| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | + | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 |  | */ | 
| 41 |  | #include <algorithm> | 
| 42 |  | #include <math.h> | 
| 43 |  | #include "primitives/RigidBody.hpp" | 
| 44 |  | #include "utils/simError.h" | 
| 45 |  | #include "utils/NumericConstant.hpp" | 
| 46 | < | namespace oopse { | 
| 47 | < |  | 
| 48 | < | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ | 
| 49 | < |  | 
| 46 | > | namespace OpenMD { | 
| 47 | > |  | 
| 48 | > | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), | 
| 49 | > | inertiaTensor_(0.0){ | 
| 50 |  | } | 
| 51 | < |  | 
| 51 | > |  | 
| 52 |  | void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 53 |  | ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 54 | < | //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 55 | < |  | 
| 54 | > |  | 
| 55 |  | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 56 |  | if (atoms_[i]->isDirectional()) { | 
| 57 | < | atoms_[i]->setPrevA(a * refOrients_[i]); | 
| 57 | > | atoms_[i]->setPrevA(refOrients_[i].transpose() * a); | 
| 58 |  | } | 
| 59 |  | } | 
| 60 | < |  | 
| 60 | > |  | 
| 61 |  | } | 
| 62 | < |  | 
| 63 | < |  | 
| 62 | > |  | 
| 63 | > |  | 
| 64 |  | void RigidBody::setA(const RotMat3x3d& a) { | 
| 65 |  | ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 67 | – | //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 66 |  |  | 
| 67 |  | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 68 |  | if (atoms_[i]->isDirectional()) { | 
| 69 | < | atoms_[i]->setA(a * refOrients_[i]); | 
| 69 | > | atoms_[i]->setA(refOrients_[i].transpose() * a); | 
| 70 |  | } | 
| 71 |  | } | 
| 72 |  | } | 
| 73 | < |  | 
| 73 | > |  | 
| 74 |  | void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 75 |  | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 76 | + |  | 
| 77 |  | //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 78 | < |  | 
| 78 | > |  | 
| 79 |  | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 80 |  | if (atoms_[i]->isDirectional()) { | 
| 81 | < | atoms_[i]->setA(a * refOrients_[i], snapshotNo); | 
| 81 | > | atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); | 
| 82 |  | } | 
| 83 |  | } | 
| 84 | < |  | 
| 84 | > |  | 
| 85 |  | } | 
| 86 | < |  | 
| 86 | > |  | 
| 87 |  | Mat3x3d RigidBody::getI() { | 
| 88 |  | return inertiaTensor_; | 
| 89 |  | } | 
| 90 | < |  | 
| 91 | < | std::vector<double> RigidBody::getGrad() { | 
| 92 | < | std::vector<double> grad(6, 0.0); | 
| 90 | > |  | 
| 91 | > | std::vector<RealType> RigidBody::getGrad() { | 
| 92 | > | std::vector<RealType> grad(6, 0.0); | 
| 93 |  | Vector3d force; | 
| 94 |  | Vector3d torque; | 
| 95 |  | Vector3d myEuler; | 
| 96 | < | double phi, theta, psi; | 
| 97 | < | double cphi, sphi, ctheta, stheta; | 
| 96 | > | RealType phi, theta, psi; | 
| 97 | > | RealType cphi, sphi, ctheta, stheta; | 
| 98 |  | Vector3d ephi; | 
| 99 |  | Vector3d etheta; | 
| 100 |  | Vector3d epsi; | 
| 101 | < |  | 
| 101 | > |  | 
| 102 |  | force = getFrc(); | 
| 103 |  | torque =getTrq(); | 
| 104 |  | myEuler = getA().toEulerAngles(); | 
| 105 | < |  | 
| 105 | > |  | 
| 106 |  | phi = myEuler[0]; | 
| 107 |  | theta = myEuler[1]; | 
| 108 |  | psi = myEuler[2]; | 
| 109 | < |  | 
| 109 | > |  | 
| 110 |  | cphi = cos(phi); | 
| 111 |  | sphi = sin(phi); | 
| 112 |  | ctheta = cos(theta); | 
| 113 |  | stheta = sin(theta); | 
| 114 | < |  | 
| 114 | > |  | 
| 115 |  | // get unit vectors along the phi, theta and psi rotation axes | 
| 116 | < |  | 
| 116 | > |  | 
| 117 |  | ephi[0] = 0.0; | 
| 118 |  | ephi[1] = 0.0; | 
| 119 |  | ephi[2] = 1.0; | 
| 120 | < |  | 
| 120 | > |  | 
| 121 | > | //etheta[0] = -sphi; | 
| 122 | > | //etheta[1] =  cphi; | 
| 123 | > | //etheta[2] =  0.0; | 
| 124 | > |  | 
| 125 |  | etheta[0] = cphi; | 
| 126 |  | etheta[1] = sphi; | 
| 127 | < | etheta[2] = 0.0; | 
| 128 | < |  | 
| 127 | > | etheta[2] =  0.0; | 
| 128 | > |  | 
| 129 |  | epsi[0] = stheta * cphi; | 
| 130 |  | epsi[1] = stheta * sphi; | 
| 131 |  | epsi[2] = ctheta; | 
| 132 | < |  | 
| 132 | > |  | 
| 133 |  | //gradient is equal to -force | 
| 134 |  | for (int j = 0 ; j<3; j++) | 
| 135 |  | grad[j] = -force[j]; | 
| 136 | < |  | 
| 136 | > |  | 
| 137 |  | for (int j = 0; j < 3; j++ ) { | 
| 138 | < |  | 
| 138 | > |  | 
| 139 |  | grad[3] += torque[j]*ephi[j]; | 
| 140 |  | grad[4] += torque[j]*etheta[j]; | 
| 141 |  | grad[5] += torque[j]*epsi[j]; | 
| 142 | < |  | 
| 142 | > |  | 
| 143 |  | } | 
| 144 |  |  | 
| 145 |  | return grad; | 
| 146 |  | } | 
| 147 | < |  | 
| 147 | > |  | 
| 148 |  | void RigidBody::accept(BaseVisitor* v) { | 
| 149 |  | v->visit(this); | 
| 150 |  | } | 
| 151 |  |  | 
| 152 |  | /**@todo need modification */ | 
| 153 |  | void  RigidBody::calcRefCoords() { | 
| 154 | < | double mtmp; | 
| 154 | > | RealType mtmp; | 
| 155 |  | Vector3d refCOM(0.0); | 
| 156 |  | mass_ = 0.0; | 
| 157 |  | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 160 |  | refCOM += refCoords_[i]*mtmp; | 
| 161 |  | } | 
| 162 |  | refCOM /= mass_; | 
| 163 | < |  | 
| 163 | > |  | 
| 164 |  | // Next, move the origin of the reference coordinate system to the COM: | 
| 165 |  | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 166 |  | refCoords_[i] -= refCOM; | 
| 167 |  | } | 
| 168 |  |  | 
| 169 |  | // Moment of Inertia calculation | 
| 170 | < | Mat3x3d Itmp(0.0); | 
| 168 | < |  | 
| 170 | > | Mat3x3d Itmp(0.0); | 
| 171 |  | for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 172 | + | Mat3x3d IAtom(0.0); | 
| 173 |  | mtmp = atoms_[i]->getMass(); | 
| 174 | < | Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 175 | < | double r2 = refCoords_[i].lengthSquare(); | 
| 176 | < | Itmp(0, 0) += mtmp * r2; | 
| 177 | < | Itmp(1, 1) += mtmp * r2; | 
| 178 | < | Itmp(2, 2) += mtmp * r2; | 
| 179 | < | } | 
| 180 | < |  | 
| 181 | < | //project the inertial moment of directional atoms into this rigid body | 
| 179 | < | for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 174 | > | IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 175 | > | RealType r2 = refCoords_[i].lengthSquare(); | 
| 176 | > | IAtom(0, 0) += mtmp * r2; | 
| 177 | > | IAtom(1, 1) += mtmp * r2; | 
| 178 | > | IAtom(2, 2) += mtmp * r2; | 
| 179 | > | Itmp += IAtom; | 
| 180 | > |  | 
| 181 | > | //project the inertial moment of directional atoms into this rigid body | 
| 182 |  | if (atoms_[i]->isDirectional()) { | 
| 183 | < | RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI(); | 
| 184 | < | Itmp(0, 0) += Iproject(0, 0); | 
| 183 | < | Itmp(1, 1) += Iproject(1, 1); | 
| 184 | < | Itmp(2, 2) += Iproject(2, 2); | 
| 185 | < | } | 
| 183 | > | Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 184 | > | } | 
| 185 |  | } | 
| 186 |  |  | 
| 187 | + | //    std::cout << Itmp << std::endl; | 
| 188 | + |  | 
| 189 |  | //diagonalize | 
| 190 |  | Vector3d evals; | 
| 191 |  | Mat3x3d::diagonalize(Itmp, evals, sU_); | 
| 197 |  |  | 
| 198 |  | int nLinearAxis = 0; | 
| 199 |  | for (int i = 0; i < 3; i++) { | 
| 200 | < | if (fabs(evals[i]) < oopse::epsilon) { | 
| 200 | > | if (fabs(evals[i]) < OpenMD::epsilon) { | 
| 201 |  | linear_ = true; | 
| 202 |  | linearAxis_ = i; | 
| 203 |  | ++ nLinearAxis; | 
| 207 |  | if (nLinearAxis > 1) { | 
| 208 |  | sprintf( painCave.errMsg, | 
| 209 |  | "RigidBody error.\n" | 
| 210 | < | "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 210 | > | "\tOpenMD found more than one axis in this rigid body with a vanishing \n" | 
| 211 |  | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 212 |  | "\t 1) Only one atom was specified, or \n" | 
| 213 |  | "\t 2) All atoms were specified at the same location, or\n" | 
| 226 |  | Vector3d apos; | 
| 227 |  | Vector3d rpos; | 
| 228 |  | Vector3d frc(0.0); | 
| 229 | < | Vector3d trq(0.0); | 
| 229 | > | Vector3d trq(0.0); | 
| 230 |  | Vector3d pos = this->getPos(); | 
| 231 |  | for (int i = 0; i < atoms_.size(); i++) { | 
| 232 |  |  | 
| 246 |  | if (atoms_[i]->isDirectional()) { | 
| 247 |  | atrq = atoms_[i]->getTrq(); | 
| 248 |  | trq += atrq; | 
| 249 | < | } | 
| 249 | > | } | 
| 250 | > | } | 
| 251 | > | addFrc(frc); | 
| 252 | > | addTrq(trq); | 
| 253 | > | } | 
| 254 | > |  | 
| 255 | > | Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { | 
| 256 | > | Vector3d afrc; | 
| 257 | > | Vector3d atrq; | 
| 258 | > | Vector3d apos; | 
| 259 | > | Vector3d rpos; | 
| 260 | > | Vector3d dfrc; | 
| 261 | > | Vector3d frc(0.0); | 
| 262 | > | Vector3d trq(0.0); | 
| 263 | > | Vector3d pos = this->getPos(); | 
| 264 | > | Mat3x3d tau_(0.0); | 
| 265 | > |  | 
| 266 | > | for (int i = 0; i < atoms_.size(); i++) { | 
| 267 | > |  | 
| 268 | > | afrc = atoms_[i]->getFrc(); | 
| 269 | > | apos = atoms_[i]->getPos(); | 
| 270 | > | rpos = apos - pos; | 
| 271 |  |  | 
| 272 | + | frc += afrc; | 
| 273 | + |  | 
| 274 | + | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 275 | + | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 276 | + | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 277 | + |  | 
| 278 | + | // If the atom has a torque associated with it, then we also need to | 
| 279 | + | // migrate the torques onto the center of mass: | 
| 280 | + |  | 
| 281 | + | if (atoms_[i]->isDirectional()) { | 
| 282 | + | atrq = atoms_[i]->getTrq(); | 
| 283 | + | trq += atrq; | 
| 284 | + | } | 
| 285 | + |  | 
| 286 | + | tau_(0,0) -= rpos[0]*afrc[0]; | 
| 287 | + | tau_(0,1) -= rpos[0]*afrc[1]; | 
| 288 | + | tau_(0,2) -= rpos[0]*afrc[2]; | 
| 289 | + | tau_(1,0) -= rpos[1]*afrc[0]; | 
| 290 | + | tau_(1,1) -= rpos[1]*afrc[1]; | 
| 291 | + | tau_(1,2) -= rpos[1]*afrc[2]; | 
| 292 | + | tau_(2,0) -= rpos[2]*afrc[0]; | 
| 293 | + | tau_(2,1) -= rpos[2]*afrc[1]; | 
| 294 | + | tau_(2,2) -= rpos[2]*afrc[2]; | 
| 295 | + |  | 
| 296 |  | } | 
| 297 | < |  | 
| 298 | < | setFrc(frc); | 
| 299 | < | setTrq(trq); | 
| 254 | < |  | 
| 297 | > | addFrc(frc); | 
| 298 | > | addTrq(trq); | 
| 299 | > | return tau_; | 
| 300 |  | } | 
| 301 |  |  | 
| 302 |  | void  RigidBody::updateAtoms() { | 
| 318 |  | if (atoms_[i]->isDirectional()) { | 
| 319 |  |  | 
| 320 |  | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 321 | < | dAtom->setA(a * refOrients_[i]); | 
| 277 | < | //dAtom->rotateBy( A ); | 
| 321 | > | dAtom->setA(refOrients_[i].transpose() * a); | 
| 322 |  | } | 
| 323 |  |  | 
| 324 |  | } | 
| 345 |  | if (atoms_[i]->isDirectional()) { | 
| 346 |  |  | 
| 347 |  | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 348 | < | dAtom->setA(a * refOrients_[i], frame); | 
| 348 | > | dAtom->setA(refOrients_[i].transpose() * a, frame); | 
| 349 |  | } | 
| 350 |  |  | 
| 351 |  | } | 
| 530 |  | "RigidBody error.\n" | 
| 531 |  | "\tAtom %s does not have a position specified.\n" | 
| 532 |  | "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 533 | < | ats->getType() ); | 
| 533 | > | ats->getType().c_str() ); | 
| 534 |  | painCave.isFatal = 1; | 
| 535 |  | simError(); | 
| 536 |  | } | 
| 550 |  | "RigidBody error.\n" | 
| 551 |  | "\tAtom %s does not have an orientation specified.\n" | 
| 552 |  | "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 553 | < | ats->getType() ); | 
| 553 | > | ats->getType().c_str() ); | 
| 554 |  | painCave.isFatal = 1; | 
| 555 |  | simError(); | 
| 556 |  | } |