| 1 | 
+ | 
/* | 
| 2 | 
+ | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
+ | 
 * | 
| 4 | 
+ | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
+ | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
+ | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
+ | 
 * that the following conditions are met: | 
| 8 | 
+ | 
 * | 
| 9 | 
+ | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
+ | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
+ | 
 * | 
| 12 | 
+ | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
+ | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
+ | 
 *    documentation and/or other materials provided with the | 
| 15 | 
+ | 
 *    distribution. | 
| 16 | 
+ | 
 * | 
| 17 | 
+ | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
+ | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
+ | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
+ | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
+ | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
+ | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
+ | 
 * using, modifying or distributing the software or its | 
| 24 | 
+ | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
+ | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
+ | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
+ | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
+ | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
+ | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
+ | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
+ | 
 */ | 
| 42 | 
+ | 
  | 
| 43 | 
+ | 
#include "config.h" | 
| 44 | 
+ | 
#include <cmath> | 
| 45 | 
+ | 
#include "primitives/GhostBend.hpp" | 
| 46 | 
+ | 
#include "primitives/DirectionalAtom.hpp" | 
| 47 | 
+ | 
namespace OpenMD { | 
| 48 | 
  | 
 | 
| 49 | 
< | 
#include <math.h> | 
| 50 | 
< | 
#include <iostream> | 
| 51 | 
< | 
#include <stdlib.h> | 
| 49 | 
> | 
  /**@todo still a lot left to improve*/ | 
| 50 | 
> | 
  void GhostBend::calcForce(RealType& angle, bool doParticlePot) { | 
| 51 | 
> | 
    DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atoms_[1]); | 
| 52 | 
> | 
     | 
| 53 | 
> | 
    Vector3d pos1 = atoms_[0]->getPos(); | 
| 54 | 
> | 
    Vector3d pos2 = ghostAtom->getPos(); | 
| 55 | 
  | 
 | 
| 56 | 
< | 
#include "simError.h" | 
| 57 | 
< | 
#include "SRI.hpp" | 
| 58 | 
< | 
#include "Atom.hpp" | 
| 56 | 
> | 
    Vector3d r21 = pos1 - pos2;    | 
| 57 | 
> | 
    RealType d21 = r21.length(); | 
| 58 | 
> | 
     | 
| 59 | 
> | 
    RealType d21inv = 1.0 / d21; | 
| 60 | 
> | 
    | 
| 61 | 
> | 
    // we need the transpose of A to get the lab fixed vector: | 
| 62 | 
> | 
    Vector3d r23 = ghostAtom->getA().transpose().getColumn(2); | 
| 63 | 
> | 
    RealType d23 = r23.length(); | 
| 64 | 
> | 
     | 
| 65 | 
> | 
    RealType d23inv = 1.0 / d23; | 
| 66 | 
> | 
     | 
| 67 | 
> | 
    RealType cosTheta = dot(r21, r23) / (d21 * d23); | 
| 68 | 
  | 
 | 
| 69 | 
+ | 
    //check roundoff      | 
| 70 | 
+ | 
    if (cosTheta > 1.0) { | 
| 71 | 
+ | 
      cosTheta = 1.0; | 
| 72 | 
+ | 
    } else if (cosTheta < -1.0) { | 
| 73 | 
+ | 
      cosTheta = -1.0; | 
| 74 | 
+ | 
    } | 
| 75 | 
+ | 
     | 
| 76 | 
+ | 
    RealType theta = acos(cosTheta); | 
| 77 | 
  | 
 | 
| 78 | 
< | 
 | 
| 12 | 
< | 
GhostBend::GhostBend( Atom &a, Atom &b ){ | 
| 13 | 
< | 
   | 
| 14 | 
< | 
  c_p_a = &a; | 
| 15 | 
< | 
   | 
| 16 | 
< | 
  if( !b.isDirectional() ){ | 
| 78 | 
> | 
    RealType dVdTheta; | 
| 79 | 
  | 
     | 
| 80 | 
< | 
    // if atom b is not directional, then bad things will happen | 
| 80 | 
> | 
    bendType_->calcForce(theta, potential_, dVdTheta); | 
| 81 | 
  | 
     | 
| 82 | 
< | 
    sprintf( painCave.errMsg, | 
| 83 | 
< | 
             " Ghost Bend error: Atom # %d of type \"%s\" is not " | 
| 84 | 
< | 
             "directional.\n", | 
| 85 | 
< | 
             b.getIndex(), | 
| 86 | 
< | 
             b.getType() ); | 
| 87 | 
< | 
    painCave.isFatal = 1; | 
| 88 | 
< | 
    simError(); | 
| 89 | 
< | 
  }     | 
| 82 | 
> | 
    RealType sinTheta = sqrt(1.0 - cosTheta * cosTheta); | 
| 83 | 
> | 
     | 
| 84 | 
> | 
    if (fabs(sinTheta) < 1.0E-6) { | 
| 85 | 
> | 
      sinTheta = 1.0E-6; | 
| 86 | 
> | 
    } | 
| 87 | 
> | 
     | 
| 88 | 
> | 
    RealType commonFactor1 = dVdTheta / sinTheta * d21inv; | 
| 89 | 
> | 
    RealType commonFactor2 = dVdTheta / sinTheta * d23inv; | 
| 90 | 
> | 
     | 
| 91 | 
> | 
    Vector3d force1 = commonFactor1 * (r23 * d23inv - r21*d21inv*cosTheta); | 
| 92 | 
> | 
    Vector3d force3 = commonFactor2 * (r21 * d21inv - r23*d23inv*cosTheta); | 
| 93 | 
  | 
 | 
| 94 | 
< | 
  atomB = ( DirectionalAtom* ) &b; | 
| 30 | 
< | 
   | 
| 31 | 
< | 
  c_potential_E = 0.0; | 
| 94 | 
> | 
    // Total force in current bend is zero | 
| 95 | 
  | 
 | 
| 96 | 
< | 
} | 
| 96 | 
> | 
    atoms_[0]->addFrc(force1); | 
| 97 | 
> | 
    ghostAtom->addFrc(-force1); | 
| 98 | 
  | 
 | 
| 99 | 
+ | 
    ghostAtom->addTrq( cross(r23, force3) );     | 
| 100 | 
+ | 
    if(doParticlePot) { | 
| 101 | 
+ | 
      atoms_[0]->addParticlePot(potential_); | 
| 102 | 
+ | 
      ghostAtom->addParticlePot(potential_); | 
| 103 | 
+ | 
    } | 
| 104 | 
  | 
 | 
| 105 | 
< | 
void GhostBend::calc_forces(){ | 
| 106 | 
< | 
   | 
| 107 | 
< | 
  double dx,dy,dz,gx,gy,gz,dx2,dy2,dz2,gx2,gy2,gz2; | 
| 108 | 
< | 
  double rij2, rkj2, riji2, rkji2, dot, denom, cosang, angl; | 
| 40 | 
< | 
   | 
| 41 | 
< | 
  double sina2, sinai; | 
| 105 | 
> | 
    angle = theta /M_PI * 180.0; | 
| 106 | 
> | 
    | 
| 107 | 
> | 
  }   | 
| 108 | 
> | 
} //end namespace OpenMD | 
| 109 | 
  | 
 | 
| 43 | 
– | 
  double comf2, comf3, comf4; | 
| 44 | 
– | 
  double dcsidx, dcsidy, dcsidz, dcskdx, dcskdy, dcskdz; | 
| 45 | 
– | 
  // double dcsjdx, dcsjdy, dcsjdz; | 
| 46 | 
– | 
  double dadxi, dadyi, dadzi; | 
| 47 | 
– | 
  double dadxk, dadyk, dadzk;//, dadxj, dadyj, dadzj; | 
| 48 | 
– | 
  double daxi, dayi, dazi, daxk, dayk, dazk, daxj, dayj, dazj; | 
| 49 | 
– | 
  double u[3]; | 
| 50 | 
– | 
   | 
| 51 | 
– | 
  double aR[3], bR[3]; | 
| 52 | 
– | 
  double aF[3], bF[3], bTrq[3]; | 
| 53 | 
– | 
 | 
| 54 | 
– | 
  c_p_a->getPos( aR ); | 
| 55 | 
– | 
  atomB->getPos( bR ); | 
| 56 | 
– | 
   | 
| 57 | 
– | 
 | 
| 58 | 
– | 
  dx = aR[0] - bR[0]; | 
| 59 | 
– | 
  dy = aR[1] - bR[1]; | 
| 60 | 
– | 
  dz = aR[2] - bR[2]; | 
| 61 | 
– | 
 | 
| 62 | 
– | 
  atomB->getU(u); | 
| 63 | 
– | 
 | 
| 64 | 
– | 
  gx = u[0]; | 
| 65 | 
– | 
  gy = u[1]; | 
| 66 | 
– | 
  gz = u[2]; | 
| 67 | 
– | 
   | 
| 68 | 
– | 
  dx2 = dx * dx; | 
| 69 | 
– | 
  dy2 = dy * dy; | 
| 70 | 
– | 
  dz2 = dz * dz; | 
| 71 | 
– | 
 | 
| 72 | 
– | 
  gx2 = gx * gx; | 
| 73 | 
– | 
  gy2 = gy * gy; | 
| 74 | 
– | 
  gz2 = gz * gz; | 
| 75 | 
– | 
   | 
| 76 | 
– | 
  rij2 = dx2 + dy2 + dz2; | 
| 77 | 
– | 
  rkj2 = gx2 + gy2 + gz2; | 
| 78 | 
– | 
   | 
| 79 | 
– | 
  riji2 = 1.0 / rij2; | 
| 80 | 
– | 
  rkji2 = 1.0 / rkj2; | 
| 81 | 
– | 
 | 
| 82 | 
– | 
  dot = dx * gx + dy * gy + dz * gz; | 
| 83 | 
– | 
  denom = sqrt((riji2 * rkji2)); | 
| 84 | 
– | 
  cosang = dot * denom; | 
| 85 | 
– | 
 | 
| 86 | 
– | 
  if(cosang > 1.0)cosang = 1.0; | 
| 87 | 
– | 
  if(cosang < -1.0) cosang = -1.0; | 
| 88 | 
– | 
 | 
| 89 | 
– | 
  angl = acos(cosang); | 
| 90 | 
– | 
  angl = angl * 180.0 / M_PI; | 
| 91 | 
– | 
 | 
| 92 | 
– | 
  sina2 = 1.0 - cosang*cosang; | 
| 93 | 
– | 
  if(fabs(sina2) < 1.0E-12 ) sina2 = 1.0E-12; | 
| 94 | 
– | 
  sinai = 1.0 / sqrt(sina2); | 
| 95 | 
– | 
 | 
| 96 | 
– | 
  comf2 = cosang * riji2; | 
| 97 | 
– | 
  comf3 = cosang * rkji2; | 
| 98 | 
– | 
  comf4 = bend_force(angl); | 
| 99 | 
– | 
 | 
| 100 | 
– | 
  dcsidx = gx*denom - comf2*dx; | 
| 101 | 
– | 
  dcsidy = gy*denom - comf2*dy; | 
| 102 | 
– | 
  dcsidz = gz*denom - comf2*dz; | 
| 103 | 
– | 
   | 
| 104 | 
– | 
  dcskdx = dx*denom - comf3*gx; | 
| 105 | 
– | 
  dcskdy = dy*denom - comf3*gy; | 
| 106 | 
– | 
  dcskdz = dz*denom - comf3*gz; | 
| 107 | 
– | 
   | 
| 108 | 
– | 
//   dcsjdx = -dcsidx - dcskdx; | 
| 109 | 
– | 
//   dcsjdy = -dcsidy - dcskdy; | 
| 110 | 
– | 
//   dcsjdz = -dcsidz - dcskdz; | 
| 111 | 
– | 
 | 
| 112 | 
– | 
  dadxi = -sinai*dcsidx; | 
| 113 | 
– | 
  dadyi = -sinai*dcsidy; | 
| 114 | 
– | 
  dadzi = -sinai*dcsidz; | 
| 115 | 
– | 
 | 
| 116 | 
– | 
  dadxk = -sinai*dcskdx; | 
| 117 | 
– | 
  dadyk = -sinai*dcskdy; | 
| 118 | 
– | 
  dadzk = -sinai*dcskdz; | 
| 119 | 
– | 
 | 
| 120 | 
– | 
//   dadxj = -dadxi - dadxk; | 
| 121 | 
– | 
//   dadyj = -dadyi - dadyk; | 
| 122 | 
– | 
//   dadzj = -dadzi - dadzk; | 
| 123 | 
– | 
 | 
| 124 | 
– | 
  daxi = comf4*dadxi; | 
| 125 | 
– | 
  dayi = comf4*dadyi; | 
| 126 | 
– | 
  dazi = comf4*dadzi; | 
| 127 | 
– | 
 | 
| 128 | 
– | 
  daxk = comf4*dadxk; | 
| 129 | 
– | 
  dayk = comf4*dadyk; | 
| 130 | 
– | 
  dazk = comf4*dadzk; | 
| 131 | 
– | 
   | 
| 132 | 
– | 
  daxj = -daxi - daxk; | 
| 133 | 
– | 
  dayj = -dayi - dayk; | 
| 134 | 
– | 
  dazj = -dazi - dazk; | 
| 135 | 
– | 
 | 
| 136 | 
– | 
  aF[0] = daxi; | 
| 137 | 
– | 
  aF[1] = dayi; | 
| 138 | 
– | 
  aF[2] = dazi; | 
| 139 | 
– | 
 | 
| 140 | 
– | 
  bF[0] = daxj + daxk; | 
| 141 | 
– | 
  bF[1] = dayj + dayk; | 
| 142 | 
– | 
  bF[2] = dazj + dazk; | 
| 143 | 
– | 
 | 
| 144 | 
– | 
  bTrq[0] = gy*dazk - gz*dayk; | 
| 145 | 
– | 
  bTrq[1] = gz*daxk - gx*dazk; | 
| 146 | 
– | 
  bTrq[2] = gx*dayk - gy*daxk; | 
| 147 | 
– | 
   | 
| 148 | 
– | 
   | 
| 149 | 
– | 
  c_p_a->addFrc( aF ); | 
| 150 | 
– | 
  atomB->addFrc( bF ); | 
| 151 | 
– | 
  atomB->addTrq( bTrq ); | 
| 152 | 
– | 
   | 
| 153 | 
– | 
  return; | 
| 154 | 
– | 
} | 
| 155 | 
– | 
 | 
| 156 | 
– | 
void GhostBend::setConstants( double the_c1, double the_c2, double the_c3,  | 
| 157 | 
– | 
                                  double the_Th0 ){ | 
| 158 | 
– | 
  c1 = the_c1; | 
| 159 | 
– | 
  c2 = the_c2; | 
| 160 | 
– | 
  c3 = the_c3; | 
| 161 | 
– | 
  theta0 = the_Th0; | 
| 162 | 
– | 
} | 
| 163 | 
– | 
 | 
| 164 | 
– | 
 | 
| 165 | 
– | 
double GhostBend::bend_force( double theta ){ | 
| 166 | 
– | 
 | 
| 167 | 
– | 
  double dt, dt2; | 
| 168 | 
– | 
  double force; | 
| 169 | 
– | 
 | 
| 170 | 
– | 
  dt = ( theta - theta0 ) * M_PI / 180.0; | 
| 171 | 
– | 
  dt2 = dt * dt; | 
| 172 | 
– | 
 | 
| 173 | 
– | 
  c_potential_E = ( c1 * dt2 ) + ( c2 * dt ) + c3; | 
| 174 | 
– | 
  force = -( ( 2.0 * c1 * dt ) + c2 ); | 
| 175 | 
– | 
  return force; | 
| 176 | 
– | 
} |