| 48 | 
  | 
namespace OpenMD { | 
| 49 | 
  | 
 | 
| 50 | 
  | 
  Inversion::Inversion(Atom *atom1, Atom *atom2, Atom *atom3,  | 
| 51 | 
< | 
                       Atom *atom4, InversionType *it) : | 
| 52 | 
< | 
    atom1_(atom1), atom2_(atom2), atom3_(atom3), atom4_(atom4),  | 
| 53 | 
< | 
    inversionType_(it) { } | 
| 51 | 
> | 
                       Atom *atom4, InversionType *it) :  | 
| 52 | 
> | 
    ShortRangeInteraction(), inversionType_(it) {  | 
| 53 | 
> | 
 | 
| 54 | 
> | 
    atoms_.resize(4); | 
| 55 | 
> | 
    atoms_[0] = atom1; | 
| 56 | 
> | 
    atoms_[1] = atom2; | 
| 57 | 
> | 
    atoms_[2] = atom3; | 
| 58 | 
> | 
    atoms_[3] = atom4; | 
| 59 | 
> | 
     | 
| 60 | 
> | 
    inversionKey_ = inversionType_->getKey(); | 
| 61 | 
> | 
  } | 
| 62 | 
  | 
   | 
| 63 | 
  | 
  void Inversion::calcForce(RealType& angle, bool doParticlePot) { | 
| 64 | 
  | 
     | 
| 67 | 
  | 
    // version of this potential (i.e. Amber-style), the central atom | 
| 68 | 
  | 
    // is treated as atom *3* in a standard torsion form: | 
| 69 | 
  | 
 | 
| 70 | 
< | 
    Vector3d pos1 = atom2_->getPos(); | 
| 71 | 
< | 
    Vector3d pos2 = atom3_->getPos(); | 
| 72 | 
< | 
    Vector3d pos3 = atom1_->getPos(); | 
| 73 | 
< | 
    Vector3d pos4 = atom4_->getPos(); | 
| 70 | 
> | 
    Vector3d pos1 = atoms_[1]->getPos(); | 
| 71 | 
> | 
    Vector3d pos2 = atoms_[2]->getPos(); | 
| 72 | 
> | 
    Vector3d pos3 = atoms_[0]->getPos(); | 
| 73 | 
> | 
    Vector3d pos4 = atoms_[3]->getPos(); | 
| 74 | 
  | 
 | 
| 75 | 
  | 
    Vector3d r31 = pos1 - pos3; | 
| 76 | 
  | 
    Vector3d r23 = pos3 - pos2; | 
| 81 | 
  | 
    RealType rA = A.length(); | 
| 82 | 
  | 
    Vector3d B = cross(r43, r23); | 
| 83 | 
  | 
    RealType rB = B.length(); | 
| 76 | 
– | 
    //Vector3d C = cross(r23, A); | 
| 77 | 
– | 
    //RealType rC = C.length(); | 
| 84 | 
  | 
 | 
| 85 | 
  | 
    A.normalize(); | 
| 86 | 
  | 
    B.normalize(); | 
| 81 | 
– | 
    //C.normalize(); | 
| 87 | 
  | 
     | 
| 88 | 
  | 
    //  Calculate the sin and cos | 
| 89 | 
  | 
    RealType cos_phi = dot(A, B) ; | 
| 91 | 
  | 
    if (cos_phi < -1.0) cos_phi = -1.0; | 
| 92 | 
  | 
 | 
| 93 | 
  | 
    RealType dVdcosPhi; | 
| 94 | 
< | 
    inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 94 | 
> | 
    switch (inversionKey_) { | 
| 95 | 
> | 
    case itCosAngle: | 
| 96 | 
> | 
      inversionType_->calcForce(cos_phi, potential_, dVdcosPhi); | 
| 97 | 
> | 
      break; | 
| 98 | 
> | 
    case itAngle: | 
| 99 | 
> | 
      RealType phi = acos(cos_phi); | 
| 100 | 
> | 
      RealType dVdPhi; | 
| 101 | 
> | 
      inversionType_->calcForce(phi, potential_, dVdPhi); | 
| 102 | 
> | 
      RealType sin_phi = sqrt(1.0 - cos_phi * cos_phi);    | 
| 103 | 
> | 
      if (fabs(sin_phi) < 1.0E-6) { | 
| 104 | 
> | 
        sin_phi = 1.0E-6; | 
| 105 | 
> | 
      } | 
| 106 | 
> | 
      dVdcosPhi = dVdPhi / sin_phi; | 
| 107 | 
> | 
      break; | 
| 108 | 
> | 
    } | 
| 109 | 
> | 
     | 
| 110 | 
  | 
    Vector3d f1 ; | 
| 111 | 
  | 
    Vector3d f2 ; | 
| 112 | 
  | 
    Vector3d f3 ; | 
| 128 | 
  | 
 | 
| 129 | 
  | 
    // Confusing enough?  Good. | 
| 130 | 
  | 
 | 
| 131 | 
< | 
    atom2_->addFrc(f1); | 
| 132 | 
< | 
    atom1_->addFrc(f2 - f1 + f3); | 
| 133 | 
< | 
    atom4_->addFrc(-f2); | 
| 134 | 
< | 
    atom3_->addFrc(-f3); | 
| 131 | 
> | 
    atoms_[1]->addFrc(f1); | 
| 132 | 
> | 
    atoms_[0]->addFrc(f2 - f1 + f3); | 
| 133 | 
> | 
    atoms_[3]->addFrc(-f2); | 
| 134 | 
> | 
    atoms_[2]->addFrc(-f3); | 
| 135 | 
  | 
 | 
| 136 | 
  | 
    if (doParticlePot) {  | 
| 137 | 
< | 
      atom1_->addParticlePot(potential_); | 
| 138 | 
< | 
      atom2_->addParticlePot(potential_); | 
| 139 | 
< | 
      atom3_->addParticlePot(potential_); | 
| 140 | 
< | 
      atom4_->addParticlePot(potential_); | 
| 137 | 
> | 
      atoms_[0]->addParticlePot(potential_); | 
| 138 | 
> | 
      atoms_[1]->addParticlePot(potential_); | 
| 139 | 
> | 
      atoms_[2]->addParticlePot(potential_); | 
| 140 | 
> | 
      atoms_[3]->addParticlePot(potential_); | 
| 141 | 
  | 
    } | 
| 142 | 
  | 
     | 
| 143 | 
  | 
    angle = acos(cos_phi) /M_PI * 180.0; |