| 1 | 
cli2 | 
1275 | 
/* | 
| 2 | 
  | 
  | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
  | 
  | 
 * | 
| 4 | 
  | 
  | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
  | 
  | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
  | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
  | 
 * | 
| 9 | 
gezelter | 
1390 | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
cli2 | 
1275 | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
  | 
 * | 
| 12 | 
gezelter | 
1390 | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
cli2 | 
1275 | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
  | 
 *    distribution. | 
| 16 | 
  | 
  | 
 * | 
| 17 | 
  | 
  | 
 * This software is provided "AS IS," without a warranty of any | 
| 18 | 
  | 
  | 
 * kind. All express or implied conditions, representations and | 
| 19 | 
  | 
  | 
 * warranties, including any implied warranty of merchantability, | 
| 20 | 
  | 
  | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | 
  | 
  | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | 
  | 
  | 
 * be liable for any damages suffered by licensee as a result of | 
| 23 | 
  | 
  | 
 * using, modifying or distributing the software or its | 
| 24 | 
  | 
  | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 25 | 
  | 
  | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | 
  | 
  | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 27 | 
  | 
  | 
 * damages, however caused and regardless of the theory of liability, | 
| 28 | 
  | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
  | 
 * such damages. | 
| 31 | 
gezelter | 
1390 | 
 * | 
| 32 | 
  | 
  | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
  | 
  | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
  | 
  | 
 * work.  Good starting points are: | 
| 35 | 
  | 
  | 
 *                                                                       | 
| 36 | 
  | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
gezelter | 
1879 | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
gezelter | 
1782 | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
  | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
cli2 | 
1275 | 
 */ | 
| 42 | 
  | 
  | 
  | 
| 43 | 
gezelter | 
1782 | 
#include "config.h" | 
| 44 | 
  | 
  | 
#include <cmath> | 
| 45 | 
  | 
  | 
 | 
| 46 | 
cli2 | 
1275 | 
#include "primitives/Inversion.hpp" | 
| 47 | 
  | 
  | 
 | 
| 48 | 
gezelter | 
1390 | 
namespace OpenMD { | 
| 49 | 
cli2 | 
1275 | 
 | 
| 50 | 
  | 
  | 
  Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3,  | 
| 51 | 
gezelter | 
1953 | 
                       Atom *atom4, InversionType *it) :  | 
| 52 | 
  | 
  | 
    ShortRangeInteraction(), inversionType_(it) {  | 
| 53 | 
  | 
  | 
 | 
| 54 | 
  | 
  | 
    atoms_.resize(4); | 
| 55 | 
  | 
  | 
    atoms_[0] = atom1; | 
| 56 | 
  | 
  | 
    atoms_[1] = atom2; | 
| 57 | 
  | 
  | 
    atoms_[2] = atom3; | 
| 58 | 
  | 
  | 
    atoms_[3] = atom4; | 
| 59 | 
  | 
  | 
     | 
| 60 | 
gezelter | 
1890 | 
    inversionKey_ = inversionType_->getKey(); | 
| 61 | 
  | 
  | 
  } | 
| 62 | 
cli2 | 
1275 | 
   | 
| 63 | 
gezelter | 
1782 | 
  void Inversion::calcForce(RealType& angle, bool doParticlePot) { | 
| 64 | 
cli2 | 
1275 | 
     | 
| 65 | 
gezelter | 
1390 | 
    // In OpenMD's version of an inversion, the central atom | 
| 66 | 
cli2 | 
1275 | 
    // comes first.  However, to get the planarity in a typical cosine | 
| 67 | 
  | 
  | 
    // version of this potential (i.e. Amber-style), the central atom | 
| 68 | 
  | 
  | 
    // is treated as atom *3* in a standard torsion form: | 
| 69 | 
  | 
  | 
 | 
| 70 | 
gezelter | 
1953 | 
    Vector3d pos1 = atoms_[1]->getPos(); | 
| 71 | 
  | 
  | 
    Vector3d pos2 = atoms_[2]->getPos(); | 
| 72 | 
  | 
  | 
    Vector3d pos3 = atoms_[0]->getPos(); | 
| 73 | 
  | 
  | 
    Vector3d pos4 = atoms_[3]->getPos(); | 
| 74 | 
cli2 | 
1275 | 
 | 
| 75 | 
cli2 | 
1303 | 
    Vector3d r31 = pos1 - pos3; | 
| 76 | 
  | 
  | 
    Vector3d r23 = pos3 - pos2; | 
| 77 | 
  | 
  | 
    Vector3d r43 = pos3 - pos4; | 
| 78 | 
cli2 | 
1275 | 
 | 
| 79 | 
  | 
  | 
    //  Calculate the cross products and distances | 
| 80 | 
cli2 | 
1303 | 
    Vector3d A = cross(r31, r43); | 
| 81 | 
cli2 | 
1275 | 
    RealType rA = A.length(); | 
| 82 | 
cli2 | 
1303 | 
    Vector3d B = cross(r43, r23); | 
| 83 | 
cli2 | 
1275 | 
    RealType rB = B.length(); | 
| 84 | 
  | 
  | 
 | 
| 85 | 
  | 
  | 
    A.normalize(); | 
| 86 | 
  | 
  | 
    B.normalize(); | 
| 87 | 
  | 
  | 
     | 
| 88 | 
  | 
  | 
    //  Calculate the sin and cos | 
| 89 | 
  | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 90 | 
gezelter | 
1309 | 
    if (cos_phi > 1.0) cos_phi = 1.0; | 
| 91 | 
  | 
  | 
    if (cos_phi < -1.0) cos_phi = -1.0; | 
| 92 | 
cli2 | 
1275 | 
 | 
| 93 | 
  | 
  | 
    RealType dVdcosPhi; | 
| 94 | 
gezelter | 
1890 | 
    switch (inversionKey_) { | 
| 95 | 
  | 
  | 
    case itCosAngle: | 
| 96 | 
  | 
  | 
      inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 97 | 
  | 
  | 
      break; | 
| 98 | 
  | 
  | 
    case itAngle: | 
| 99 | 
  | 
  | 
      RealType phi = acos(cos_phi); | 
| 100 | 
  | 
  | 
      RealType dVdPhi; | 
| 101 | 
  | 
  | 
      inversionType_->calcForce(phi, potential_, dVdPhi); | 
| 102 | 
  | 
  | 
      RealType sin_phi = sqrt(1.0 - cos_phi * cos_phi);    | 
| 103 | 
  | 
  | 
      if (fabs(sin_phi) < 1.0E-6) { | 
| 104 | 
  | 
  | 
        sin_phi = 1.0E-6; | 
| 105 | 
  | 
  | 
      } | 
| 106 | 
  | 
  | 
      dVdcosPhi = dVdPhi / sin_phi; | 
| 107 | 
  | 
  | 
      break; | 
| 108 | 
  | 
  | 
    } | 
| 109 | 
  | 
  | 
     | 
| 110 | 
cli2 | 
1290 | 
    Vector3d f1 ; | 
| 111 | 
  | 
  | 
    Vector3d f2 ; | 
| 112 | 
  | 
  | 
    Vector3d f3 ; | 
| 113 | 
cli2 | 
1275 | 
 | 
| 114 | 
  | 
  | 
    Vector3d dcosdA = (cos_phi * A - B) /rA; | 
| 115 | 
  | 
  | 
    Vector3d dcosdB = (cos_phi * B - A) /rB; | 
| 116 | 
  | 
  | 
 | 
| 117 | 
cli2 | 
1303 | 
    f1 = dVdcosPhi * cross(r43, dcosdA); | 
| 118 | 
  | 
  | 
    f2 = dVdcosPhi * ( cross(r23, dcosdB) - cross(r31, dcosdA)); | 
| 119 | 
  | 
  | 
    f3 = dVdcosPhi * cross(dcosdB, r43); | 
| 120 | 
cli2 | 
1275 | 
 | 
| 121 | 
gezelter | 
1390 | 
    // In OpenMD's version of an improper torsion, the central atom | 
| 122 | 
cli2 | 
1275 | 
    // comes first.  However, to get the planarity in a typical cosine | 
| 123 | 
  | 
  | 
    // version of this potential (i.e. Amber-style), the central atom | 
| 124 | 
  | 
  | 
    // is treated as atom *3* in a standard torsion form: | 
| 125 | 
  | 
  | 
 | 
| 126 | 
  | 
  | 
    //  AMBER:   I - J - K - L   (e.g. K is sp2 hybridized carbon) | 
| 127 | 
gezelter | 
1390 | 
    //  OpenMD:  I - (J - K - L)  (e.g. I is sp2 hybridized carbon) | 
| 128 | 
cli2 | 
1275 | 
 | 
| 129 | 
  | 
  | 
    // Confusing enough?  Good. | 
| 130 | 
  | 
  | 
 | 
| 131 | 
gezelter | 
1953 | 
    atoms_[1]->addFrc(f1); | 
| 132 | 
  | 
  | 
    atoms_[0]->addFrc(f2 - f1 + f3); | 
| 133 | 
  | 
  | 
    atoms_[3]->addFrc(-f2); | 
| 134 | 
  | 
  | 
    atoms_[2]->addFrc(-f3); | 
| 135 | 
cli2 | 
1290 | 
 | 
| 136 | 
gezelter | 
1782 | 
    if (doParticlePot) {  | 
| 137 | 
gezelter | 
1953 | 
      atoms_[0]->addParticlePot(potential_); | 
| 138 | 
  | 
  | 
      atoms_[1]->addParticlePot(potential_); | 
| 139 | 
  | 
  | 
      atoms_[2]->addParticlePot(potential_); | 
| 140 | 
  | 
  | 
      atoms_[3]->addParticlePot(potential_); | 
| 141 | 
gezelter | 
1782 | 
    } | 
| 142 | 
  | 
  | 
     | 
| 143 | 
cli2 | 
1275 | 
    angle = acos(cos_phi) /M_PI * 180.0; | 
| 144 | 
  | 
  | 
  } | 
| 145 | 
  | 
  | 
 | 
| 146 | 
  | 
  | 
} |