| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | *    publication of scientific results based in part on use of the | 
| 11 | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | *    the article in which the program was described (Matthew | 
| 13 | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | * | 
| 18 | * 2. Redistributions of source code must retain the above copyright | 
| 19 | *    notice, this list of conditions and the following disclaimer. | 
| 20 | * | 
| 21 | * 3. Redistributions in binary form must reproduce the above copyright | 
| 22 | *    notice, this list of conditions and the following disclaimer in the | 
| 23 | *    documentation and/or other materials provided with the | 
| 24 | *    distribution. | 
| 25 | * | 
| 26 | * This software is provided "AS IS," without a warranty of any | 
| 27 | * kind. All express or implied conditions, representations and | 
| 28 | * warranties, including any implied warranty of merchantability, | 
| 29 | * fitness for a particular purpose or non-infringement, are hereby | 
| 30 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 31 | * be liable for any damages suffered by licensee as a result of | 
| 32 | * using, modifying or distributing the software or its | 
| 33 | * derivatives. In no event will the University of Notre Dame or its | 
| 34 | * licensors be liable for any lost revenue, profit or data, or for | 
| 35 | * direct, indirect, special, consequential, incidental or punitive | 
| 36 | * damages, however caused and regardless of the theory of liability, | 
| 37 | * arising out of the use of or inability to use software, even if the | 
| 38 | * University of Notre Dame has been advised of the possibility of | 
| 39 | * such damages. | 
| 40 | */ | 
| 41 | #include <algorithm> | 
| 42 | #include <math.h> | 
| 43 | #include "primitives/RigidBody.hpp" | 
| 44 | #include "utils/simError.h" | 
| 45 | #include "utils/NumericConstant.hpp" | 
| 46 | namespace oopse { | 
| 47 |  | 
| 48 | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), | 
| 49 | inertiaTensor_(0.0){ | 
| 50 | } | 
| 51 |  | 
| 52 | void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 53 | ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 54 |  | 
| 55 | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 56 | if (atoms_[i]->isDirectional()) { | 
| 57 | atoms_[i]->setPrevA(refOrients_[i].transpose() * a); | 
| 58 | } | 
| 59 | } | 
| 60 |  | 
| 61 | } | 
| 62 |  | 
| 63 |  | 
| 64 | void RigidBody::setA(const RotMat3x3d& a) { | 
| 65 | ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 66 |  | 
| 67 | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 68 | if (atoms_[i]->isDirectional()) { | 
| 69 | atoms_[i]->setA(refOrients_[i].transpose() * a); | 
| 70 | } | 
| 71 | } | 
| 72 | } | 
| 73 |  | 
| 74 | void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 75 | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 76 |  | 
| 77 | //((snapshotMan_->getSnapshot(snapshotNo))->*storage_).electroFrame[localIndex_] = a.transpose() * sU_; | 
| 78 |  | 
| 79 | for (int i =0 ; i < atoms_.size(); ++i){ | 
| 80 | if (atoms_[i]->isDirectional()) { | 
| 81 | atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); | 
| 82 | } | 
| 83 | } | 
| 84 |  | 
| 85 | } | 
| 86 |  | 
| 87 | Mat3x3d RigidBody::getI() { | 
| 88 | return inertiaTensor_; | 
| 89 | } | 
| 90 |  | 
| 91 | std::vector<RealType> RigidBody::getGrad() { | 
| 92 | std::vector<RealType> grad(6, 0.0); | 
| 93 | Vector3d force; | 
| 94 | Vector3d torque; | 
| 95 | Vector3d myEuler; | 
| 96 | RealType phi, theta, psi; | 
| 97 | RealType cphi, sphi, ctheta, stheta; | 
| 98 | Vector3d ephi; | 
| 99 | Vector3d etheta; | 
| 100 | Vector3d epsi; | 
| 101 |  | 
| 102 | force = getFrc(); | 
| 103 | torque =getTrq(); | 
| 104 | myEuler = getA().toEulerAngles(); | 
| 105 |  | 
| 106 | phi = myEuler[0]; | 
| 107 | theta = myEuler[1]; | 
| 108 | psi = myEuler[2]; | 
| 109 |  | 
| 110 | cphi = cos(phi); | 
| 111 | sphi = sin(phi); | 
| 112 | ctheta = cos(theta); | 
| 113 | stheta = sin(theta); | 
| 114 |  | 
| 115 | // get unit vectors along the phi, theta and psi rotation axes | 
| 116 |  | 
| 117 | ephi[0] = 0.0; | 
| 118 | ephi[1] = 0.0; | 
| 119 | ephi[2] = 1.0; | 
| 120 |  | 
| 121 | etheta[0] = cphi; | 
| 122 | etheta[1] = sphi; | 
| 123 | etheta[2] = 0.0; | 
| 124 |  | 
| 125 | epsi[0] = stheta * cphi; | 
| 126 | epsi[1] = stheta * sphi; | 
| 127 | epsi[2] = ctheta; | 
| 128 |  | 
| 129 | //gradient is equal to -force | 
| 130 | for (int j = 0 ; j<3; j++) | 
| 131 | grad[j] = -force[j]; | 
| 132 |  | 
| 133 | for (int j = 0; j < 3; j++ ) { | 
| 134 |  | 
| 135 | grad[3] += torque[j]*ephi[j]; | 
| 136 | grad[4] += torque[j]*etheta[j]; | 
| 137 | grad[5] += torque[j]*epsi[j]; | 
| 138 |  | 
| 139 | } | 
| 140 |  | 
| 141 | return grad; | 
| 142 | } | 
| 143 |  | 
| 144 | void RigidBody::accept(BaseVisitor* v) { | 
| 145 | v->visit(this); | 
| 146 | } | 
| 147 |  | 
| 148 | /**@todo need modification */ | 
| 149 | void  RigidBody::calcRefCoords() { | 
| 150 | RealType mtmp; | 
| 151 | Vector3d refCOM(0.0); | 
| 152 | mass_ = 0.0; | 
| 153 | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 154 | mtmp = atoms_[i]->getMass(); | 
| 155 | mass_ += mtmp; | 
| 156 | refCOM += refCoords_[i]*mtmp; | 
| 157 | } | 
| 158 | refCOM /= mass_; | 
| 159 |  | 
| 160 | // Next, move the origin of the reference coordinate system to the COM: | 
| 161 | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 162 | refCoords_[i] -= refCOM; | 
| 163 | } | 
| 164 |  | 
| 165 | // Moment of Inertia calculation | 
| 166 | Mat3x3d Itmp(0.0); | 
| 167 | for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 168 | Mat3x3d IAtom(0.0); | 
| 169 | mtmp = atoms_[i]->getMass(); | 
| 170 | IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 171 | RealType r2 = refCoords_[i].lengthSquare(); | 
| 172 | IAtom(0, 0) += mtmp * r2; | 
| 173 | IAtom(1, 1) += mtmp * r2; | 
| 174 | IAtom(2, 2) += mtmp * r2; | 
| 175 | Itmp += IAtom; | 
| 176 |  | 
| 177 | //project the inertial moment of directional atoms into this rigid body | 
| 178 | if (atoms_[i]->isDirectional()) { | 
| 179 | Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 180 | } | 
| 181 | } | 
| 182 |  | 
| 183 | //    std::cout << Itmp << std::endl; | 
| 184 |  | 
| 185 | //diagonalize | 
| 186 | Vector3d evals; | 
| 187 | Mat3x3d::diagonalize(Itmp, evals, sU_); | 
| 188 |  | 
| 189 | // zero out I and then fill the diagonals with the moments of inertia: | 
| 190 | inertiaTensor_(0, 0) = evals[0]; | 
| 191 | inertiaTensor_(1, 1) = evals[1]; | 
| 192 | inertiaTensor_(2, 2) = evals[2]; | 
| 193 |  | 
| 194 | int nLinearAxis = 0; | 
| 195 | for (int i = 0; i < 3; i++) { | 
| 196 | if (fabs(evals[i]) < oopse::epsilon) { | 
| 197 | linear_ = true; | 
| 198 | linearAxis_ = i; | 
| 199 | ++ nLinearAxis; | 
| 200 | } | 
| 201 | } | 
| 202 |  | 
| 203 | if (nLinearAxis > 1) { | 
| 204 | sprintf( painCave.errMsg, | 
| 205 | "RigidBody error.\n" | 
| 206 | "\tOOPSE found more than one axis in this rigid body with a vanishing \n" | 
| 207 | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 208 | "\t 1) Only one atom was specified, or \n" | 
| 209 | "\t 2) All atoms were specified at the same location, or\n" | 
| 210 | "\t 3) The programmers did something stupid.\n" | 
| 211 | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 212 | ); | 
| 213 | painCave.isFatal = 1; | 
| 214 | simError(); | 
| 215 | } | 
| 216 |  | 
| 217 | } | 
| 218 |  | 
| 219 | void  RigidBody::calcForcesAndTorques() { | 
| 220 | Vector3d afrc; | 
| 221 | Vector3d atrq; | 
| 222 | Vector3d apos; | 
| 223 | Vector3d rpos; | 
| 224 | Vector3d frc(0.0); | 
| 225 | Vector3d trq(0.0); | 
| 226 | Vector3d pos = this->getPos(); | 
| 227 | for (int i = 0; i < atoms_.size(); i++) { | 
| 228 |  | 
| 229 | afrc = atoms_[i]->getFrc(); | 
| 230 | apos = atoms_[i]->getPos(); | 
| 231 | rpos = apos - pos; | 
| 232 |  | 
| 233 | frc += afrc; | 
| 234 |  | 
| 235 | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 236 | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 237 | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 238 |  | 
| 239 | // If the atom has a torque associated with it, then we also need to | 
| 240 | // migrate the torques onto the center of mass: | 
| 241 |  | 
| 242 | if (atoms_[i]->isDirectional()) { | 
| 243 | atrq = atoms_[i]->getTrq(); | 
| 244 | trq += atrq; | 
| 245 | } | 
| 246 | } | 
| 247 | addFrc(frc); | 
| 248 | addTrq(trq); | 
| 249 | } | 
| 250 |  | 
| 251 | Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { | 
| 252 | Vector3d afrc; | 
| 253 | Vector3d atrq; | 
| 254 | Vector3d apos; | 
| 255 | Vector3d rpos; | 
| 256 | Vector3d dfrc; | 
| 257 | Vector3d frc(0.0); | 
| 258 | Vector3d trq(0.0); | 
| 259 | Vector3d pos = this->getPos(); | 
| 260 | Mat3x3d tau_(0.0); | 
| 261 |  | 
| 262 | for (int i = 0; i < atoms_.size(); i++) { | 
| 263 |  | 
| 264 | afrc = atoms_[i]->getFrc(); | 
| 265 | apos = atoms_[i]->getPos(); | 
| 266 | rpos = apos - pos; | 
| 267 |  | 
| 268 | frc += afrc; | 
| 269 |  | 
| 270 | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 271 | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 272 | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 273 |  | 
| 274 | // If the atom has a torque associated with it, then we also need to | 
| 275 | // migrate the torques onto the center of mass: | 
| 276 |  | 
| 277 | if (atoms_[i]->isDirectional()) { | 
| 278 | atrq = atoms_[i]->getTrq(); | 
| 279 | trq += atrq; | 
| 280 | } | 
| 281 |  | 
| 282 | tau_(0,0) -= rpos[0]*afrc[0]; | 
| 283 | tau_(0,1) -= rpos[0]*afrc[1]; | 
| 284 | tau_(0,2) -= rpos[0]*afrc[2]; | 
| 285 | tau_(1,0) -= rpos[1]*afrc[0]; | 
| 286 | tau_(1,1) -= rpos[1]*afrc[1]; | 
| 287 | tau_(1,2) -= rpos[1]*afrc[2]; | 
| 288 | tau_(2,0) -= rpos[2]*afrc[0]; | 
| 289 | tau_(2,1) -= rpos[2]*afrc[1]; | 
| 290 | tau_(2,2) -= rpos[2]*afrc[2]; | 
| 291 |  | 
| 292 | } | 
| 293 | addFrc(frc); | 
| 294 | addTrq(trq); | 
| 295 | return tau_; | 
| 296 | } | 
| 297 |  | 
| 298 | void  RigidBody::updateAtoms() { | 
| 299 | unsigned int i; | 
| 300 | Vector3d ref; | 
| 301 | Vector3d apos; | 
| 302 | DirectionalAtom* dAtom; | 
| 303 | Vector3d pos = getPos(); | 
| 304 | RotMat3x3d a = getA(); | 
| 305 |  | 
| 306 | for (i = 0; i < atoms_.size(); i++) { | 
| 307 |  | 
| 308 | ref = body2Lab(refCoords_[i]); | 
| 309 |  | 
| 310 | apos = pos + ref; | 
| 311 |  | 
| 312 | atoms_[i]->setPos(apos); | 
| 313 |  | 
| 314 | if (atoms_[i]->isDirectional()) { | 
| 315 |  | 
| 316 | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 317 | dAtom->setA(refOrients_[i].transpose() * a); | 
| 318 | } | 
| 319 |  | 
| 320 | } | 
| 321 |  | 
| 322 | } | 
| 323 |  | 
| 324 |  | 
| 325 | void  RigidBody::updateAtoms(int frame) { | 
| 326 | unsigned int i; | 
| 327 | Vector3d ref; | 
| 328 | Vector3d apos; | 
| 329 | DirectionalAtom* dAtom; | 
| 330 | Vector3d pos = getPos(frame); | 
| 331 | RotMat3x3d a = getA(frame); | 
| 332 |  | 
| 333 | for (i = 0; i < atoms_.size(); i++) { | 
| 334 |  | 
| 335 | ref = body2Lab(refCoords_[i], frame); | 
| 336 |  | 
| 337 | apos = pos + ref; | 
| 338 |  | 
| 339 | atoms_[i]->setPos(apos, frame); | 
| 340 |  | 
| 341 | if (atoms_[i]->isDirectional()) { | 
| 342 |  | 
| 343 | dAtom = (DirectionalAtom *) atoms_[i]; | 
| 344 | dAtom->setA(refOrients_[i].transpose() * a, frame); | 
| 345 | } | 
| 346 |  | 
| 347 | } | 
| 348 |  | 
| 349 | } | 
| 350 |  | 
| 351 | void RigidBody::updateAtomVel() { | 
| 352 | Mat3x3d skewMat;; | 
| 353 |  | 
| 354 | Vector3d ji = getJ(); | 
| 355 | Mat3x3d I =  getI(); | 
| 356 |  | 
| 357 | skewMat(0, 0) =0; | 
| 358 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 359 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 360 |  | 
| 361 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 362 | skewMat(1, 1) = 0; | 
| 363 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 364 |  | 
| 365 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 366 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 367 | skewMat(2, 2) = 0; | 
| 368 |  | 
| 369 | Mat3x3d mat = (getA() * skewMat).transpose(); | 
| 370 | Vector3d rbVel = getVel(); | 
| 371 |  | 
| 372 |  | 
| 373 | Vector3d velRot; | 
| 374 | for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 375 | atoms_[i]->setVel(rbVel + mat * refCoords_[i]); | 
| 376 | } | 
| 377 |  | 
| 378 | } | 
| 379 |  | 
| 380 | void RigidBody::updateAtomVel(int frame) { | 
| 381 | Mat3x3d skewMat;; | 
| 382 |  | 
| 383 | Vector3d ji = getJ(frame); | 
| 384 | Mat3x3d I =  getI(); | 
| 385 |  | 
| 386 | skewMat(0, 0) =0; | 
| 387 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 388 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 389 |  | 
| 390 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 391 | skewMat(1, 1) = 0; | 
| 392 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 393 |  | 
| 394 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 395 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 396 | skewMat(2, 2) = 0; | 
| 397 |  | 
| 398 | Mat3x3d mat = (getA(frame) * skewMat).transpose(); | 
| 399 | Vector3d rbVel = getVel(frame); | 
| 400 |  | 
| 401 |  | 
| 402 | Vector3d velRot; | 
| 403 | for (int i =0 ; i < refCoords_.size(); ++i) { | 
| 404 | atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); | 
| 405 | } | 
| 406 |  | 
| 407 | } | 
| 408 |  | 
| 409 |  | 
| 410 |  | 
| 411 | bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { | 
| 412 | if (index < atoms_.size()) { | 
| 413 |  | 
| 414 | Vector3d ref = body2Lab(refCoords_[index]); | 
| 415 | pos = getPos() + ref; | 
| 416 | return true; | 
| 417 | } else { | 
| 418 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 419 | << atoms_.size() << "atoms" << std::endl; | 
| 420 | return false; | 
| 421 | } | 
| 422 | } | 
| 423 |  | 
| 424 | bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { | 
| 425 | std::vector<Atom*>::iterator i; | 
| 426 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 427 | if (i != atoms_.end()) { | 
| 428 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 429 | Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); | 
| 430 | pos = getPos() + ref; | 
| 431 | return true; | 
| 432 | } else { | 
| 433 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 434 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 435 | return false; | 
| 436 | } | 
| 437 | } | 
| 438 | bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { | 
| 439 |  | 
| 440 | //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 441 |  | 
| 442 | if (index < atoms_.size()) { | 
| 443 |  | 
| 444 | Vector3d velRot; | 
| 445 | Mat3x3d skewMat;; | 
| 446 | Vector3d ref = refCoords_[index]; | 
| 447 | Vector3d ji = getJ(); | 
| 448 | Mat3x3d I =  getI(); | 
| 449 |  | 
| 450 | skewMat(0, 0) =0; | 
| 451 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 452 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 453 |  | 
| 454 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 455 | skewMat(1, 1) = 0; | 
| 456 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 457 |  | 
| 458 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 459 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 460 | skewMat(2, 2) = 0; | 
| 461 |  | 
| 462 | velRot = (getA() * skewMat).transpose() * ref; | 
| 463 |  | 
| 464 | vel =getVel() + velRot; | 
| 465 | return true; | 
| 466 |  | 
| 467 | } else { | 
| 468 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 469 | << atoms_.size() << "atoms" << std::endl; | 
| 470 | return false; | 
| 471 | } | 
| 472 | } | 
| 473 |  | 
| 474 | bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { | 
| 475 |  | 
| 476 | std::vector<Atom*>::iterator i; | 
| 477 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 478 | if (i != atoms_.end()) { | 
| 479 | return getAtomVel(vel, i - atoms_.begin()); | 
| 480 | } else { | 
| 481 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 482 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 483 | return false; | 
| 484 | } | 
| 485 | } | 
| 486 |  | 
| 487 | bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { | 
| 488 | if (index < atoms_.size()) { | 
| 489 |  | 
| 490 | coor = refCoords_[index]; | 
| 491 | return true; | 
| 492 | } else { | 
| 493 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 494 | << atoms_.size() << "atoms" << std::endl; | 
| 495 | return false; | 
| 496 | } | 
| 497 |  | 
| 498 | } | 
| 499 |  | 
| 500 | bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { | 
| 501 | std::vector<Atom*>::iterator i; | 
| 502 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 503 | if (i != atoms_.end()) { | 
| 504 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 505 | coor = refCoords_[i - atoms_.begin()]; | 
| 506 | return true; | 
| 507 | } else { | 
| 508 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 509 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 510 | return false; | 
| 511 | } | 
| 512 |  | 
| 513 | } | 
| 514 |  | 
| 515 |  | 
| 516 | void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 517 |  | 
| 518 | Vector3d coords; | 
| 519 | Vector3d euler; | 
| 520 |  | 
| 521 |  | 
| 522 | atoms_.push_back(at); | 
| 523 |  | 
| 524 | if( !ats->havePosition() ){ | 
| 525 | sprintf( painCave.errMsg, | 
| 526 | "RigidBody error.\n" | 
| 527 | "\tAtom %s does not have a position specified.\n" | 
| 528 | "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 529 | ats->getType().c_str() ); | 
| 530 | painCave.isFatal = 1; | 
| 531 | simError(); | 
| 532 | } | 
| 533 |  | 
| 534 | coords[0] = ats->getPosX(); | 
| 535 | coords[1] = ats->getPosY(); | 
| 536 | coords[2] = ats->getPosZ(); | 
| 537 |  | 
| 538 | refCoords_.push_back(coords); | 
| 539 |  | 
| 540 | RotMat3x3d identMat = RotMat3x3d::identity(); | 
| 541 |  | 
| 542 | if (at->isDirectional()) { | 
| 543 |  | 
| 544 | if( !ats->haveOrientation() ){ | 
| 545 | sprintf( painCave.errMsg, | 
| 546 | "RigidBody error.\n" | 
| 547 | "\tAtom %s does not have an orientation specified.\n" | 
| 548 | "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 549 | ats->getType().c_str() ); | 
| 550 | painCave.isFatal = 1; | 
| 551 | simError(); | 
| 552 | } | 
| 553 |  | 
| 554 | euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; | 
| 555 | euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; | 
| 556 | euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; | 
| 557 |  | 
| 558 | RotMat3x3d Atmp(euler); | 
| 559 | refOrients_.push_back(Atmp); | 
| 560 |  | 
| 561 | }else { | 
| 562 | refOrients_.push_back(identMat); | 
| 563 | } | 
| 564 |  | 
| 565 |  | 
| 566 | } | 
| 567 |  | 
| 568 | } | 
| 569 |  |