| 42 | 
  | 
#include "primitives/GhostTorsion.hpp" | 
| 43 | 
  | 
 | 
| 44 | 
  | 
namespace oopse { | 
| 45 | 
< | 
 | 
| 46 | 
< | 
  GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2,  DirectionalAtom* ghostAtom, | 
| 47 | 
< | 
                             TorsionType *tt) : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} | 
| 48 | 
< | 
 | 
| 45 | 
> | 
   | 
| 46 | 
> | 
  GhostTorsion::GhostTorsion(Atom *atom1, Atom *atom2,   | 
| 47 | 
> | 
                             DirectionalAtom* ghostAtom, TorsionType *tt)  | 
| 48 | 
> | 
    : Torsion(atom1, atom2, ghostAtom, ghostAtom, tt) {} | 
| 49 | 
> | 
   | 
| 50 | 
  | 
  void GhostTorsion::calcForce(RealType& angle) { | 
| 51 | 
  | 
    DirectionalAtom* ghostAtom = static_cast<DirectionalAtom*>(atom3_);     | 
| 52 | 
< | 
 | 
| 52 | 
> | 
     | 
| 53 | 
  | 
    Vector3d pos1 = atom1_->getPos(); | 
| 54 | 
  | 
    Vector3d pos2 = atom2_->getPos(); | 
| 55 | 
  | 
    Vector3d pos3 = ghostAtom->getPos(); | 
| 56 | 
< | 
 | 
| 56 | 
> | 
     | 
| 57 | 
  | 
    Vector3d r21 = pos1 - pos2; | 
| 58 | 
  | 
    Vector3d r32 = pos2 - pos3; | 
| 59 | 
  | 
    Vector3d r43 = ghostAtom->getElectroFrame().getColumn(2); | 
| 60 | 
< | 
 | 
| 60 | 
> | 
     | 
| 61 | 
  | 
    //  Calculate the cross products and distances | 
| 62 | 
  | 
    Vector3d A = cross(r21, r32); | 
| 63 | 
  | 
    RealType rA = A.length(); | 
| 65 | 
  | 
    RealType rB = B.length(); | 
| 66 | 
  | 
    Vector3d C = cross(r32, A); | 
| 67 | 
  | 
    RealType rC = C.length(); | 
| 68 | 
< | 
 | 
| 68 | 
> | 
     | 
| 69 | 
  | 
    A.normalize(); | 
| 70 | 
  | 
    B.normalize(); | 
| 71 | 
  | 
    C.normalize(); | 
| 72 | 
  | 
     | 
| 73 | 
  | 
    //  Calculate the sin and cos | 
| 74 | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 75 | 
< | 
 | 
| 75 | 
> | 
     | 
| 76 | 
  | 
    RealType dVdcosPhi; | 
| 77 | 
  | 
    torsionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 78 | 
< | 
 | 
| 78 | 
> | 
     | 
| 79 | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 80 | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 81 | 
< | 
 | 
| 81 | 
> | 
     | 
| 82 | 
  | 
    Vector3d f1 = dVdcosPhi * cross(r32, dcosdA); | 
| 83 | 
  | 
    Vector3d f2 = dVdcosPhi * ( cross(r43, dcosdB) - cross(r21, dcosdA)); | 
| 84 | 
  | 
    Vector3d f3 = dVdcosPhi * cross(dcosdB, r32); | 
| 85 | 
< | 
 | 
| 85 | 
> | 
     | 
| 86 | 
  | 
    atom1_->addFrc(f1); | 
| 87 | 
  | 
    atom2_->addFrc(f2 - f1); | 
| 88 | 
< | 
 | 
| 88 | 
> | 
     | 
| 89 | 
  | 
    ghostAtom->addFrc(-f2); | 
| 90 | 
< | 
 | 
| 90 | 
> | 
     | 
| 91 | 
  | 
    f3.negate(); | 
| 92 | 
  | 
    ghostAtom->addTrq(cross(r43, f3));     | 
| 93 | 
< | 
 | 
| 93 | 
> | 
     | 
| 94 | 
  | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 95 | 
  | 
  } | 
| 95 | 
– | 
 | 
| 96 | 
  | 
} | 
| 97 | 
  | 
 |