| 42 |
|
#include "primitives/GhostTorsion.hpp" |
| 43 |
|
|
| 44 |
|
namespace oopse { |
| 45 |
< |
|
| 46 |
< |
GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, DirectionalAtom* ghostAtom, |
| 47 |
< |
TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} |
| 48 |
< |
|
| 49 |
< |
void GhostTorsion::calcForce() { |
| 45 |
> |
|
| 46 |
> |
GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2, |
| 47 |
> |
DirectionalAtom* ghostAtom, TorsionType *tt) |
| 48 |
> |
: Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} |
| 49 |
> |
|
| 50 |
> |
void GhostTorsion::calcForce(RealType& angle) { |
| 51 |
|
DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom3_); |
| 52 |
< |
|
| 52 |
> |
|
| 53 |
|
Vector3d pos1 = atom1_->getPos(); |
| 54 |
|
Vector3d pos2 = atom2_->getPos(); |
| 55 |
|
Vector3d pos3 = ghostAtom->getPos(); |
| 56 |
< |
|
| 56 |
> |
|
| 57 |
|
Vector3d r21 = pos1 - pos2; |
| 58 |
|
Vector3d r32 = pos2 - pos3; |
| 59 |
|
Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2); |
| 60 |
< |
|
| 60 |
> |
|
| 61 |
|
// Calculate the cross products and distances |
| 62 |
|
Vector3d A = cross(r21, r32); |
| 63 |
< |
double rA = A.length(); |
| 63 |
> |
RealType rA = A.length(); |
| 64 |
|
Vector3d B = cross(r32, r43); |
| 65 |
< |
double rB = B.length(); |
| 65 |
> |
RealType rB = B.length(); |
| 66 |
|
Vector3d C = cross(r32, A); |
| 67 |
< |
double rC = C.length(); |
| 68 |
< |
|
| 67 |
> |
RealType rC = C.length(); |
| 68 |
> |
|
| 69 |
|
A.normalize(); |
| 70 |
|
B.normalize(); |
| 71 |
|
C.normalize(); |
| 72 |
|
|
| 73 |
|
// Calculate the sin and cos |
| 74 |
< |
double cos_phi = dot(A, B) ; |
| 75 |
< |
double sin_phi = dot(C, B); |
| 76 |
< |
|
| 77 |
< |
double dVdPhi; |
| 78 |
< |
torsionType_->calcForce(cos_phi, sin_phi, potential_, dVdPhi); |
| 78 |
< |
|
| 74 |
> |
RealType cos_phi = dot(A, B) ; |
| 75 |
> |
|
| 76 |
> |
RealType dVdcosPhi; |
| 77 |
> |
torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); |
| 78 |
> |
|
| 79 |
|
Vector3d dcosdA = (cos_phi * A - B) /rA; |
| 80 |
|
Vector3d dcosdB = (cos_phi * B - A) /rB; |
| 81 |
< |
|
| 82 |
< |
double dVdcosPhi = -dVdPhi / sin_phi; |
| 83 |
< |
|
| 81 |
> |
|
| 82 |
|
Vector3d f1 = dVdcosPhi * cross(r32, dcosdA); |
| 83 |
|
Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); |
| 84 |
|
Vector3d f3 = dVdcosPhi * cross(dcosdB, r32); |
| 85 |
< |
|
| 85 |
> |
|
| 86 |
|
atom1_->addFrc(f1); |
| 87 |
|
atom2_->addFrc(f2 - f1); |
| 88 |
< |
|
| 88 |
> |
|
| 89 |
|
ghostAtom->addFrc(-f2); |
| 90 |
< |
|
| 90 |
> |
|
| 91 |
|
f3.negate(); |
| 92 |
|
ghostAtom->addTrq(cross(r43, f3)); |
| 93 |
+ |
|
| 94 |
+ |
angle = acos(cos_phi) /M_PI * 180.0; |
| 95 |
|
} |
| 96 |
– |
|
| 96 |
|
} |
| 97 |
|
|