| 49 |  |  | 
| 50 |  | Vector3d pos1 = atom1_->getPos(); | 
| 51 |  | Vector3d pos2 = ghostAtom->getPos(); | 
| 52 | + |  | 
| 53 | + | Vector3d r21 = pos1 - pos2; | 
| 54 | + | RealType d21 = r21.length(); | 
| 55 |  |  | 
| 56 | < | Vector3d r12 = pos1 - pos2; | 
| 54 | < | RealType d12 = r12.length(); | 
| 55 | < |  | 
| 56 | < | RealType d12inv = 1.0 / d12; | 
| 56 | > | RealType d21inv = 1.0 / d21; | 
| 57 |  |  | 
| 58 | < | Vector3d r32 = ghostAtom->getA().getColumn(2); | 
| 59 | < | RealType d32 = r32.length(); | 
| 58 | > | // we need the transpose of A to get the lab fixed vector: | 
| 59 | > | Vector3d r23 = ghostAtom->getA().transpose().getColumn(2); | 
| 60 | > | RealType d23 = r23.length(); | 
| 61 |  |  | 
| 62 | < | RealType d32inv = 1.0 / d32; | 
| 62 | > | RealType d23inv = 1.0 / d23; | 
| 63 |  |  | 
| 64 | < | RealType cosTheta = dot(r12, r32) / (d12 * d32); | 
| 65 | < |  | 
| 64 | > | RealType cosTheta = dot(r21, r23) / (d21 * d23); | 
| 65 | > |  | 
| 66 |  | //check roundoff | 
| 67 |  | if (cosTheta > 1.0) { | 
| 68 |  | cosTheta = 1.0; | 
| 71 |  | } | 
| 72 |  |  | 
| 73 |  | RealType theta = acos(cosTheta); | 
| 74 | + |  | 
| 75 | + | RealType dVdTheta; | 
| 76 |  |  | 
| 77 | < | RealType firstDerivative; | 
| 77 | > | bendType_->calcForce(theta, potential_, dVdTheta); | 
| 78 |  |  | 
| 76 | – | bendType_->calcForce(theta, potential_, firstDerivative); | 
| 77 | – |  | 
| 79 |  | RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 80 |  |  | 
| 81 | < | if (fabs(sinTheta) < 1.0E-12) { | 
| 82 | < | sinTheta = 1.0E-12; | 
| 81 | > | if (fabs(sinTheta) < 1.0E-6) { | 
| 82 | > | sinTheta = 1.0E-6; | 
| 83 |  | } | 
| 84 |  |  | 
| 85 | < | RealType commonFactor1 = -firstDerivative / sinTheta * d12inv; | 
| 86 | < | RealType commonFactor2 = -firstDerivative / sinTheta * d32inv; | 
| 85 | > | RealType commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 86 | > | RealType commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 87 |  |  | 
| 88 | < | Vector3d force1 = commonFactor1*(r12*(d12inv*cosTheta) - r32*d32inv); | 
| 89 | < | Vector3d force3 = commonFactor2*(r32*(d32inv*cosTheta) - r12*d12inv); | 
| 88 | > | Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); | 
| 89 | > | Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); | 
| 90 | > |  | 
| 91 | > | // Total force in current bend is zero | 
| 92 | > |  | 
| 93 |  | atom1_->addFrc(force1); | 
| 94 |  | ghostAtom->addFrc(-force1); | 
| 91 | – | /**@todo test correctness */ | 
| 92 | – | ghostAtom->addTrq(cross(r32, force3) ); | 
| 95 |  |  | 
| 96 | + | ghostAtom->addTrq( cross(r23, force3) ); | 
| 97 | + |  | 
| 98 |  | atom1_->addParticlePot(potential_); | 
| 99 |  | ghostAtom->addParticlePot(potential_); | 
| 100 |  |  | 
| 101 |  | angle = theta /M_PI * 180.0; | 
| 102 | < |  | 
| 102 | > |  | 
| 103 |  | } | 
| 104 |  | } //end namespace OpenMD | 
| 105 |  |  |