |
– |
|
| 156 |
– |
void GhostBend::setConstants( double the_c1, double the_c2, double the_c3, |
| 157 |
– |
double the_Th0 ){ |
| 158 |
– |
c1 = the_c1; |
| 159 |
– |
c2 = the_c2; |
| 160 |
– |
c3 = the_c3; |
| 161 |
– |
theta0 = the_Th0; |
| 162 |
– |
} |
| 163 |
– |
|
| 164 |
– |
|
| 165 |
– |
double GhostBend::bend_force( double theta ){ |
| 166 |
– |
|
| 167 |
– |
double dt, dt2; |
| 168 |
– |
double force; |
| 169 |
– |
|
| 170 |
– |
dt = ( theta - theta0 ) * M_PI / 180.0; |
| 171 |
– |
dt2 = dt * dt; |
| 172 |
– |
|
| 173 |
– |
c_potential_E = ( c1 * dt2 ) + ( c2 * dt ) + c3; |
| 174 |
– |
force = -( ( 2.0 * c1 * dt ) + c2 ); |
| 175 |
– |
return force; |
| 176 |
– |
} |