| 1 | 
+ | 
 /* | 
| 2 | 
+ | 
 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | 
+ | 
 * | 
| 4 | 
+ | 
 * The University of Notre Dame grants you ("Licensee") a | 
| 5 | 
+ | 
 * non-exclusive, royalty free, license to use, modify and | 
| 6 | 
+ | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
+ | 
 * that the following conditions are met: | 
| 8 | 
+ | 
 * | 
| 9 | 
+ | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
+ | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
+ | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
+ | 
 *    the article in which the program was described (Matthew | 
| 13 | 
+ | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
+ | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
+ | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
+ | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
+ | 
 * | 
| 18 | 
+ | 
 * 2. Redistributions of source code must retain the above copyright | 
| 19 | 
+ | 
 *    notice, this list of conditions and the following disclaimer. | 
| 20 | 
+ | 
 * | 
| 21 | 
+ | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | 
+ | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 23 | 
+ | 
 *    documentation and/or other materials provided with the | 
| 24 | 
+ | 
 *    distribution. | 
| 25 | 
+ | 
 * | 
| 26 | 
+ | 
 * This software is provided "AS IS," without a warranty of any | 
| 27 | 
+ | 
 * kind. All express or implied conditions, representations and | 
| 28 | 
+ | 
 * warranties, including any implied warranty of merchantability, | 
| 29 | 
+ | 
 * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | 
+ | 
 * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | 
+ | 
 * be liable for any damages suffered by licensee as a result of | 
| 32 | 
+ | 
 * using, modifying or distributing the software or its | 
| 33 | 
+ | 
 * derivatives. In no event will the University of Notre Dame or its | 
| 34 | 
+ | 
 * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | 
+ | 
 * direct, indirect, special, consequential, incidental or punitive | 
| 36 | 
+ | 
 * damages, however caused and regardless of the theory of liability, | 
| 37 | 
+ | 
 * arising out of the use of or inability to use software, even if the | 
| 38 | 
+ | 
 * University of Notre Dame has been advised of the possibility of | 
| 39 | 
+ | 
 * such damages. | 
| 40 | 
+ | 
 */ | 
| 41 | 
+ | 
#include <algorithm> | 
| 42 | 
  | 
#include <math.h> | 
| 43 | 
< | 
#include "RigidBody.hpp" | 
| 44 | 
< | 
#include "DirectionalAtom.hpp" | 
| 45 | 
< | 
#include "simError.h" | 
| 5 | 
< | 
#include "MatVec3.h" | 
| 43 | 
> | 
#include "primitives/RigidBody.hpp" | 
| 44 | 
> | 
#include "utils/simError.h" | 
| 45 | 
> | 
namespace oopse { | 
| 46 | 
  | 
 | 
| 47 | 
< | 
RigidBody::RigidBody() : StuntDouble() { | 
| 8 | 
< | 
  objType = OT_RIGIDBODY; | 
| 9 | 
< | 
  is_linear = false; | 
| 10 | 
< | 
  linear_axis =  -1; | 
| 11 | 
< | 
  momIntTol = 1e-6; | 
| 12 | 
< | 
} | 
| 47 | 
> | 
RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), inertiaTensor_(0.0){ | 
| 48 | 
  | 
 | 
| 14 | 
– | 
RigidBody::~RigidBody() { | 
| 49 | 
  | 
} | 
| 50 | 
  | 
 | 
| 51 | 
< | 
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 51 | 
> | 
void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 52 | 
> | 
    ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 53 | 
> | 
    //((snapshotMan_->getPrevSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 54 | 
  | 
 | 
| 55 | 
< | 
  vec3 coords; | 
| 56 | 
< | 
  vec3 euler; | 
| 57 | 
< | 
  mat3x3 Atmp; | 
| 55 | 
> | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 56 | 
> | 
        if (atoms_[i]->isDirectional()) { | 
| 57 | 
> | 
            atoms_[i]->setPrevA(a * refOrients_[i]); | 
| 58 | 
> | 
        } | 
| 59 | 
> | 
    } | 
| 60 | 
  | 
 | 
| 61 | 
< | 
  myAtoms.push_back(at); | 
| 24 | 
< | 
  | 
| 25 | 
< | 
  if( !ats->havePosition() ){ | 
| 26 | 
< | 
    sprintf( painCave.errMsg, | 
| 27 | 
< | 
             "RigidBody error.\n" | 
| 28 | 
< | 
             "\tAtom %s does not have a position specified.\n" | 
| 29 | 
< | 
             "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 30 | 
< | 
             ats->getType() ); | 
| 31 | 
< | 
    painCave.isFatal = 1; | 
| 32 | 
< | 
    simError(); | 
| 33 | 
< | 
  } | 
| 34 | 
< | 
   | 
| 35 | 
< | 
  coords[0] = ats->getPosX(); | 
| 36 | 
< | 
  coords[1] = ats->getPosY(); | 
| 37 | 
< | 
  coords[2] = ats->getPosZ(); | 
| 61 | 
> | 
} | 
| 62 | 
  | 
 | 
| 63 | 
< | 
  refCoords.push_back(coords); | 
| 64 | 
< | 
   | 
| 65 | 
< | 
  if (at->isDirectional()) {    | 
| 63 | 
> | 
       | 
| 64 | 
> | 
void RigidBody::setA(const RotMat3x3d& a) { | 
| 65 | 
> | 
    ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 66 | 
> | 
    //((snapshotMan_->getCurrentSnapshot())->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 67 | 
  | 
 | 
| 68 | 
< | 
    if( !ats->haveOrientation() ){ | 
| 69 | 
< | 
      sprintf( painCave.errMsg, | 
| 70 | 
< | 
               "RigidBody error.\n" | 
| 71 | 
< | 
               "\tAtom %s does not have an orientation specified.\n" | 
| 72 | 
< | 
               "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 73 | 
< | 
               ats->getType() ); | 
| 49 | 
< | 
      painCave.isFatal = 1; | 
| 50 | 
< | 
      simError(); | 
| 51 | 
< | 
    }     | 
| 68 | 
> | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 69 | 
> | 
        if (atoms_[i]->isDirectional()) { | 
| 70 | 
> | 
            atoms_[i]->setA(a * refOrients_[i]); | 
| 71 | 
> | 
        } | 
| 72 | 
> | 
    } | 
| 73 | 
> | 
}     | 
| 74 | 
  | 
     | 
| 75 | 
< | 
    euler[0] = ats->getEulerPhi(); | 
| 76 | 
< | 
    euler[1] = ats->getEulerTheta(); | 
| 77 | 
< | 
    euler[2] = ats->getEulerPsi(); | 
| 56 | 
< | 
     | 
| 57 | 
< | 
    doEulerToRotMat(euler, Atmp); | 
| 58 | 
< | 
     | 
| 59 | 
< | 
    refOrients.push_back(Atmp); | 
| 60 | 
< | 
     | 
| 61 | 
< | 
  } | 
| 62 | 
< | 
} | 
| 75 | 
> | 
void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 76 | 
> | 
    ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 77 | 
> | 
    //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_;     | 
| 78 | 
  | 
 | 
| 79 | 
< | 
void RigidBody::getPos(double theP[3]){ | 
| 80 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 81 | 
< | 
    theP[i] = pos[i]; | 
| 82 | 
< | 
}        | 
| 79 | 
> | 
    for (int i =0 ; i < atoms_.size(); ++i){ | 
| 80 | 
> | 
        if (atoms_[i]->isDirectional()) { | 
| 81 | 
> | 
            atoms_[i]->setA(a * refOrients_[i], snapshotNo); | 
| 82 | 
> | 
        } | 
| 83 | 
> | 
    } | 
| 84 | 
  | 
 | 
| 85 | 
< | 
void RigidBody::setPos(double theP[3]){ | 
| 70 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 71 | 
< | 
    pos[i] = theP[i]; | 
| 72 | 
< | 
}        | 
| 85 | 
> | 
}    | 
| 86 | 
  | 
 | 
| 87 | 
< | 
void RigidBody::getVel(double theV[3]){ | 
| 88 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 76 | 
< | 
    theV[i] = vel[i]; | 
| 77 | 
< | 
}        | 
| 78 | 
< | 
 | 
| 79 | 
< | 
void RigidBody::setVel(double theV[3]){ | 
| 80 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 81 | 
< | 
    vel[i] = theV[i]; | 
| 82 | 
< | 
}        | 
| 83 | 
< | 
 | 
| 84 | 
< | 
void RigidBody::getFrc(double theF[3]){ | 
| 85 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 86 | 
< | 
    theF[i] = frc[i]; | 
| 87 | 
< | 
}        | 
| 88 | 
< | 
 | 
| 89 | 
< | 
void RigidBody::addFrc(double theF[3]){ | 
| 90 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 91 | 
< | 
    frc[i] += theF[i]; | 
| 87 | 
> | 
Mat3x3d RigidBody::getI() { | 
| 88 | 
> | 
    return inertiaTensor_; | 
| 89 | 
  | 
}     | 
| 90 | 
  | 
 | 
| 91 | 
< | 
void RigidBody::zeroForces() { | 
| 91 | 
> | 
std::vector<double> RigidBody::getGrad() { | 
| 92 | 
> | 
     std::vector<double> grad(6, 0.0); | 
| 93 | 
> | 
    Vector3d force; | 
| 94 | 
> | 
    Vector3d torque; | 
| 95 | 
> | 
    Vector3d myEuler; | 
| 96 | 
> | 
    double phi, theta, psi; | 
| 97 | 
> | 
    double cphi, sphi, ctheta, stheta; | 
| 98 | 
> | 
    Vector3d ephi; | 
| 99 | 
> | 
    Vector3d etheta; | 
| 100 | 
> | 
    Vector3d epsi; | 
| 101 | 
  | 
 | 
| 102 | 
< | 
  for (int i = 0; i < 3; i++) { | 
| 103 | 
< | 
    frc[i] = 0.0; | 
| 104 | 
< | 
    trq[i] = 0.0; | 
| 99 | 
< | 
  } | 
| 102 | 
> | 
    force = getFrc(); | 
| 103 | 
> | 
    torque =getTrq(); | 
| 104 | 
> | 
    myEuler = getA().toEulerAngles(); | 
| 105 | 
  | 
 | 
| 106 | 
< | 
} | 
| 106 | 
> | 
    phi = myEuler[0]; | 
| 107 | 
> | 
    theta = myEuler[1]; | 
| 108 | 
> | 
    psi = myEuler[2]; | 
| 109 | 
  | 
 | 
| 110 | 
< | 
void RigidBody::setEuler( double phi, double theta, double psi ){ | 
| 111 | 
< | 
   | 
| 112 | 
< | 
    A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 113 | 
< | 
    A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 107 | 
< | 
    A[0][2] = sin(theta) * sin(psi); | 
| 108 | 
< | 
     | 
| 109 | 
< | 
    A[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 110 | 
< | 
    A[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 111 | 
< | 
    A[1][2] = sin(theta) * cos(psi); | 
| 112 | 
< | 
     | 
| 113 | 
< | 
    A[2][0] = sin(phi) * sin(theta); | 
| 114 | 
< | 
    A[2][1] = -cos(phi) * sin(theta); | 
| 115 | 
< | 
    A[2][2] = cos(theta); | 
| 110 | 
> | 
    cphi = cos(phi); | 
| 111 | 
> | 
    sphi = sin(phi); | 
| 112 | 
> | 
    ctheta = cos(theta); | 
| 113 | 
> | 
    stheta = sin(theta); | 
| 114 | 
  | 
 | 
| 115 | 
< | 
} | 
| 115 | 
> | 
    // get unit vectors along the phi, theta and psi rotation axes | 
| 116 | 
  | 
 | 
| 117 | 
< | 
void RigidBody::getQ( double q[4] ){ | 
| 118 | 
< | 
   | 
| 119 | 
< | 
  double t, s; | 
| 122 | 
< | 
  double ad1, ad2, ad3; | 
| 123 | 
< | 
     | 
| 124 | 
< | 
  t = A[0][0] + A[1][1] + A[2][2] + 1.0; | 
| 125 | 
< | 
  if( t > 0.0 ){ | 
| 126 | 
< | 
     | 
| 127 | 
< | 
    s = 0.5 / sqrt( t ); | 
| 128 | 
< | 
    q[0] = 0.25 / s; | 
| 129 | 
< | 
    q[1] = (A[1][2] - A[2][1]) * s; | 
| 130 | 
< | 
    q[2] = (A[2][0] - A[0][2]) * s; | 
| 131 | 
< | 
    q[3] = (A[0][1] - A[1][0]) * s; | 
| 132 | 
< | 
  } | 
| 133 | 
< | 
  else{ | 
| 134 | 
< | 
     | 
| 135 | 
< | 
    ad1 = fabs( A[0][0] ); | 
| 136 | 
< | 
    ad2 = fabs( A[1][1] ); | 
| 137 | 
< | 
    ad3 = fabs( A[2][2] ); | 
| 138 | 
< | 
     | 
| 139 | 
< | 
    if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 140 | 
< | 
       | 
| 141 | 
< | 
      s = 2.0 * sqrt( 1.0 + A[0][0] - A[1][1] - A[2][2] ); | 
| 142 | 
< | 
      q[0] = (A[1][2] + A[2][1]) / s; | 
| 143 | 
< | 
      q[1] = 0.5 / s; | 
| 144 | 
< | 
      q[2] = (A[0][1] + A[1][0]) / s; | 
| 145 | 
< | 
      q[3] = (A[0][2] + A[2][0]) / s; | 
| 146 | 
< | 
    } | 
| 147 | 
< | 
    else if( ad2 >= ad1 && ad2 >= ad3 ){ | 
| 148 | 
< | 
       | 
| 149 | 
< | 
      s = sqrt( 1.0 + A[1][1] - A[0][0] - A[2][2] ) * 2.0; | 
| 150 | 
< | 
      q[0] = (A[0][2] + A[2][0]) / s; | 
| 151 | 
< | 
      q[1] = (A[0][1] + A[1][0]) / s; | 
| 152 | 
< | 
      q[2] = 0.5 / s; | 
| 153 | 
< | 
      q[3] = (A[1][2] + A[2][1]) / s; | 
| 154 | 
< | 
    } | 
| 155 | 
< | 
    else{ | 
| 156 | 
< | 
       | 
| 157 | 
< | 
      s = sqrt( 1.0 + A[2][2] - A[0][0] - A[1][1] ) * 2.0; | 
| 158 | 
< | 
      q[0] = (A[0][1] + A[1][0]) / s; | 
| 159 | 
< | 
      q[1] = (A[0][2] + A[2][0]) / s; | 
| 160 | 
< | 
      q[2] = (A[1][2] + A[2][1]) / s; | 
| 161 | 
< | 
      q[3] = 0.5 / s; | 
| 162 | 
< | 
    } | 
| 163 | 
< | 
  } | 
| 164 | 
< | 
} | 
| 117 | 
> | 
    ephi[0] = 0.0; | 
| 118 | 
> | 
    ephi[1] = 0.0; | 
| 119 | 
> | 
    ephi[2] = 1.0; | 
| 120 | 
  | 
 | 
| 121 | 
< | 
void RigidBody::setQ( double the_q[4] ){ | 
| 121 | 
> | 
    etheta[0] = cphi; | 
| 122 | 
> | 
    etheta[1] = sphi; | 
| 123 | 
> | 
    etheta[2] = 0.0; | 
| 124 | 
  | 
 | 
| 125 | 
< | 
  double q0Sqr, q1Sqr, q2Sqr, q3Sqr; | 
| 126 | 
< | 
   | 
| 127 | 
< | 
  q0Sqr = the_q[0] * the_q[0]; | 
| 171 | 
< | 
  q1Sqr = the_q[1] * the_q[1]; | 
| 172 | 
< | 
  q2Sqr = the_q[2] * the_q[2]; | 
| 173 | 
< | 
  q3Sqr = the_q[3] * the_q[3]; | 
| 174 | 
< | 
   | 
| 175 | 
< | 
  A[0][0] = q0Sqr + q1Sqr - q2Sqr - q3Sqr; | 
| 176 | 
< | 
  A[0][1] = 2.0 * ( the_q[1] * the_q[2] + the_q[0] * the_q[3] ); | 
| 177 | 
< | 
  A[0][2] = 2.0 * ( the_q[1] * the_q[3] - the_q[0] * the_q[2] ); | 
| 178 | 
< | 
   | 
| 179 | 
< | 
  A[1][0] = 2.0 * ( the_q[1] * the_q[2] - the_q[0] * the_q[3] ); | 
| 180 | 
< | 
  A[1][1] = q0Sqr - q1Sqr + q2Sqr - q3Sqr; | 
| 181 | 
< | 
  A[1][2] = 2.0 * ( the_q[2] * the_q[3] + the_q[0] * the_q[1] ); | 
| 182 | 
< | 
   | 
| 183 | 
< | 
  A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); | 
| 184 | 
< | 
  A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); | 
| 185 | 
< | 
  A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr;    | 
| 125 | 
> | 
    epsi[0] = stheta * cphi; | 
| 126 | 
> | 
    epsi[1] = stheta * sphi; | 
| 127 | 
> | 
    epsi[2] = ctheta; | 
| 128 | 
  | 
 | 
| 129 | 
< | 
} | 
| 129 | 
> | 
    //gradient is equal to -force | 
| 130 | 
> | 
    for (int j = 0 ; j<3; j++) | 
| 131 | 
> | 
        grad[j] = -force[j]; | 
| 132 | 
  | 
 | 
| 133 | 
< | 
void RigidBody::getA( double the_A[3][3] ){ | 
| 190 | 
< | 
   | 
| 191 | 
< | 
  for (int i = 0; i < 3; i++)  | 
| 192 | 
< | 
    for (int j = 0; j < 3; j++)  | 
| 193 | 
< | 
      the_A[i][j] = A[i][j]; | 
| 133 | 
> | 
    for (int j = 0; j < 3; j++ ) { | 
| 134 | 
  | 
 | 
| 135 | 
< | 
} | 
| 135 | 
> | 
        grad[3] += torque[j]*ephi[j]; | 
| 136 | 
> | 
        grad[4] += torque[j]*etheta[j]; | 
| 137 | 
> | 
        grad[5] += torque[j]*epsi[j]; | 
| 138 | 
  | 
 | 
| 139 | 
< | 
void RigidBody::setA( double the_A[3][3] ){ | 
| 139 | 
> | 
    } | 
| 140 | 
> | 
     | 
| 141 | 
> | 
    return grad; | 
| 142 | 
> | 
}     | 
| 143 | 
  | 
 | 
| 144 | 
< | 
  for (int i = 0; i < 3; i++)  | 
| 145 | 
< | 
    for (int j = 0; j < 3; j++)  | 
| 146 | 
< | 
      A[i][j] = the_A[i][j]; | 
| 202 | 
< | 
    | 
| 203 | 
< | 
} | 
| 144 | 
> | 
void RigidBody::accept(BaseVisitor* v) { | 
| 145 | 
> | 
    v->visit(this); | 
| 146 | 
> | 
}     | 
| 147 | 
  | 
 | 
| 148 | 
< | 
void RigidBody::getJ( double theJ[3] ){ | 
| 149 | 
< | 
   | 
| 150 | 
< | 
  for (int i = 0; i < 3; i++) | 
| 151 | 
< | 
    theJ[i] = ji[i]; | 
| 148 | 
> | 
/**@todo need modification */ | 
| 149 | 
> | 
void  RigidBody::calcRefCoords() { | 
| 150 | 
> | 
    double mtmp; | 
| 151 | 
> | 
    Vector3d refCOM(0.0); | 
| 152 | 
> | 
    mass_ = 0.0; | 
| 153 | 
> | 
    for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 154 | 
> | 
        mtmp = atoms_[i]->getMass(); | 
| 155 | 
> | 
        mass_ += mtmp; | 
| 156 | 
> | 
        refCOM += refCoords_[i]*mtmp; | 
| 157 | 
> | 
    } | 
| 158 | 
> | 
    refCOM /= mass_; | 
| 159 | 
  | 
 | 
| 160 | 
< | 
} | 
| 160 | 
> | 
    // Next, move the origin of the reference coordinate system to the COM: | 
| 161 | 
> | 
    for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 162 | 
> | 
        refCoords_[i] -= refCOM; | 
| 163 | 
> | 
    } | 
| 164 | 
  | 
 | 
| 165 | 
< | 
void RigidBody::setJ( double theJ[3] ){ | 
| 165 | 
> | 
// Moment of Inertia calculation | 
| 166 | 
> | 
    Mat3x3d Itmp(0.0); | 
| 167 | 
  | 
   | 
| 168 | 
< | 
  for (int i = 0; i < 3; i++) | 
| 169 | 
< | 
    ji[i] = theJ[i]; | 
| 168 | 
> | 
    for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 169 | 
> | 
        mtmp = atoms_[i]->getMass(); | 
| 170 | 
> | 
        Itmp -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 171 | 
> | 
        double r2 = refCoords_[i].lengthSquare(); | 
| 172 | 
> | 
        Itmp(0, 0) += mtmp * r2; | 
| 173 | 
> | 
        Itmp(1, 1) += mtmp * r2; | 
| 174 | 
> | 
        Itmp(2, 2) += mtmp * r2; | 
| 175 | 
> | 
    } | 
| 176 | 
  | 
 | 
| 177 | 
+ | 
    //project the inertial moment of directional atoms into this rigid body | 
| 178 | 
+ | 
    for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 179 | 
+ | 
        if (atoms_[i]->isDirectional()) { | 
| 180 | 
+ | 
            RectMatrix<double, 3, 3> Iproject = refOrients_[i].transpose() * atoms_[i]->getI(); | 
| 181 | 
+ | 
            Itmp(0, 0) += Iproject(0, 0); | 
| 182 | 
+ | 
            Itmp(1, 1) += Iproject(1, 1); | 
| 183 | 
+ | 
            Itmp(2, 2) += Iproject(2, 2); | 
| 184 | 
+ | 
        } | 
| 185 | 
+ | 
    } | 
| 186 | 
+ | 
 | 
| 187 | 
+ | 
    //diagonalize  | 
| 188 | 
+ | 
    Vector3d evals; | 
| 189 | 
+ | 
    Mat3x3d::diagonalize(Itmp, evals, sU_); | 
| 190 | 
+ | 
 | 
| 191 | 
+ | 
    // zero out I and then fill the diagonals with the moments of inertia: | 
| 192 | 
+ | 
    inertiaTensor_(0, 0) = evals[0]; | 
| 193 | 
+ | 
    inertiaTensor_(1, 1) = evals[1]; | 
| 194 | 
+ | 
    inertiaTensor_(2, 2) = evals[2]; | 
| 195 | 
+ | 
         | 
| 196 | 
+ | 
    int nLinearAxis = 0; | 
| 197 | 
+ | 
    for (int i = 0; i < 3; i++) {     | 
| 198 | 
+ | 
        if (fabs(evals[i]) < oopse::epsilon) { | 
| 199 | 
+ | 
            linear_ = true; | 
| 200 | 
+ | 
            linearAxis_ = i; | 
| 201 | 
+ | 
            ++ nLinearAxis; | 
| 202 | 
+ | 
        } | 
| 203 | 
+ | 
    } | 
| 204 | 
+ | 
 | 
| 205 | 
+ | 
    if (nLinearAxis > 1) { | 
| 206 | 
+ | 
        sprintf( painCave.errMsg, | 
| 207 | 
+ | 
            "RigidBody error.\n" | 
| 208 | 
+ | 
            "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 209 | 
+ | 
            "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 210 | 
+ | 
            "\t 1) Only one atom was specified, or \n" | 
| 211 | 
+ | 
            "\t 2) All atoms were specified at the same location, or\n" | 
| 212 | 
+ | 
            "\t 3) The programmers did something stupid.\n" | 
| 213 | 
+ | 
            "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 214 | 
+ | 
            ); | 
| 215 | 
+ | 
        painCave.isFatal = 1; | 
| 216 | 
+ | 
        simError(); | 
| 217 | 
+ | 
    } | 
| 218 | 
+ | 
   | 
| 219 | 
  | 
} | 
| 220 | 
  | 
 | 
| 221 | 
< | 
void RigidBody::getTrq(double theT[3]){ | 
| 222 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 223 | 
< | 
    theT[i] = trq[i]; | 
| 224 | 
< | 
}        | 
| 221 | 
> | 
void  RigidBody::calcForcesAndTorques() { | 
| 222 | 
> | 
    Vector3d afrc; | 
| 223 | 
> | 
    Vector3d atrq; | 
| 224 | 
> | 
    Vector3d apos; | 
| 225 | 
> | 
    Vector3d rpos; | 
| 226 | 
> | 
    Vector3d frc(0.0); | 
| 227 | 
> | 
    Vector3d trq(0.0); | 
| 228 | 
> | 
    Vector3d pos = this->getPos(); | 
| 229 | 
> | 
    for (int i = 0; i < atoms_.size(); i++) { | 
| 230 | 
  | 
 | 
| 231 | 
< | 
void RigidBody::addTrq(double theT[3]){ | 
| 232 | 
< | 
  for (int i = 0; i < 3 ; i++)  | 
| 233 | 
< | 
    trq[i] += theT[i]; | 
| 234 | 
< | 
}        | 
| 231 | 
> | 
        afrc = atoms_[i]->getFrc(); | 
| 232 | 
> | 
        apos = atoms_[i]->getPos(); | 
| 233 | 
> | 
        rpos = apos - pos; | 
| 234 | 
> | 
         | 
| 235 | 
> | 
        frc += afrc; | 
| 236 | 
  | 
 | 
| 237 | 
< | 
void RigidBody::getI( double the_I[3][3] ){   | 
| 237 | 
> | 
        trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 238 | 
> | 
        trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 239 | 
> | 
        trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 240 | 
  | 
 | 
| 241 | 
< | 
    for (int i = 0; i < 3; i++)  | 
| 242 | 
< | 
      for (int j = 0; j < 3; j++)  | 
| 233 | 
< | 
        the_I[i][j] = I[i][j]; | 
| 241 | 
> | 
        // If the atom has a torque associated with it, then we also need to  | 
| 242 | 
> | 
        // migrate the torques onto the center of mass: | 
| 243 | 
  | 
 | 
| 244 | 
+ | 
        if (atoms_[i]->isDirectional()) { | 
| 245 | 
+ | 
            atrq = atoms_[i]->getTrq(); | 
| 246 | 
+ | 
            trq += atrq; | 
| 247 | 
+ | 
        } | 
| 248 | 
+ | 
         | 
| 249 | 
+ | 
    } | 
| 250 | 
+ | 
     | 
| 251 | 
+ | 
    setFrc(frc); | 
| 252 | 
+ | 
    setTrq(trq); | 
| 253 | 
+ | 
     | 
| 254 | 
  | 
} | 
| 255 | 
  | 
 | 
| 256 | 
< | 
void RigidBody::lab2Body( double r[3] ){ | 
| 256 | 
> | 
void  RigidBody::updateAtoms() { | 
| 257 | 
> | 
    unsigned int i; | 
| 258 | 
> | 
    Vector3d ref; | 
| 259 | 
> | 
    Vector3d apos; | 
| 260 | 
> | 
    DirectionalAtom* dAtom; | 
| 261 | 
> | 
    Vector3d pos = getPos(); | 
| 262 | 
> | 
    RotMat3x3d a = getA(); | 
| 263 | 
> | 
     | 
| 264 | 
> | 
    for (i = 0; i < atoms_.size(); i++) { | 
| 265 | 
> | 
      | 
| 266 | 
> | 
        ref = body2Lab(refCoords_[i]); | 
| 267 | 
  | 
 | 
| 268 | 
< | 
  double rl[3]; // the lab frame vector  | 
| 240 | 
< | 
   | 
| 241 | 
< | 
  rl[0] = r[0]; | 
| 242 | 
< | 
  rl[1] = r[1]; | 
| 243 | 
< | 
  rl[2] = r[2]; | 
| 244 | 
< | 
   | 
| 245 | 
< | 
  r[0] = (A[0][0] * rl[0]) + (A[0][1] * rl[1]) + (A[0][2] * rl[2]); | 
| 246 | 
< | 
  r[1] = (A[1][0] * rl[0]) + (A[1][1] * rl[1]) + (A[1][2] * rl[2]); | 
| 247 | 
< | 
  r[2] = (A[2][0] * rl[0]) + (A[2][1] * rl[1]) + (A[2][2] * rl[2]); | 
| 268 | 
> | 
        apos = pos + ref; | 
| 269 | 
  | 
 | 
| 270 | 
< | 
} | 
| 270 | 
> | 
        atoms_[i]->setPos(apos); | 
| 271 | 
  | 
 | 
| 272 | 
< | 
void RigidBody::body2Lab( double r[3] ){ | 
| 272 | 
> | 
        if (atoms_[i]->isDirectional()) { | 
| 273 | 
> | 
           | 
| 274 | 
> | 
          dAtom = (DirectionalAtom *) atoms_[i]; | 
| 275 | 
> | 
          dAtom->setA(a * refOrients_[i]); | 
| 276 | 
> | 
          //dAtom->rotateBy( A );       | 
| 277 | 
> | 
        } | 
| 278 | 
  | 
 | 
| 279 | 
< | 
  double rb[3]; // the body frame vector  | 
| 279 | 
> | 
    } | 
| 280 | 
  | 
   | 
| 255 | 
– | 
  rb[0] = r[0]; | 
| 256 | 
– | 
  rb[1] = r[1]; | 
| 257 | 
– | 
  rb[2] = r[2]; | 
| 258 | 
– | 
   | 
| 259 | 
– | 
  r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]); | 
| 260 | 
– | 
  r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]); | 
| 261 | 
– | 
  r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]); | 
| 262 | 
– | 
 | 
| 281 | 
  | 
} | 
| 282 | 
  | 
 | 
| 265 | 
– | 
double RigidBody::getZangle( ){ | 
| 266 | 
– | 
    return zAngle; | 
| 267 | 
– | 
} | 
| 283 | 
  | 
 | 
| 284 | 
< | 
void RigidBody::setZangle( double zAng ){ | 
| 285 | 
< | 
    zAngle = zAng; | 
| 286 | 
< | 
} | 
| 284 | 
> | 
void  RigidBody::updateAtoms(int frame) { | 
| 285 | 
> | 
    unsigned int i; | 
| 286 | 
> | 
    Vector3d ref; | 
| 287 | 
> | 
    Vector3d apos; | 
| 288 | 
> | 
    DirectionalAtom* dAtom; | 
| 289 | 
> | 
    Vector3d pos = getPos(frame); | 
| 290 | 
> | 
    RotMat3x3d a = getA(frame); | 
| 291 | 
> | 
     | 
| 292 | 
> | 
    for (i = 0; i < atoms_.size(); i++) { | 
| 293 | 
> | 
      | 
| 294 | 
> | 
        ref = body2Lab(refCoords_[i]); | 
| 295 | 
  | 
 | 
| 296 | 
< | 
void RigidBody::addZangle( double zAng ){ | 
| 274 | 
< | 
    zAngle += zAng; | 
| 275 | 
< | 
} | 
| 296 | 
> | 
        apos = pos + ref; | 
| 297 | 
  | 
 | 
| 298 | 
< | 
void RigidBody::calcRefCoords( ) { | 
| 298 | 
> | 
        atoms_[i]->setPos(apos, frame); | 
| 299 | 
  | 
 | 
| 300 | 
< | 
  int i,j,k, it, n_linear_coords; | 
| 301 | 
< | 
  double mtmp; | 
| 302 | 
< | 
  vec3 apos; | 
| 303 | 
< | 
  double refCOM[3]; | 
| 304 | 
< | 
  vec3 ptmp; | 
| 284 | 
< | 
  double Itmp[3][3]; | 
| 285 | 
< | 
  double evals[3]; | 
| 286 | 
< | 
  double evects[3][3]; | 
| 287 | 
< | 
  double r, r2, len; | 
| 300 | 
> | 
        if (atoms_[i]->isDirectional()) { | 
| 301 | 
> | 
           | 
| 302 | 
> | 
          dAtom = (DirectionalAtom *) atoms_[i]; | 
| 303 | 
> | 
          dAtom->setA(a * refOrients_[i], frame); | 
| 304 | 
> | 
        } | 
| 305 | 
  | 
 | 
| 306 | 
< | 
  // First, find the center of mass: | 
| 306 | 
> | 
    } | 
| 307 | 
  | 
   | 
| 308 | 
< | 
  mass = 0.0; | 
| 292 | 
< | 
  for (j=0; j<3; j++) | 
| 293 | 
< | 
    refCOM[j] = 0.0; | 
| 294 | 
< | 
   | 
| 295 | 
< | 
  for (i = 0; i < myAtoms.size(); i++) { | 
| 296 | 
< | 
    mtmp = myAtoms[i]->getMass(); | 
| 297 | 
< | 
    mass += mtmp; | 
| 308 | 
> | 
} | 
| 309 | 
  | 
 | 
| 310 | 
< | 
    apos = refCoords[i]; | 
| 311 | 
< | 
     | 
| 301 | 
< | 
    for(j = 0; j < 3; j++) { | 
| 302 | 
< | 
      refCOM[j] += apos[j]*mtmp;      | 
| 303 | 
< | 
    }     | 
| 304 | 
< | 
  } | 
| 305 | 
< | 
   | 
| 306 | 
< | 
  for(j = 0; j < 3; j++)  | 
| 307 | 
< | 
    refCOM[j] /= mass; | 
| 310 | 
> | 
void RigidBody::updateAtomVel() { | 
| 311 | 
> | 
    Mat3x3d skewMat;; | 
| 312 | 
  | 
 | 
| 313 | 
< | 
// Next, move the origin of the reference coordinate system to the COM: | 
| 313 | 
> | 
    Vector3d ji = getJ(); | 
| 314 | 
> | 
    Mat3x3d I =  getI(); | 
| 315 | 
  | 
 | 
| 316 | 
< | 
  for (i = 0; i < myAtoms.size(); i++) { | 
| 317 | 
< | 
    apos = refCoords[i]; | 
| 318 | 
< | 
    for (j=0; j < 3; j++) { | 
| 319 | 
< | 
      apos[j] = apos[j] - refCOM[j]; | 
| 316 | 
> | 
    skewMat(0, 0) =0; | 
| 317 | 
> | 
    skewMat(0, 1) = ji[2] /I(2, 2); | 
| 318 | 
> | 
    skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 319 | 
> | 
 | 
| 320 | 
> | 
    skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 321 | 
> | 
    skewMat(1, 1) = 0; | 
| 322 | 
> | 
    skewMat(1, 2) = ji[0]/I(0, 0); | 
| 323 | 
> | 
 | 
| 324 | 
> | 
    skewMat(2, 0) =ji[1] /I(1, 1); | 
| 325 | 
> | 
    skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 326 | 
> | 
    skewMat(2, 2) = 0; | 
| 327 | 
> | 
 | 
| 328 | 
> | 
    Mat3x3d mat = (getA() * skewMat).transpose(); | 
| 329 | 
> | 
    Vector3d rbVel = getVel(); | 
| 330 | 
> | 
 | 
| 331 | 
> | 
 | 
| 332 | 
> | 
    Vector3d velRot;         | 
| 333 | 
> | 
    for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 334 | 
> | 
        atoms_[i]->setVel(rbVel + mat * refCoords_[i]); | 
| 335 | 
  | 
    } | 
| 316 | 
– | 
    refCoords[i] = apos; | 
| 317 | 
– | 
  } | 
| 336 | 
  | 
 | 
| 337 | 
< | 
// Moment of Inertia calculation | 
| 337 | 
> | 
} | 
| 338 | 
  | 
 | 
| 339 | 
< | 
  for (i = 0; i < 3; i++)  | 
| 340 | 
< | 
    for (j = 0; j < 3; j++) | 
| 323 | 
< | 
      Itmp[i][j] = 0.0;   | 
| 324 | 
< | 
   | 
| 325 | 
< | 
  for (it = 0; it < myAtoms.size(); it++) { | 
| 339 | 
> | 
void RigidBody::updateAtomVel(int frame) { | 
| 340 | 
> | 
    Mat3x3d skewMat;; | 
| 341 | 
  | 
 | 
| 342 | 
< | 
    mtmp = myAtoms[it]->getMass(); | 
| 343 | 
< | 
    ptmp = refCoords[it]; | 
| 329 | 
< | 
    r= norm3(ptmp.vec); | 
| 330 | 
< | 
    r2 = r*r; | 
| 331 | 
< | 
     | 
| 332 | 
< | 
    for (i = 0; i < 3; i++) { | 
| 333 | 
< | 
      for (j = 0; j < 3; j++) { | 
| 334 | 
< | 
         | 
| 335 | 
< | 
        if (i==j) Itmp[i][j] += mtmp * r2; | 
| 342 | 
> | 
    Vector3d ji = getJ(frame); | 
| 343 | 
> | 
    Mat3x3d I =  getI(); | 
| 344 | 
  | 
 | 
| 345 | 
< | 
        Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; | 
| 346 | 
< | 
      } | 
| 347 | 
< | 
    } | 
| 340 | 
< | 
  } | 
| 341 | 
< | 
   | 
| 342 | 
< | 
  diagonalize3x3(Itmp, evals, sU); | 
| 343 | 
< | 
   | 
| 344 | 
< | 
  // zero out I and then fill the diagonals with the moments of inertia: | 
| 345 | 
> | 
    skewMat(0, 0) =0; | 
| 346 | 
> | 
    skewMat(0, 1) = ji[2] /I(2, 2); | 
| 347 | 
> | 
    skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 348 | 
  | 
 | 
| 349 | 
< | 
  n_linear_coords = 0; | 
| 349 | 
> | 
    skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 350 | 
> | 
    skewMat(1, 1) = 0; | 
| 351 | 
> | 
    skewMat(1, 2) = ji[0]/I(0, 0); | 
| 352 | 
  | 
 | 
| 353 | 
< | 
  for (i = 0; i < 3; i++) { | 
| 354 | 
< | 
    for (j = 0; j < 3; j++) { | 
| 355 | 
< | 
      I[i][j] = 0.0;   | 
| 351 | 
< | 
    } | 
| 352 | 
< | 
    I[i][i] = evals[i]; | 
| 353 | 
> | 
    skewMat(2, 0) =ji[1] /I(1, 1); | 
| 354 | 
> | 
    skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 355 | 
> | 
    skewMat(2, 2) = 0; | 
| 356 | 
  | 
 | 
| 357 | 
< | 
    if (fabs(evals[i]) < momIntTol) { | 
| 358 | 
< | 
      is_linear = true; | 
| 356 | 
< | 
      n_linear_coords++; | 
| 357 | 
< | 
      linear_axis = i; | 
| 358 | 
< | 
    } | 
| 359 | 
< | 
  } | 
| 357 | 
> | 
    Mat3x3d mat = (getA(frame) * skewMat).transpose(); | 
| 358 | 
> | 
    Vector3d rbVel = getVel(frame); | 
| 359 | 
  | 
 | 
| 360 | 
< | 
  if (n_linear_coords > 1) { | 
| 361 | 
< | 
          sprintf( painCave.errMsg, | 
| 362 | 
< | 
               "RigidBody error.\n" | 
| 363 | 
< | 
               "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 365 | 
< | 
               "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 366 | 
< | 
               "\t 1) Only one atom was specified, or \n" | 
| 367 | 
< | 
               "\t 2) All atoms were specified at the same location, or\n" | 
| 368 | 
< | 
               "\t 3) The programmers did something stupid.\n" | 
| 369 | 
< | 
               "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 370 | 
< | 
               ); | 
| 371 | 
< | 
      painCave.isFatal = 1; | 
| 372 | 
< | 
      simError(); | 
| 373 | 
< | 
  } | 
| 374 | 
< | 
   | 
| 375 | 
< | 
  // renormalize column vectors: | 
| 376 | 
< | 
   | 
| 377 | 
< | 
  for (i=0; i < 3; i++) { | 
| 378 | 
< | 
    len = 0.0; | 
| 379 | 
< | 
    for (j = 0; j < 3; j++) { | 
| 380 | 
< | 
      len += sU[i][j]*sU[i][j]; | 
| 360 | 
> | 
 | 
| 361 | 
> | 
    Vector3d velRot;         | 
| 362 | 
> | 
    for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 363 | 
> | 
        atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); | 
| 364 | 
  | 
    } | 
| 365 | 
< | 
    len = sqrt(len); | 
| 383 | 
< | 
    for (j = 0; j < 3; j++) { | 
| 384 | 
< | 
      sU[i][j] /= len; | 
| 385 | 
< | 
    } | 
| 386 | 
< | 
  } | 
| 365 | 
> | 
 | 
| 366 | 
  | 
} | 
| 367 | 
  | 
 | 
| 368 | 
< | 
void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){ | 
| 368 | 
> | 
         | 
| 369 | 
  | 
 | 
| 370 | 
< | 
  double phi, theta, psi; | 
| 371 | 
< | 
   | 
| 393 | 
< | 
  phi = euler[0]; | 
| 394 | 
< | 
  theta = euler[1]; | 
| 395 | 
< | 
  psi = euler[2]; | 
| 396 | 
< | 
   | 
| 397 | 
< | 
  myA[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); | 
| 398 | 
< | 
  myA[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); | 
| 399 | 
< | 
  myA[0][2] = sin(theta) * sin(psi); | 
| 400 | 
< | 
   | 
| 401 | 
< | 
  myA[1][0] = -(cos(phi) * sin(psi)) - (sin(phi) * cos(theta) * cos(psi)); | 
| 402 | 
< | 
  myA[1][1] = -(sin(phi) * sin(psi)) + (cos(phi) * cos(theta) * cos(psi)); | 
| 403 | 
< | 
  myA[1][2] = sin(theta) * cos(psi); | 
| 404 | 
< | 
   | 
| 405 | 
< | 
  myA[2][0] = sin(phi) * sin(theta); | 
| 406 | 
< | 
  myA[2][1] = -cos(phi) * sin(theta); | 
| 407 | 
< | 
  myA[2][2] = cos(theta); | 
| 370 | 
> | 
bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { | 
| 371 | 
> | 
    if (index < atoms_.size()) { | 
| 372 | 
  | 
 | 
| 373 | 
+ | 
        Vector3d ref = body2Lab(refCoords_[index]); | 
| 374 | 
+ | 
        pos = getPos() + ref; | 
| 375 | 
+ | 
        return true; | 
| 376 | 
+ | 
    } else { | 
| 377 | 
+ | 
        std::cerr << index << " is an invalid index, current rigid body contains "  | 
| 378 | 
+ | 
                      << atoms_.size() << "atoms" << std::endl; | 
| 379 | 
+ | 
        return false; | 
| 380 | 
+ | 
    }     | 
| 381 | 
  | 
} | 
| 382 | 
  | 
 | 
| 383 | 
< | 
void RigidBody::calcForcesAndTorques() { | 
| 383 | 
> | 
bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { | 
| 384 | 
> | 
    std::vector<Atom*>::iterator i; | 
| 385 | 
> | 
    i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 386 | 
> | 
    if (i != atoms_.end()) { | 
| 387 | 
> | 
        //RigidBody class makes sure refCoords_ and atoms_ match each other  | 
| 388 | 
> | 
        Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); | 
| 389 | 
> | 
        pos = getPos() + ref; | 
| 390 | 
> | 
        return true; | 
| 391 | 
> | 
    } else { | 
| 392 | 
> | 
        std::cerr << "Atom " << atom->getGlobalIndex()  | 
| 393 | 
> | 
                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;  | 
| 394 | 
> | 
        return false; | 
| 395 | 
> | 
    } | 
| 396 | 
> | 
} | 
| 397 | 
> | 
bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { | 
| 398 | 
  | 
 | 
| 399 | 
< | 
  // Convert Atomic forces and torques to total forces and torques: | 
| 414 | 
< | 
  int i, j; | 
| 415 | 
< | 
  double apos[3]; | 
| 416 | 
< | 
  double afrc[3]; | 
| 417 | 
< | 
  double atrq[3]; | 
| 418 | 
< | 
  double rpos[3]; | 
| 399 | 
> | 
    //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 400 | 
  | 
 | 
| 401 | 
< | 
  zeroForces(); | 
| 421 | 
< | 
   | 
| 422 | 
< | 
  for (i = 0; i < myAtoms.size(); i++) { | 
| 401 | 
> | 
    if (index < atoms_.size()) { | 
| 402 | 
  | 
 | 
| 403 | 
< | 
    myAtoms[i]->getPos(apos); | 
| 404 | 
< | 
    myAtoms[i]->getFrc(afrc); | 
| 403 | 
> | 
        Vector3d velRot; | 
| 404 | 
> | 
        Mat3x3d skewMat;; | 
| 405 | 
> | 
        Vector3d ref = refCoords_[index]; | 
| 406 | 
> | 
        Vector3d ji = getJ(); | 
| 407 | 
> | 
        Mat3x3d I =  getI(); | 
| 408 | 
  | 
 | 
| 409 | 
< | 
    for (j=0; j<3; j++) { | 
| 410 | 
< | 
      rpos[j] = apos[j] - pos[j]; | 
| 411 | 
< | 
      frc[j] += afrc[j]; | 
| 430 | 
< | 
    } | 
| 431 | 
< | 
     | 
| 432 | 
< | 
    trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 433 | 
< | 
    trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 434 | 
< | 
    trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 409 | 
> | 
        skewMat(0, 0) =0; | 
| 410 | 
> | 
        skewMat(0, 1) = ji[2] /I(2, 2); | 
| 411 | 
> | 
        skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 412 | 
  | 
 | 
| 413 | 
< | 
    // If the atom has a torque associated with it, then we also need to  | 
| 414 | 
< | 
    // migrate the torques onto the center of mass: | 
| 413 | 
> | 
        skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 414 | 
> | 
        skewMat(1, 1) = 0; | 
| 415 | 
> | 
        skewMat(1, 2) = ji[0]/I(0, 0); | 
| 416 | 
  | 
 | 
| 417 | 
< | 
    if (myAtoms[i]->isDirectional()) { | 
| 417 | 
> | 
        skewMat(2, 0) =ji[1] /I(1, 1); | 
| 418 | 
> | 
        skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 419 | 
> | 
        skewMat(2, 2) = 0; | 
| 420 | 
  | 
 | 
| 421 | 
< | 
      myAtoms[i]->getTrq(atrq); | 
| 422 | 
< | 
       | 
| 423 | 
< | 
      for (j=0; j<3; j++)  | 
| 424 | 
< | 
        trq[j] += atrq[j]; | 
| 421 | 
> | 
        velRot = (getA() * skewMat).transpose() * ref; | 
| 422 | 
> | 
 | 
| 423 | 
> | 
        vel =getVel() + velRot; | 
| 424 | 
> | 
        return true; | 
| 425 | 
> | 
         | 
| 426 | 
> | 
    } else { | 
| 427 | 
> | 
        std::cerr << index << " is an invalid index, current rigid body contains "  | 
| 428 | 
> | 
                      << atoms_.size() << "atoms" << std::endl; | 
| 429 | 
> | 
        return false; | 
| 430 | 
  | 
    } | 
| 431 | 
< | 
  } | 
| 431 | 
> | 
} | 
| 432 | 
  | 
 | 
| 433 | 
< | 
  // Convert Torque to Body-fixed coordinates: | 
| 449 | 
< | 
  // (Actually, on second thought, don't.  Integrator does this now.) | 
| 450 | 
< | 
  // lab2Body(trq); | 
| 433 | 
> | 
bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { | 
| 434 | 
  | 
 | 
| 435 | 
+ | 
    std::vector<Atom*>::iterator i; | 
| 436 | 
+ | 
    i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 437 | 
+ | 
    if (i != atoms_.end()) { | 
| 438 | 
+ | 
        return getAtomVel(vel, i - atoms_.begin()); | 
| 439 | 
+ | 
    } else { | 
| 440 | 
+ | 
        std::cerr << "Atom " << atom->getGlobalIndex()  | 
| 441 | 
+ | 
                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;     | 
| 442 | 
+ | 
        return false; | 
| 443 | 
+ | 
    }     | 
| 444 | 
  | 
} | 
| 445 | 
  | 
 | 
| 446 | 
< | 
void RigidBody::updateAtoms() { | 
| 447 | 
< | 
  int i, j; | 
| 456 | 
< | 
  vec3 ref; | 
| 457 | 
< | 
  double apos[3]; | 
| 458 | 
< | 
  DirectionalAtom* dAtom; | 
| 459 | 
< | 
   | 
| 460 | 
< | 
  for (i = 0; i < myAtoms.size(); i++) { | 
| 461 | 
< | 
      | 
| 462 | 
< | 
    ref = refCoords[i]; | 
| 446 | 
> | 
bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { | 
| 447 | 
> | 
    if (index < atoms_.size()) { | 
| 448 | 
  | 
 | 
| 449 | 
< | 
    body2Lab(ref.vec); | 
| 450 | 
< | 
     | 
| 451 | 
< | 
    for (j = 0; j<3; j++)  | 
| 452 | 
< | 
      apos[j] = pos[j] + ref.vec[j]; | 
| 453 | 
< | 
     | 
| 454 | 
< | 
    myAtoms[i]->setPos(apos); | 
| 470 | 
< | 
     | 
| 471 | 
< | 
    if (myAtoms[i]->isDirectional()) { | 
| 472 | 
< | 
       | 
| 473 | 
< | 
      dAtom = (DirectionalAtom *) myAtoms[i]; | 
| 474 | 
< | 
      dAtom->rotateBy( A ); | 
| 475 | 
< | 
       | 
| 449 | 
> | 
        coor = refCoords_[index]; | 
| 450 | 
> | 
        return true; | 
| 451 | 
> | 
    } else { | 
| 452 | 
> | 
        std::cerr << index << " is an invalid index, current rigid body contains "  | 
| 453 | 
> | 
                      << atoms_.size() << "atoms" << std::endl; | 
| 454 | 
> | 
        return false; | 
| 455 | 
  | 
    } | 
| 456 | 
< | 
  }   | 
| 456 | 
> | 
 | 
| 457 | 
  | 
} | 
| 458 | 
  | 
 | 
| 459 | 
< | 
void RigidBody::getGrad( double grad[6] ) { | 
| 459 | 
> | 
bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { | 
| 460 | 
> | 
    std::vector<Atom*>::iterator i; | 
| 461 | 
> | 
    i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 462 | 
> | 
    if (i != atoms_.end()) { | 
| 463 | 
> | 
        //RigidBody class makes sure refCoords_ and atoms_ match each other  | 
| 464 | 
> | 
        coor = refCoords_[i - atoms_.begin()]; | 
| 465 | 
> | 
        return true; | 
| 466 | 
> | 
    } else { | 
| 467 | 
> | 
        std::cerr << "Atom " << atom->getGlobalIndex()  | 
| 468 | 
> | 
                      <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl;     | 
| 469 | 
> | 
        return false; | 
| 470 | 
> | 
    } | 
| 471 | 
  | 
 | 
| 472 | 
< | 
  double myEuler[3]; | 
| 483 | 
< | 
  double phi, theta, psi; | 
| 484 | 
< | 
  double cphi, sphi, ctheta, stheta; | 
| 485 | 
< | 
  double ephi[3]; | 
| 486 | 
< | 
  double etheta[3]; | 
| 487 | 
< | 
  double epsi[3]; | 
| 488 | 
< | 
   | 
| 489 | 
< | 
  this->getEulerAngles(myEuler); | 
| 472 | 
> | 
} | 
| 473 | 
  | 
 | 
| 491 | 
– | 
  phi = myEuler[0]; | 
| 492 | 
– | 
  theta = myEuler[1]; | 
| 493 | 
– | 
  psi = myEuler[2]; | 
| 474 | 
  | 
 | 
| 475 | 
< | 
  cphi = cos(phi); | 
| 496 | 
< | 
  sphi = sin(phi); | 
| 497 | 
< | 
  ctheta = cos(theta); | 
| 498 | 
< | 
  stheta = sin(theta); | 
| 475 | 
> | 
void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 476 | 
  | 
 | 
| 477 | 
< | 
  // get unit vectors along the phi, theta and psi rotation axes | 
| 477 | 
> | 
  Vector3d coords; | 
| 478 | 
> | 
  Vector3d euler; | 
| 479 | 
> | 
   | 
| 480 | 
  | 
 | 
| 481 | 
< | 
  ephi[0] = 0.0; | 
| 482 | 
< | 
  ephi[1] = 0.0; | 
| 483 | 
< | 
  ephi[2] = 1.0; | 
| 484 | 
< | 
 | 
| 485 | 
< | 
  etheta[0] = cphi; | 
| 486 | 
< | 
  etheta[1] = sphi; | 
| 487 | 
< | 
  etheta[2] = 0.0; | 
| 488 | 
< | 
   | 
| 489 | 
< | 
  epsi[0] = stheta * cphi; | 
| 490 | 
< | 
  epsi[1] = stheta * sphi; | 
| 512 | 
< | 
  epsi[2] = ctheta; | 
| 513 | 
< | 
   | 
| 514 | 
< | 
  for (int j = 0 ; j<3; j++) | 
| 515 | 
< | 
    grad[j] = frc[j]; | 
| 516 | 
< | 
 | 
| 517 | 
< | 
  grad[3] = 0.0; | 
| 518 | 
< | 
  grad[4] = 0.0; | 
| 519 | 
< | 
  grad[5] = 0.0; | 
| 520 | 
< | 
   | 
| 521 | 
< | 
  for (int j = 0; j < 3; j++ ) { | 
| 522 | 
< | 
     | 
| 523 | 
< | 
    grad[3] += trq[j]*ephi[j]; | 
| 524 | 
< | 
    grad[4] += trq[j]*etheta[j]; | 
| 525 | 
< | 
    grad[5] += trq[j]*epsi[j]; | 
| 526 | 
< | 
     | 
| 481 | 
> | 
  atoms_.push_back(at); | 
| 482 | 
> | 
  | 
| 483 | 
> | 
  if( !ats->havePosition() ){ | 
| 484 | 
> | 
    sprintf( painCave.errMsg, | 
| 485 | 
> | 
             "RigidBody error.\n" | 
| 486 | 
> | 
             "\tAtom %s does not have a position specified.\n" | 
| 487 | 
> | 
             "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 488 | 
> | 
             ats->getType() ); | 
| 489 | 
> | 
    painCave.isFatal = 1; | 
| 490 | 
> | 
    simError(); | 
| 491 | 
  | 
  } | 
| 492 | 
  | 
   | 
| 493 | 
< | 
} | 
| 493 | 
> | 
  coords[0] = ats->getPosX(); | 
| 494 | 
> | 
  coords[1] = ats->getPosY(); | 
| 495 | 
> | 
  coords[2] = ats->getPosZ(); | 
| 496 | 
  | 
 | 
| 497 | 
< | 
/** | 
| 532 | 
< | 
  * getEulerAngles computes a set of Euler angle values consistent | 
| 533 | 
< | 
  * with an input rotation matrix.  They are returned in the following | 
| 534 | 
< | 
  * order: | 
| 535 | 
< | 
  *  myEuler[0] = phi; | 
| 536 | 
< | 
  *  myEuler[1] = theta; | 
| 537 | 
< | 
  *  myEuler[2] = psi; | 
| 538 | 
< | 
*/ | 
| 539 | 
< | 
void RigidBody::getEulerAngles(double myEuler[3]) { | 
| 497 | 
> | 
  refCoords_.push_back(coords); | 
| 498 | 
  | 
 | 
| 499 | 
< | 
  // We use so-called "x-convention", which is the most common | 
| 542 | 
< | 
  // definition.  In this convention, the rotation given by Euler | 
| 543 | 
< | 
  // angles (phi, theta, psi), where the first rotation is by an angle | 
| 544 | 
< | 
  // phi about the z-axis, the second is by an angle theta (0 <= theta | 
| 545 | 
< | 
  // <= 180) about the x-axis, and the third is by an angle psi about | 
| 546 | 
< | 
  // the z-axis (again). | 
| 499 | 
> | 
  RotMat3x3d identMat = RotMat3x3d::identity(); | 
| 500 | 
  | 
   | 
| 501 | 
< | 
   | 
| 549 | 
< | 
  double phi,theta,psi,eps; | 
| 550 | 
< | 
  double pi; | 
| 551 | 
< | 
  double cphi,ctheta,cpsi; | 
| 552 | 
< | 
  double sphi,stheta,spsi; | 
| 553 | 
< | 
  double b[3]; | 
| 554 | 
< | 
  int flip[3]; | 
| 555 | 
< | 
   | 
| 556 | 
< | 
  // set the tolerance for Euler angles and rotation elements | 
| 557 | 
< | 
   | 
| 558 | 
< | 
  eps = 1.0e-8; | 
| 501 | 
> | 
  if (at->isDirectional()) {    | 
| 502 | 
  | 
 | 
| 503 | 
< | 
  theta = acos(min(1.0,max(-1.0,A[2][2]))); | 
| 504 | 
< | 
  ctheta = A[2][2];  | 
| 505 | 
< | 
  stheta = sqrt(1.0 - ctheta * ctheta); | 
| 503 | 
> | 
    if( !ats->haveOrientation() ){ | 
| 504 | 
> | 
      sprintf( painCave.errMsg, | 
| 505 | 
> | 
               "RigidBody error.\n" | 
| 506 | 
> | 
               "\tAtom %s does not have an orientation specified.\n" | 
| 507 | 
> | 
               "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 508 | 
> | 
               ats->getType() ); | 
| 509 | 
> | 
      painCave.isFatal = 1; | 
| 510 | 
> | 
      simError(); | 
| 511 | 
> | 
    }     | 
| 512 | 
> | 
     | 
| 513 | 
> | 
    euler[0] = ats->getEulerPhi(); | 
| 514 | 
> | 
    euler[1] = ats->getEulerTheta(); | 
| 515 | 
> | 
    euler[2] = ats->getEulerPsi(); | 
| 516 | 
  | 
 | 
| 517 | 
< | 
  // when sin(theta) is close to 0, we need to consider the | 
| 518 | 
< | 
  // possibility of a singularity. In this case, we can assign an | 
| 566 | 
< | 
  // arbitary value to phi (or psi), and then determine the psi (or | 
| 567 | 
< | 
  // phi) or vice-versa.  We'll assume that phi always gets the | 
| 568 | 
< | 
  // rotation, and psi is 0 in cases of singularity.  we use atan2 | 
| 569 | 
< | 
  // instead of atan, since atan2 will give us -Pi to Pi.  Since 0 <= | 
| 570 | 
< | 
  // theta <= 180, sin(theta) will be always non-negative. Therefore, | 
| 571 | 
< | 
  // it never changes the sign of both of the parameters passed to | 
| 572 | 
< | 
  // atan2. | 
| 573 | 
< | 
   | 
| 574 | 
< | 
  if (fabs(stheta) <= eps){ | 
| 575 | 
< | 
    psi = 0.0; | 
| 576 | 
< | 
    phi = atan2(-A[1][0], A[0][0]);   | 
| 577 | 
< | 
  } | 
| 578 | 
< | 
  // we only have one unique solution | 
| 579 | 
< | 
  else{     | 
| 580 | 
< | 
    phi = atan2(A[2][0], -A[2][1]); | 
| 581 | 
< | 
    psi = atan2(A[0][2], A[1][2]); | 
| 582 | 
< | 
  } | 
| 583 | 
< | 
   | 
| 584 | 
< | 
  //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 585 | 
< | 
  //if (phi < 0) | 
| 586 | 
< | 
  //  phi += M_PI; | 
| 587 | 
< | 
   | 
| 588 | 
< | 
  //if (psi < 0) | 
| 589 | 
< | 
  //  psi += M_PI; | 
| 590 | 
< | 
   | 
| 591 | 
< | 
  myEuler[0] = phi; | 
| 592 | 
< | 
  myEuler[1] = theta; | 
| 593 | 
< | 
  myEuler[2] = psi; | 
| 594 | 
< | 
   | 
| 595 | 
< | 
  return; | 
| 596 | 
< | 
} | 
| 597 | 
< | 
 | 
| 598 | 
< | 
double RigidBody::max(double x, double  y) {   | 
| 599 | 
< | 
  return (x > y) ? x : y; | 
| 600 | 
< | 
} | 
| 601 | 
< | 
 | 
| 602 | 
< | 
double RigidBody::min(double x, double  y) {   | 
| 603 | 
< | 
  return (x > y) ? y : x; | 
| 604 | 
< | 
} | 
| 605 | 
< | 
 | 
| 606 | 
< | 
void RigidBody::findCOM() { | 
| 607 | 
< | 
   | 
| 608 | 
< | 
  size_t i; | 
| 609 | 
< | 
  int j; | 
| 610 | 
< | 
  double mtmp; | 
| 611 | 
< | 
  double ptmp[3]; | 
| 612 | 
< | 
  double vtmp[3]; | 
| 613 | 
< | 
   | 
| 614 | 
< | 
  for(j = 0; j < 3; j++) { | 
| 615 | 
< | 
    pos[j] = 0.0; | 
| 616 | 
< | 
    vel[j] = 0.0; | 
| 617 | 
< | 
  } | 
| 618 | 
< | 
  mass = 0.0; | 
| 619 | 
< | 
   | 
| 620 | 
< | 
  for (i = 0; i < myAtoms.size(); i++) { | 
| 517 | 
> | 
    RotMat3x3d Atmp(euler); | 
| 518 | 
> | 
    refOrients_.push_back(Atmp); | 
| 519 | 
  | 
     | 
| 520 | 
< | 
    mtmp = myAtoms[i]->getMass();     | 
| 521 | 
< | 
    myAtoms[i]->getPos(ptmp); | 
| 624 | 
< | 
    myAtoms[i]->getVel(vtmp); | 
| 625 | 
< | 
     | 
| 626 | 
< | 
    mass += mtmp; | 
| 627 | 
< | 
     | 
| 628 | 
< | 
    for(j = 0; j < 3; j++) { | 
| 629 | 
< | 
      pos[j] += ptmp[j]*mtmp; | 
| 630 | 
< | 
      vel[j] += vtmp[j]*mtmp; | 
| 631 | 
< | 
    } | 
| 632 | 
< | 
     | 
| 520 | 
> | 
  }else { | 
| 521 | 
> | 
    refOrients_.push_back(identMat); | 
| 522 | 
  | 
  } | 
| 523 | 
  | 
   | 
| 635 | 
– | 
  for(j = 0; j < 3; j++) { | 
| 636 | 
– | 
    pos[j] /= mass; | 
| 637 | 
– | 
    vel[j] /= mass; | 
| 638 | 
– | 
  } | 
| 639 | 
– | 
 | 
| 640 | 
– | 
} | 
| 641 | 
– | 
 | 
| 642 | 
– | 
void RigidBody::accept(BaseVisitor* v){ | 
| 643 | 
– | 
  vector<Atom*>::iterator atomIter; | 
| 644 | 
– | 
  v->visit(this); | 
| 645 | 
– | 
 | 
| 646 | 
– | 
  //for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) | 
| 647 | 
– | 
  //  (*atomIter)->accept(v); | 
| 648 | 
– | 
} | 
| 649 | 
– | 
void RigidBody::getAtomRefCoor(double pos[3], int index){ | 
| 650 | 
– | 
  vec3 ref; | 
| 651 | 
– | 
 | 
| 652 | 
– | 
  ref = refCoords[index]; | 
| 653 | 
– | 
  pos[0] = ref[0]; | 
| 654 | 
– | 
  pos[1] = ref[1]; | 
| 655 | 
– | 
  pos[2] = ref[2]; | 
| 524 | 
  | 
   | 
| 525 | 
  | 
} | 
| 526 | 
  | 
 | 
| 659 | 
– | 
 | 
| 660 | 
– | 
void RigidBody::getAtomPos(double theP[3], int index){ | 
| 661 | 
– | 
  vec3 ref; | 
| 662 | 
– | 
 | 
| 663 | 
– | 
  if (index >= myAtoms.size()) | 
| 664 | 
– | 
    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; | 
| 665 | 
– | 
 | 
| 666 | 
– | 
  ref = refCoords[index]; | 
| 667 | 
– | 
  body2Lab(ref.vec); | 
| 668 | 
– | 
   | 
| 669 | 
– | 
  theP[0] = pos[0] + ref[0]; | 
| 670 | 
– | 
  theP[1] = pos[1] + ref[1]; | 
| 671 | 
– | 
  theP[2] = pos[2] + ref[2]; | 
| 527 | 
  | 
} | 
| 528 | 
  | 
 | 
| 674 | 
– | 
 | 
| 675 | 
– | 
void RigidBody::getAtomVel(double theV[3], int index){ | 
| 676 | 
– | 
  vec3 ref; | 
| 677 | 
– | 
  double velRot[3]; | 
| 678 | 
– | 
  double skewMat[3][3]; | 
| 679 | 
– | 
  double aSkewMat[3][3]; | 
| 680 | 
– | 
  double aSkewTransMat[3][3]; | 
| 681 | 
– | 
   | 
| 682 | 
– | 
  //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 683 | 
– | 
 | 
| 684 | 
– | 
  if (index >= myAtoms.size()) | 
| 685 | 
– | 
    cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; | 
| 686 | 
– | 
 | 
| 687 | 
– | 
  ref = refCoords[index]; | 
| 688 | 
– | 
 | 
| 689 | 
– | 
  skewMat[0][0] =0; | 
| 690 | 
– | 
  skewMat[0][1] = ji[2] /I[2][2]; | 
| 691 | 
– | 
  skewMat[0][2] = -ji[1] /I[1][1]; | 
| 692 | 
– | 
 | 
| 693 | 
– | 
  skewMat[1][0] = -ji[2] /I[2][2]; | 
| 694 | 
– | 
  skewMat[1][1] = 0; | 
| 695 | 
– | 
  skewMat[1][2] = ji[0]/I[0][0]; | 
| 696 | 
– | 
 | 
| 697 | 
– | 
  skewMat[2][0] =ji[1] /I[1][1]; | 
| 698 | 
– | 
  skewMat[2][1] = -ji[0]/I[0][0]; | 
| 699 | 
– | 
  skewMat[2][2] = 0; | 
| 700 | 
– | 
   | 
| 701 | 
– | 
  matMul3(A, skewMat, aSkewMat); | 
| 702 | 
– | 
 | 
| 703 | 
– | 
  transposeMat3(aSkewMat, aSkewTransMat); | 
| 704 | 
– | 
 | 
| 705 | 
– | 
  matVecMul3(aSkewTransMat, ref.vec, velRot); | 
| 706 | 
– | 
  theV[0] = vel[0] + velRot[0]; | 
| 707 | 
– | 
  theV[1] = vel[1] + velRot[1]; | 
| 708 | 
– | 
  theV[2] = vel[2] + velRot[2]; | 
| 709 | 
– | 
} | 
| 710 | 
– | 
 | 
| 711 | 
– | 
 |