| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 | #include <algorithm> | 
| 43 | #include <math.h> | 
| 44 | #include "primitives/RigidBody.hpp" | 
| 45 | #include "utils/simError.h" | 
| 46 | #include "utils/NumericConstant.hpp" | 
| 47 | namespace OpenMD { | 
| 48 |  | 
| 49 | RigidBody::RigidBody() : StuntDouble(otRigidBody, &Snapshot::rigidbodyData), | 
| 50 | inertiaTensor_(0.0){ | 
| 51 | } | 
| 52 |  | 
| 53 | void RigidBody::setPrevA(const RotMat3x3d& a) { | 
| 54 | ((snapshotMan_->getPrevSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 55 |  | 
| 56 | for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 57 | if (atoms_[i]->isDirectional()) { | 
| 58 | atoms_[i]->setPrevA(refOrients_[i].transpose() * a); | 
| 59 | } | 
| 60 | } | 
| 61 |  | 
| 62 | } | 
| 63 |  | 
| 64 |  | 
| 65 | void RigidBody::setA(const RotMat3x3d& a) { | 
| 66 | ((snapshotMan_->getCurrentSnapshot())->*storage_).aMat[localIndex_] = a; | 
| 67 |  | 
| 68 | for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 69 | if (atoms_[i]->isDirectional()) { | 
| 70 | atoms_[i]->setA(refOrients_[i].transpose() * a); | 
| 71 | } | 
| 72 | } | 
| 73 | } | 
| 74 |  | 
| 75 | void RigidBody::setA(const RotMat3x3d& a, int snapshotNo) { | 
| 76 | ((snapshotMan_->getSnapshot(snapshotNo))->*storage_).aMat[localIndex_] = a; | 
| 77 |  | 
| 78 | for (unsigned int i = 0 ; i < atoms_.size(); ++i){ | 
| 79 | if (atoms_[i]->isDirectional()) { | 
| 80 | atoms_[i]->setA(refOrients_[i].transpose() * a, snapshotNo); | 
| 81 | } | 
| 82 | } | 
| 83 |  | 
| 84 | } | 
| 85 |  | 
| 86 | Mat3x3d RigidBody::getI() { | 
| 87 | return inertiaTensor_; | 
| 88 | } | 
| 89 |  | 
| 90 | std::vector<RealType> RigidBody::getGrad() { | 
| 91 | std::vector<RealType> grad(6, 0.0); | 
| 92 | Vector3d force; | 
| 93 | Vector3d torque; | 
| 94 | Vector3d myEuler; | 
| 95 | RealType phi, theta; | 
| 96 | // RealType psi; | 
| 97 | RealType cphi, sphi, ctheta, stheta; | 
| 98 | Vector3d ephi; | 
| 99 | Vector3d etheta; | 
| 100 | Vector3d epsi; | 
| 101 |  | 
| 102 | force = getFrc(); | 
| 103 | torque =getTrq(); | 
| 104 | myEuler = getA().toEulerAngles(); | 
| 105 |  | 
| 106 | phi = myEuler[0]; | 
| 107 | theta = myEuler[1]; | 
| 108 | // psi = myEuler[2]; | 
| 109 |  | 
| 110 | cphi = cos(phi); | 
| 111 | sphi = sin(phi); | 
| 112 | ctheta = cos(theta); | 
| 113 | stheta = sin(theta); | 
| 114 |  | 
| 115 | // get unit vectors along the phi, theta and psi rotation axes | 
| 116 |  | 
| 117 | ephi[0] = 0.0; | 
| 118 | ephi[1] = 0.0; | 
| 119 | ephi[2] = 1.0; | 
| 120 |  | 
| 121 | //etheta[0] = -sphi; | 
| 122 | //etheta[1] =  cphi; | 
| 123 | //etheta[2] =  0.0; | 
| 124 |  | 
| 125 | etheta[0] = cphi; | 
| 126 | etheta[1] = sphi; | 
| 127 | etheta[2] =  0.0; | 
| 128 |  | 
| 129 | epsi[0] = stheta * cphi; | 
| 130 | epsi[1] = stheta * sphi; | 
| 131 | epsi[2] = ctheta; | 
| 132 |  | 
| 133 | //gradient is equal to -force | 
| 134 | for (int j = 0 ; j<3; j++) | 
| 135 | grad[j] = -force[j]; | 
| 136 |  | 
| 137 | for (int j = 0; j < 3; j++ ) { | 
| 138 |  | 
| 139 | grad[3] += torque[j]*ephi[j]; | 
| 140 | grad[4] += torque[j]*etheta[j]; | 
| 141 | grad[5] += torque[j]*epsi[j]; | 
| 142 |  | 
| 143 | } | 
| 144 |  | 
| 145 | return grad; | 
| 146 | } | 
| 147 |  | 
| 148 | void RigidBody::accept(BaseVisitor* v) { | 
| 149 | v->visit(this); | 
| 150 | } | 
| 151 |  | 
| 152 | /**@todo need modification */ | 
| 153 | void  RigidBody::calcRefCoords() { | 
| 154 | RealType mtmp; | 
| 155 | Vector3d refCOM(0.0); | 
| 156 | mass_ = 0.0; | 
| 157 | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 158 | mtmp = atoms_[i]->getMass(); | 
| 159 | mass_ += mtmp; | 
| 160 | refCOM += refCoords_[i]*mtmp; | 
| 161 | } | 
| 162 | refCOM /= mass_; | 
| 163 |  | 
| 164 | // Next, move the origin of the reference coordinate system to the COM: | 
| 165 | for (std::size_t i = 0; i < atoms_.size(); ++i) { | 
| 166 | refCoords_[i] -= refCOM; | 
| 167 | } | 
| 168 |  | 
| 169 | // Moment of Inertia calculation | 
| 170 | Mat3x3d Itmp(0.0); | 
| 171 | for (std::size_t i = 0; i < atoms_.size(); i++) { | 
| 172 | Mat3x3d IAtom(0.0); | 
| 173 | mtmp = atoms_[i]->getMass(); | 
| 174 | IAtom -= outProduct(refCoords_[i], refCoords_[i]) * mtmp; | 
| 175 | RealType r2 = refCoords_[i].lengthSquare(); | 
| 176 | IAtom(0, 0) += mtmp * r2; | 
| 177 | IAtom(1, 1) += mtmp * r2; | 
| 178 | IAtom(2, 2) += mtmp * r2; | 
| 179 | Itmp += IAtom; | 
| 180 |  | 
| 181 | //project the inertial moment of directional atoms into this rigid body | 
| 182 | if (atoms_[i]->isDirectional()) { | 
| 183 | Itmp += refOrients_[i].transpose() * atoms_[i]->getI() * refOrients_[i]; | 
| 184 | } | 
| 185 | } | 
| 186 |  | 
| 187 | //    std::cout << Itmp << std::endl; | 
| 188 |  | 
| 189 | //diagonalize | 
| 190 | Vector3d evals; | 
| 191 | Mat3x3d::diagonalize(Itmp, evals, sU_); | 
| 192 |  | 
| 193 | // zero out I and then fill the diagonals with the moments of inertia: | 
| 194 | inertiaTensor_(0, 0) = evals[0]; | 
| 195 | inertiaTensor_(1, 1) = evals[1]; | 
| 196 | inertiaTensor_(2, 2) = evals[2]; | 
| 197 |  | 
| 198 | int nLinearAxis = 0; | 
| 199 | for (int i = 0; i < 3; i++) { | 
| 200 | if (fabs(evals[i]) < OpenMD::epsilon) { | 
| 201 | linear_ = true; | 
| 202 | linearAxis_ = i; | 
| 203 | ++ nLinearAxis; | 
| 204 | } | 
| 205 | } | 
| 206 |  | 
| 207 | if (nLinearAxis > 1) { | 
| 208 | sprintf( painCave.errMsg, | 
| 209 | "RigidBody error.\n" | 
| 210 | "\tOpenMD found more than one axis in this rigid body with a vanishing \n" | 
| 211 | "\tmoment of inertia.  This can happen in one of three ways:\n" | 
| 212 | "\t 1) Only one atom was specified, or \n" | 
| 213 | "\t 2) All atoms were specified at the same location, or\n" | 
| 214 | "\t 3) The programmers did something stupid.\n" | 
| 215 | "\tIt is silly to use a rigid body to describe this situation.  Be smarter.\n" | 
| 216 | ); | 
| 217 | painCave.isFatal = 1; | 
| 218 | simError(); | 
| 219 | } | 
| 220 |  | 
| 221 | } | 
| 222 |  | 
| 223 | void  RigidBody::calcForcesAndTorques() { | 
| 224 | Vector3d afrc; | 
| 225 | Vector3d atrq; | 
| 226 | Vector3d apos; | 
| 227 | Vector3d rpos; | 
| 228 | Vector3d frc(0.0); | 
| 229 | Vector3d trq(0.0); | 
| 230 | Vector3d ef(0.0); | 
| 231 | Vector3d pos = this->getPos(); | 
| 232 | AtomType* atype; | 
| 233 | int eCount = 0; | 
| 234 |  | 
| 235 | int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); | 
| 236 |  | 
| 237 | for (unsigned int i = 0; i < atoms_.size(); i++) { | 
| 238 |  | 
| 239 | atype = atoms_[i]->getAtomType(); | 
| 240 |  | 
| 241 | afrc = atoms_[i]->getFrc(); | 
| 242 | apos = atoms_[i]->getPos(); | 
| 243 | rpos = apos - pos; | 
| 244 |  | 
| 245 | frc += afrc; | 
| 246 |  | 
| 247 | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 248 | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 249 | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 250 |  | 
| 251 | // If the atom has a torque associated with it, then we also need to | 
| 252 | // migrate the torques onto the center of mass: | 
| 253 |  | 
| 254 | if (atoms_[i]->isDirectional()) { | 
| 255 | atrq = atoms_[i]->getTrq(); | 
| 256 | trq += atrq; | 
| 257 | } | 
| 258 |  | 
| 259 | if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { | 
| 260 | ef += atoms_[i]->getElectricField(); | 
| 261 | eCount++; | 
| 262 | } | 
| 263 | } | 
| 264 | addFrc(frc); | 
| 265 | addTrq(trq); | 
| 266 |  | 
| 267 | if (sl & DataStorage::dslElectricField)  { | 
| 268 | ef /= eCount; | 
| 269 | setElectricField(ef); | 
| 270 | } | 
| 271 |  | 
| 272 | } | 
| 273 |  | 
| 274 | Mat3x3d RigidBody::calcForcesAndTorquesAndVirial() { | 
| 275 | Vector3d afrc; | 
| 276 | Vector3d atrq; | 
| 277 | Vector3d apos; | 
| 278 | Vector3d rpos; | 
| 279 | Vector3d dfrc; | 
| 280 | Vector3d frc(0.0); | 
| 281 | Vector3d trq(0.0); | 
| 282 | Vector3d ef(0.0); | 
| 283 | AtomType* atype; | 
| 284 | int eCount = 0; | 
| 285 |  | 
| 286 | Vector3d pos = this->getPos(); | 
| 287 | Mat3x3d tau_(0.0); | 
| 288 |  | 
| 289 | int sl = ((snapshotMan_->getCurrentSnapshot())->*storage_).getStorageLayout(); | 
| 290 |  | 
| 291 | for (unsigned int i = 0; i < atoms_.size(); i++) { | 
| 292 |  | 
| 293 | atype = atoms_[i]->getAtomType(); | 
| 294 |  | 
| 295 | afrc = atoms_[i]->getFrc(); | 
| 296 | apos = atoms_[i]->getPos(); | 
| 297 | rpos = apos - pos; | 
| 298 |  | 
| 299 | frc += afrc; | 
| 300 |  | 
| 301 | trq[0] += rpos[1]*afrc[2] - rpos[2]*afrc[1]; | 
| 302 | trq[1] += rpos[2]*afrc[0] - rpos[0]*afrc[2]; | 
| 303 | trq[2] += rpos[0]*afrc[1] - rpos[1]*afrc[0]; | 
| 304 |  | 
| 305 | // If the atom has a torque associated with it, then we also need to | 
| 306 | // migrate the torques onto the center of mass: | 
| 307 |  | 
| 308 | if (atoms_[i]->isDirectional()) { | 
| 309 | atrq = atoms_[i]->getTrq(); | 
| 310 | trq += atrq; | 
| 311 | } | 
| 312 |  | 
| 313 | if ((sl & DataStorage::dslElectricField) && (atype->isElectrostatic())) { | 
| 314 | ef += atoms_[i]->getElectricField(); | 
| 315 | eCount++; | 
| 316 | } | 
| 317 |  | 
| 318 | tau_(0,0) -= rpos[0]*afrc[0]; | 
| 319 | tau_(0,1) -= rpos[0]*afrc[1]; | 
| 320 | tau_(0,2) -= rpos[0]*afrc[2]; | 
| 321 | tau_(1,0) -= rpos[1]*afrc[0]; | 
| 322 | tau_(1,1) -= rpos[1]*afrc[1]; | 
| 323 | tau_(1,2) -= rpos[1]*afrc[2]; | 
| 324 | tau_(2,0) -= rpos[2]*afrc[0]; | 
| 325 | tau_(2,1) -= rpos[2]*afrc[1]; | 
| 326 | tau_(2,2) -= rpos[2]*afrc[2]; | 
| 327 |  | 
| 328 | } | 
| 329 | addFrc(frc); | 
| 330 | addTrq(trq); | 
| 331 |  | 
| 332 | if (sl & DataStorage::dslElectricField) { | 
| 333 | ef /= eCount; | 
| 334 | setElectricField(ef); | 
| 335 | } | 
| 336 |  | 
| 337 | return tau_; | 
| 338 | } | 
| 339 |  | 
| 340 | void  RigidBody::updateAtoms() { | 
| 341 | unsigned int i; | 
| 342 | Vector3d ref; | 
| 343 | Vector3d apos; | 
| 344 | DirectionalAtom* dAtom; | 
| 345 | Vector3d pos = getPos(); | 
| 346 | RotMat3x3d a = getA(); | 
| 347 |  | 
| 348 | for (i = 0; i < atoms_.size(); i++) { | 
| 349 |  | 
| 350 | ref = body2Lab(refCoords_[i]); | 
| 351 |  | 
| 352 | apos = pos + ref; | 
| 353 |  | 
| 354 | atoms_[i]->setPos(apos); | 
| 355 |  | 
| 356 | if (atoms_[i]->isDirectional()) { | 
| 357 |  | 
| 358 | dAtom = dynamic_cast<DirectionalAtom *>(atoms_[i]); | 
| 359 | dAtom->setA(refOrients_[i].transpose() * a); | 
| 360 | } | 
| 361 |  | 
| 362 | } | 
| 363 |  | 
| 364 | } | 
| 365 |  | 
| 366 |  | 
| 367 | void  RigidBody::updateAtoms(int frame) { | 
| 368 | unsigned int i; | 
| 369 | Vector3d ref; | 
| 370 | Vector3d apos; | 
| 371 | DirectionalAtom* dAtom; | 
| 372 | Vector3d pos = getPos(frame); | 
| 373 | RotMat3x3d a = getA(frame); | 
| 374 |  | 
| 375 | for (i = 0; i < atoms_.size(); i++) { | 
| 376 |  | 
| 377 | ref = body2Lab(refCoords_[i], frame); | 
| 378 |  | 
| 379 | apos = pos + ref; | 
| 380 |  | 
| 381 | atoms_[i]->setPos(apos, frame); | 
| 382 |  | 
| 383 | if (atoms_[i]->isDirectional()) { | 
| 384 |  | 
| 385 | dAtom = dynamic_cast<DirectionalAtom *>(atoms_[i]); | 
| 386 | dAtom->setA(refOrients_[i].transpose() * a, frame); | 
| 387 | } | 
| 388 |  | 
| 389 | } | 
| 390 |  | 
| 391 | } | 
| 392 |  | 
| 393 | void RigidBody::updateAtomVel() { | 
| 394 | Mat3x3d skewMat; | 
| 395 |  | 
| 396 | Vector3d ji = getJ(); | 
| 397 | Mat3x3d I =  getI(); | 
| 398 |  | 
| 399 | skewMat(0, 0) =0; | 
| 400 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 401 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 402 |  | 
| 403 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 404 | skewMat(1, 1) = 0; | 
| 405 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 406 |  | 
| 407 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 408 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 409 | skewMat(2, 2) = 0; | 
| 410 |  | 
| 411 | Mat3x3d mat = (getA() * skewMat).transpose(); | 
| 412 | Vector3d rbVel = getVel(); | 
| 413 |  | 
| 414 |  | 
| 415 | Vector3d velRot; | 
| 416 | for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { | 
| 417 | atoms_[i]->setVel(rbVel + mat * refCoords_[i]); | 
| 418 | } | 
| 419 |  | 
| 420 | } | 
| 421 |  | 
| 422 | void RigidBody::updateAtomVel(int frame) { | 
| 423 | Mat3x3d skewMat;; | 
| 424 |  | 
| 425 | Vector3d ji = getJ(frame); | 
| 426 | Mat3x3d I =  getI(); | 
| 427 |  | 
| 428 | skewMat(0, 0) =0; | 
| 429 | skewMat(0, 1) = ji[2] /I(2, 2); | 
| 430 | skewMat(0, 2) = -ji[1] /I(1, 1); | 
| 431 |  | 
| 432 | skewMat(1, 0) = -ji[2] /I(2, 2); | 
| 433 | skewMat(1, 1) = 0; | 
| 434 | skewMat(1, 2) = ji[0]/I(0, 0); | 
| 435 |  | 
| 436 | skewMat(2, 0) =ji[1] /I(1, 1); | 
| 437 | skewMat(2, 1) = -ji[0]/I(0, 0); | 
| 438 | skewMat(2, 2) = 0; | 
| 439 |  | 
| 440 | Mat3x3d mat = (getA(frame) * skewMat).transpose(); | 
| 441 | Vector3d rbVel = getVel(frame); | 
| 442 |  | 
| 443 |  | 
| 444 | Vector3d velRot; | 
| 445 | for (unsigned int i = 0 ; i < refCoords_.size(); ++i) { | 
| 446 | atoms_[i]->setVel(rbVel + mat * refCoords_[i], frame); | 
| 447 | } | 
| 448 |  | 
| 449 | } | 
| 450 |  | 
| 451 |  | 
| 452 |  | 
| 453 | bool RigidBody::getAtomPos(Vector3d& pos, unsigned int index) { | 
| 454 | if (index < atoms_.size()) { | 
| 455 |  | 
| 456 | Vector3d ref = body2Lab(refCoords_[index]); | 
| 457 | pos = getPos() + ref; | 
| 458 | return true; | 
| 459 | } else { | 
| 460 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 461 | << atoms_.size() << "atoms" << std::endl; | 
| 462 | return false; | 
| 463 | } | 
| 464 | } | 
| 465 |  | 
| 466 | bool RigidBody::getAtomPos(Vector3d& pos, Atom* atom) { | 
| 467 | std::vector<Atom*>::iterator i; | 
| 468 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 469 | if (i != atoms_.end()) { | 
| 470 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 471 | Vector3d ref = body2Lab(refCoords_[i - atoms_.begin()]); | 
| 472 | pos = getPos() + ref; | 
| 473 | return true; | 
| 474 | } else { | 
| 475 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 476 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 477 | return false; | 
| 478 | } | 
| 479 | } | 
| 480 | bool RigidBody::getAtomVel(Vector3d& vel, unsigned int index) { | 
| 481 |  | 
| 482 | //velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ | 
| 483 |  | 
| 484 | if (index < atoms_.size()) { | 
| 485 |  | 
| 486 | Vector3d velRot; | 
| 487 | Mat3x3d skewMat;; | 
| 488 | Vector3d ref = refCoords_[index]; | 
| 489 | Vector3d ji = getJ(); | 
| 490 | Mat3x3d I =  getI(); | 
| 491 |  | 
| 492 | skewMat(0, 0) =  0; | 
| 493 | skewMat(0, 1) =  ji[2] / I(2, 2); | 
| 494 | skewMat(0, 2) = -ji[1] / I(1, 1); | 
| 495 |  | 
| 496 | skewMat(1, 0) = -ji[2] / I(2, 2); | 
| 497 | skewMat(1, 1) =  0; | 
| 498 | skewMat(1, 2) =  ji[0]/ I(0, 0); | 
| 499 |  | 
| 500 | skewMat(2, 0) =  ji[1] / I(1, 1); | 
| 501 | skewMat(2, 1) = -ji[0] / I(0, 0); | 
| 502 | skewMat(2, 2) =  0; | 
| 503 |  | 
| 504 | velRot = (getA() * skewMat).transpose() * ref; | 
| 505 |  | 
| 506 | vel = getVel() + velRot; | 
| 507 | return true; | 
| 508 |  | 
| 509 | } else { | 
| 510 | std::cerr << index | 
| 511 | << " is an invalid index, current rigid body contains " | 
| 512 | << atoms_.size() << "atoms" << std::endl; | 
| 513 | return false; | 
| 514 | } | 
| 515 | } | 
| 516 |  | 
| 517 | bool RigidBody::getAtomVel(Vector3d& vel, Atom* atom) { | 
| 518 |  | 
| 519 | std::vector<Atom*>::iterator i; | 
| 520 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 521 | if (i != atoms_.end()) { | 
| 522 | return getAtomVel(vel, i - atoms_.begin()); | 
| 523 | } else { | 
| 524 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 525 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 526 | return false; | 
| 527 | } | 
| 528 | } | 
| 529 |  | 
| 530 | bool RigidBody::getAtomRefCoor(Vector3d& coor, unsigned int index) { | 
| 531 | if (index < atoms_.size()) { | 
| 532 |  | 
| 533 | coor = refCoords_[index]; | 
| 534 | return true; | 
| 535 | } else { | 
| 536 | std::cerr << index << " is an invalid index, current rigid body contains " | 
| 537 | << atoms_.size() << "atoms" << std::endl; | 
| 538 | return false; | 
| 539 | } | 
| 540 |  | 
| 541 | } | 
| 542 |  | 
| 543 | bool RigidBody::getAtomRefCoor(Vector3d& coor, Atom* atom) { | 
| 544 | std::vector<Atom*>::iterator i; | 
| 545 | i = std::find(atoms_.begin(), atoms_.end(), atom); | 
| 546 | if (i != atoms_.end()) { | 
| 547 | //RigidBody class makes sure refCoords_ and atoms_ match each other | 
| 548 | coor = refCoords_[i - atoms_.begin()]; | 
| 549 | return true; | 
| 550 | } else { | 
| 551 | std::cerr << "Atom " << atom->getGlobalIndex() | 
| 552 | <<" does not belong to Rigid body "<< getGlobalIndex() << std::endl; | 
| 553 | return false; | 
| 554 | } | 
| 555 |  | 
| 556 | } | 
| 557 |  | 
| 558 |  | 
| 559 | void RigidBody::addAtom(Atom* at, AtomStamp* ats) { | 
| 560 |  | 
| 561 | Vector3d coords; | 
| 562 | Vector3d euler; | 
| 563 |  | 
| 564 |  | 
| 565 | atoms_.push_back(at); | 
| 566 |  | 
| 567 | if( !ats->havePosition() ){ | 
| 568 | sprintf( painCave.errMsg, | 
| 569 | "RigidBody error.\n" | 
| 570 | "\tAtom %s does not have a position specified.\n" | 
| 571 | "\tThis means RigidBody cannot set up reference coordinates.\n", | 
| 572 | ats->getType().c_str() ); | 
| 573 | painCave.isFatal = 1; | 
| 574 | simError(); | 
| 575 | } | 
| 576 |  | 
| 577 | coords[0] = ats->getPosX(); | 
| 578 | coords[1] = ats->getPosY(); | 
| 579 | coords[2] = ats->getPosZ(); | 
| 580 |  | 
| 581 | refCoords_.push_back(coords); | 
| 582 |  | 
| 583 | RotMat3x3d identMat = RotMat3x3d::identity(); | 
| 584 |  | 
| 585 | if (at->isDirectional()) { | 
| 586 |  | 
| 587 | if( !ats->haveOrientation() ){ | 
| 588 | sprintf( painCave.errMsg, | 
| 589 | "RigidBody error.\n" | 
| 590 | "\tAtom %s does not have an orientation specified.\n" | 
| 591 | "\tThis means RigidBody cannot set up reference orientations.\n", | 
| 592 | ats->getType().c_str() ); | 
| 593 | painCave.isFatal = 1; | 
| 594 | simError(); | 
| 595 | } | 
| 596 |  | 
| 597 | euler[0] = ats->getEulerPhi() * NumericConstant::PI /180.0; | 
| 598 | euler[1] = ats->getEulerTheta() * NumericConstant::PI /180.0; | 
| 599 | euler[2] = ats->getEulerPsi() * NumericConstant::PI /180.0; | 
| 600 |  | 
| 601 | RotMat3x3d Atmp(euler); | 
| 602 | refOrients_.push_back(Atmp); | 
| 603 |  | 
| 604 | }else { | 
| 605 | refOrients_.push_back(identMat); | 
| 606 | } | 
| 607 |  | 
| 608 |  | 
| 609 | } | 
| 610 |  | 
| 611 | } | 
| 612 |  |